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1
Ana Lise

SCIPER : 123456

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé recto-verso,
il contient 14 questions et 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

• Posez votre carte d’étudiant sur la table et vérifiez votre nom et votre numéro SCIPER sur la

première page.

• Aucun document n’est autorisé.

• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant l’épreuve.

• Pour les questions à choix multiple, on comptera :

les points indiqués si la réponse est correcte,

0 point si il n’y a aucune ou plus d’une réponse inscrite,

0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire.

• Si une question est erronée, l’enseignant se réserve le droit de l’annuler.

• Les dessins peuvent être faits au crayon.

• Répondez dans l’espace prévu (aucune feuille supplémentaire ne sera fournie).

• Les feuilles de brouillon seront ramassées mais pas corrigées.
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Trigonométrie circulaire

Formules d’addition :

sin(x+ y) = sinx cos y + cosx sin y cos(x+ y) = cosx cos y � sinx sin y

tan(x+ y) =
tanx+ tan y

1� tanx tan y

Formules de bissection :

sin2(x2 ) =
1� cosx

2
cos2(x2 ) =

1 + cosx

2
tan2(x2 ) =

1� cosx

1 + cosx

Expressions de sinx , cosx et tanx en fonction de tan(x2 ) :

sinx =
2 tan(x2 )

1 + tan2(x2 )
cosx =

1� tan2(x2 )

1 + tan2(x2 )
tanx =

2 tan(x2 )

1� tan2(x2 )

Formules de transformation somme-produit :

cosx+ cos y = 2 cos(x+y
2 ) cos(x�y

2 ) cosx� cos y = �2 sin(x+y
2 ) sin(x�y

2 )

sinx+ sin y = 2 sin(x+y
2 ) cos(x�y

2 ) sinx� sin y = 2 cos(x+y
2 ) sin(x�y

2 )

Trigonométrie hyperbolique

Définitions :

sinhx =
e
x � e

�x

2
coshx =

e
x + e

�x

2
tanhx =

e
x � e

�x

ex + e�x
cosh2 x� sinh2 x = 1

Formules d’addition :

sinh(x+ y) = sinhx cosh y + coshx sinh y cosh(x+ y) = coshx cosh y + sinhx sinh y

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
Formules de bissection :

sinh2(x2 ) =
coshx� 1

2
cosh2(x2 ) =

coshx+ 1

2
tanh(x2 ) =

coshx� 1

sinhx
=

sinhx

coshx+ 1

Dérivée de quelques fonctions

f(x) f
0(x)

arcsinx
1p

1� x2

arccosx � 1p
1� x2

arctanx
1

1 + x2

arccotx � 1

1 + x2

f(x) f
0(x)

sinhx coshx

coshx sinhx

tanhx
1

cosh2 x

cothx � 1

sinh2 x

f(x) f
0(x)

arg sinhx
1p

1 + x2

arg coshx
1p

x2 � 1

arg tanhx
1

1� x2

arg cothx
1

1� x2
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Première partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n’y

a qu’une seule réponse correcte par question. Une bonne réponse vaut le nombre de points indiqués. Une

mauvaise réponse, plusieurs réponses ou aucune réponse 0 point. Il n’y a pas de points négatifs.

Question 1 (3 points)

La valeur de l’intégrale

I =

Z 2

1

1

x(2x+ 3)
dx

est

I = 1
3 ln(

50
49 )

I = 1
3 ln(

10
7 )

I = 2
5 ln(

3
5 )

I = 2
3 ln(

11
7 )

I = 2
5 ln(

15
7 )

I = 2
3 ln(

49
25 )

I = 1
5 ln(

13
7 )

I = 1
3 ln(

11
5 )

Correction : Décomposition en éléments simples:

1

x(2x+ 3)
=

A

x
+

B

2x+ 3
=

(2A+B)x+ 3A

x(2x+ 3)
() A = 1/3, B = �2/3.

On intègre:

I =
1

3

Z 2

1

1

x
dx� 2

3

Z 2

1

1

2x+ 3
dx =


1

3
ln(x)� 1

3
ln(2x+ 3)

�2

1

=


1

3
ln

✓
x

2x+ 3

◆�2

1

=
1

3

✓
ln

2

7
� ln

1

5

◆
=

1

3
ln

10

7
.

Question 2 (3 points)

On construit un arbre à l’aide de segments par un processus itératif dont les quatre premières étapes sont

représentées ci-dessous:

Chaque segment de l’étape 1 est de longueur ` = 1. A l’étape n+ 1, la longueur de chaque segment rajouté

est égale au tiers de la longueur des segments rajoutés à l’étape n.

Si on construisait cet arbre avec du fil de fer, quelle serait la longueur totale L de fil nécessaire lorsque

n ! 1 ?

L = 4

L = 16

L = 9
8

L = 2
3

L = 6

L = +1
L = 23

8

L = 8

Correction : Si on appelle xn le nombre de segments rajoutés à l’étape n, et `n la longueur de chacun de

ces segments, on a xn+1 = 2xn et `n+1 = 1
3`n pour n � 1. Donc

L = 2 · 1 + 22 · 1
3
+ 23 ·

✓
1

3

◆2

+ · · · = 2

 
1 + ·2

3
+ ·
✓
2

3

◆2

+ · · ·
!

= 2 · 1

1� 2
3

= 6.
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Question 3 (3 points)

Soit D le domaine borné du plan délimité par la courbe y =
p
2x+ 1, la courbe y =

p
x+ 3, et l’axe (Ox).

Que vaut l’aire de D?

5
p
3

3

3
p
5

2

5
p
3

3
p
3

2

5
p
5

3

5
p
3

2

5
p
5

5
p
5

2

Correction : Le domaine est représenté ci-dessous:

Les courbes s’intersectent au point dont l’abscisse x satisfait
p
2x+ 1 =

p
x+ 3, donc au point (2,

p
5). On

intègre par rapport à y, avec x1(y) = y
2 � 3 et x2(y) =

1
2

�
y
2 � 1

�
:

A =

Z p
5

0
(x2(y)� x1(y)) dy =

Z p
5

0

✓
1

2
y
2 � 1

2
� y

2 + 3

◆
dy =


5

2
y � y

3

6

�p5

0

=
5
p
5

3
.

Question 4 (3 points)

Soit � le graphe de la fonction f(x) =
1

3x3
, x 6= 0, et soit t la tangente à � issue du point (4, 0). Alors la

pente de t est égale à

� 1

81

�1

8

�1

4

� 1

25

� 1

256

�1

9

� 1

125

� 1

16

Correction : Si t est la tangente à � issue du point (4, 0), nommons ↵ l’abscisse du point de contact avec

� (↵ 6= 0). On a donc
f(↵)� 0

↵� 4
= f

0(↵) , c’est-à-dire

1
3↵3 � 0

↵� 4
= � 1

↵4
, qui après simplification s’écrit

1

3
= �↵� 4

↵
. On obtient ↵ = 3, t est donc de pente � 1

↵4 = � 1
81 .

Question 5 (3 points)

Soient f(x) = cos(⇡2x) et g(x) = ↵ · (x�1), où ↵ 2 R est une constante. Pour quelle valeur de ↵ les fonctions

f et g sont-elles infiniment petites équivalentes (IPE) au voisinage de x0 = 1?

↵ = � 2
⇡

↵ = �1

↵ = ⇡

↵ = ⇡
2

↵ = �⇡
2

↵ = �⇡

↵ = 2
⇡

↵ = 1

Correction : On a bien limx!1 f(x) = limx!1 g(x) = 0. Pour que f et g soient IPE au voisinage de

1, il faut que limx!1
f(x)
g(x) = 1. Or lim

x!1

f(x)

g(x)
= lim

x!1

cos
�
⇡
2x
�

↵(x� 1)
= lim

x!1

�⇡
2 sin

�
⇡
2x
�

↵
=

�⇡
2

↵
, par la règle de

Bernouilli-L’hôpital. Pour que cette limite vaille 1, il faut que ↵ = �⇡
2 .

y y
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Question 6 (3 points)

La limite

lim
x!0+

sin(x)
1

ln(2x)

vaut

e
2

e
�1

p
e

0

+1
1

e

e
�2

Correction : On a une indétermination du type 00. On remarque que

sin(x)
1

ln(2x) = exp

✓
ln (sin(x)) · 1

ln(2x)

◆
= exp

✓
ln (sin(x))

ln(2x)

◆
.

Or
ln(sin(x))
ln(2x) est une indétermination du type

1
1 . Pour lever cette indétermination on applique la règle de

Bernouilli-L’hôpital:

lim
x!0+

ln (sin(x))

ln(2x)
= lim

x!0+

cos(x)
sin(x)

2
2x

= lim
x!0+

cos(x)
x

sin(x)
= 1,

car limx!0+ cos(x) = limx!0+
x

sin(x) = 1. Par la continuité de la fonction exponentielle, on a donc

lim
x!0+

sin(x)
1

ln(2x) = lim
x!0+

exp

✓
ln (sin(x))

ln(2x)

◆
= exp

✓
lim

x!0+

ln (sin(x))

ln(2x)

◆
= exp(1) = e.

Question 7 (3 points)

Soit f : [0, 13] ! R la fonction définie par

f(x) =

(
x si 0  x < 5 ,

x� 3 si 5  x  13 .

Parmi les ensembles D ci-dessous, lequel rend la restriction f : D ! R injective?

D = [0, 3] [ [5, 7]

D = [0, 5[ [ ]5, 13]

D = [0, 4] [ [8, 13]

D = [0, 6]

D = [0, 2] [ [5, 13]

D = [1, 10]

Correction : On peut vérifier, sur la représentation graphique de la fonction, que pour la restriction de f à

n’importe que autre choix de D, il existera au moins deux valeurs du domaine ayant la même image par f .

y y
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Question 8 (3 points)

Soit f : ]0, 4[! R une fonction qui

• est continue sur ]0, 4[\{3}, mais pas continue en x = 3,

• n’est pas dérivable en x = 1 et en x = 3,

• possède un minimum local qui n’est pas global,

• est telle que limx!3 f(x) = 5.

Parmi les graphes (A) à (F) ci-dessous, lequel peut être le graphe de la fonction f?

(C)

(B)

(E)

(A)

(D)

(F)

Correction : (A) est le seul graphe qui correspond à une fonction satisfaisant les quatre conditions données:

(B) ne satisfait pas la condition 4, (C) ne satisfait pas les conditions 3 et 4, (D) et (E) ne satisfont pas la

condition 1, et (F) ne satisfait pas les conditions 2, 3 et 4.

Question 9 (3 points)

Soit C l’ensemble de tous les cylindres de base circulaire dont le volume est fixé et égal à V > 0. Considérons

le cylindre de C dont l’aire extérieure (incluant celle des couvercles inférieur et supérieur) est minimale. Alors

le rayon de la base de ce cylindre vaut

r = 3

q
2V
⇡

r = 3

q
V
⇡

r =
q

3V
⇡

r = V
⇡

r = 2V
⇡

r = 3

q
V
2⇡

r =
q

2V
⇡

r =
q

V
⇡

Correction : Un cylindre de rayon r et hauteur h appartenant à C satisfait ⇡r
2
h = V , c’est-à-dire h = V

⇡r2 .

On cherche à minimiser l’aire extérieure d’un tel cylindre, donnée par S(r) = 2⇡rh+2⇡r2 = 2V
r +2⇡r2, r > 0.

Comme S est dérivable sur son domaine, les seules valeurs de r où elle peut atteindre un extremum doivent

être des points où S
0
s’annule. Or S

0(r) = � 2V
r2 + 4⇡r s’annule et change de signe en r = 3

q
V
2⇡ et admet

donc son unique extremum (un minimum) en ce point.
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Deuxième partie, questions de type ouvert

Répondre dans l’espace dédié. Excepté pour la Question 10, vos réponses doivent être soigneusement justi-

fiées, et toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases

à cocher : elles sont réservées au correcteur.

Question 10: Cette question est notée sur 8 points.

0 1 2 3 4 5 6 7 8

Les questions ci-dessous ne demandent pas de justification. (Attention: Un dessin n’est pas considéré comme

une réponse!)

(a) Donner un contre-exemple explicite de suite qui démontre que l’énoncé suivant est faux:

“Soit (an)n�1 une suite strictement croissante. Alors lim
n!1

an = +1.”

Contre-exemple:

an = � 1

n

(b) Donner un exemple explicite d’une suite (an)n�1 qui ne tend pas vers +1, mais qui possède la propriété

suivante: pour tout M > 0, il existe n � 1 tel que an > M .

Exemple:

an =

(
n si n est pair,

0 si n est impair.

(c) Donner un exemple explicite d’une fonction f : R ! R qui n’est pas continue en x0 = 2, mais qui

possède la propriété suivante: il existe � > 0 tel que |x� 2|  � =) |f(x)� f(2)|  1.

Exemple:

f(x) =

(
0 si x  2 ,
1
2 si x > 2 .

(d) Donner un exemple explicite de fonction continue f : [0, 2] ! R pour laquelle il n’existe aucun c 2 ]0, 2[

tel que f
0(c) =

f(2)� f(0)

2� 0
.

Exemple: f(x) = |x� 1
2 |.

(e) Donner un exemple explicite d’une fonction f : R ! R telle que lim
x!3

f(x)� 5

x� 3
= 7.

Exemple: f(x) = 7x� 16

y y
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Question 11: Cette question est notée sur 6 points.

0 1 2 3 4 5 6

(a) Soit x0 2 R, et f : R \ {x0} ! R. Définir rigoureusement ce que signifie

lim
x!x0

f(x) = +1 .

(b) Soit f(x) = 1
(3x+2)2 , définie sur R \ {� 2

3}. Montrer, en utilisant la définition donnée au point (a), que

lim
x!� 2

3

f(x) = +1 .

Solution

(a)

lim
x!x0

f(x) = +1 () 8M , 9� > 0 tel que 0 < |x� x0| < � =) f(x) > M,

où les inégalités |x� x0| < � et f(x) > M peuvent être larges (mais � > 0 et 0 < |x� x0| doivent être

des inégalités strictes!)

(b) Soit f(x) = 1
(3x+2)2 . On veut montrer que limx!� 2

3
f(x) = +1.

Soit M > 0. Alors

f(x) > M () 1

(3x+ 2)2
> M

() (3x+ 2)2 <
1

M

() |3x+ 2| < 1p
M

()
��x+ 2

3

�� < 1

3
p
M

.

On choisit � = 1
3
p
M

(or tout � satisfaisant 0 < � <
1

3
p
M

). Ce � est tel que

0 <
��x�

�
� 2

3

��� < � =) 1

(3x+ 2)2
> M,

ce qui montre bien que limx!� 2
3
f(x) = +1.

y y
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Question 12: Cette question est notée sur 6 points.

0 1 2 3 4 5 6

Calculer les primitives de f(x) = x
3
p
x2 + 1, x 2 R.

Solution:
Il y a plusieurs méthodes possibles.

(a) Par le changement de variable x = sinh(t), dx = cosh(t)dt. Puisque cosh(t)2 � sinh(t)2 = 1, et que

cosh(t) � 1 > 0,

Z
x
3
p
x2 + 1 dx =

Z
sinh(t)3

p
sinh(t)2 + 1 cosh(t) dt

=

Z
sinh(t)3

p
cosh(t)2 cosh(t) dt

=

Z
sinh(t)3 cosh(t)2 dt

=

Z
sinh(t)2 cosh(t)2 sinh(t)dt

=

Z
(cosh(t)2 � 1) cosh(t)2 sinh(t)dt ,

où dans la troisième égalité on a utilisé le fait que
p

cosh(t)2 = | cosh(t)| = cosh(t).

Cette dernière intégrale devient, en posant w = cosh(t),

Z
(cosh(t)2 � 1) cosh(t)2 sinh(t)dt =

Z
(w2 � 1)w2

dw =

Z
(w4 � w

2) dw

=
1

5
w

5 � 1

3
w

3 + C

=
1

5
cosh(t)5 � 1

3
cosh(t)3 + C

=
1

5

p
x2 + 1

5
� 1

3

p
x2 + 1

3
+ C .

(b) Par le changement de variable u = x
2 + 1, qui donne du = 2x dx. On a donc x dx = 1

2du, ce qui nous

permet d’écrire

Z
x
3
p
x2 + 1 dx =

Z
x · x2

p
x2 + 1 dx =

1

2

Z
x
2
p

x2 + 1 2xdx

=
1

2

Z
(u� 1)

p
u du

=
1

2

Z
(u3/2 � u

1/2) du

=
1

2

✓
2

5
u
5/2 � 2

3
u
3/2

◆
+ C

=
1

2

✓
2

5
(x2 + 1)5/2 � 2

3
(x2 + 1)3/2

◆
+ C

=
1

5
(x2 + 1)5/2 � 1

3
(x2 + 1)3/2 + C

=
1

5

p
x2 + 1

5
� 1

3

p
x2 + 1

3
+ C .

Remarque: de manière équivalente, on aurait pu poser le changement de variable u = x
2
.

y y
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(c) On peut aussi intégrer par parties:

Z
x
3
p
x2 + 1 dx =

1

2

Z
x
2 2x

p
x2 + 1| {z }

=( 3
2 (x

2+1)3/2)0

dx

=
1

2

0

B@x
2
⇣

3
2 (x

2 + 1)3/2
⌘
�
Z

(2x)|{z}
=(x2)0

2
3

p
x2 + 1 dx

1

CA

=
1

3
x
2(x2 + 1)3/2 � 1

3

Z
2x
p

x2 + 1 dx

Avec w = x
2 + 1,

Z
2x
p
x2 + 1 dx =

p
w dw =

2

5
w

5/2 + C =
2

5
(x2 + 1)5/2 + C .

En remettant tout ensemble,

Z
x
3
p
x2 + 1 dx =

3

4
x
2(x2 + 1)3/2 � 3

4
· 2
3
(x2 + 1)3/2 + C

=
1

3
x
2(x2 + 1)3/2 � 1

3
· 2
5
(x2 + 1)5/2 + C.

Remarque: cette primitive est la même que celle obtenue par les autres méthodes, puisqu’on obtient,

en factorisant par
1
3 (x

2 + 1)3/2,

1

3
x
2(x2 + 1)3/2 � 1

3
· 2
5
(x2 + 1)5/2 =

1

3
(x2 + 1)3/2

✓
x
2 � 2

5
(x2 + 1)

◆

=
1

3
(x2 + 1)3/2

✓
3

5
(x2 + 1)� 1

◆

=
1

5
(x2 + 1)5/2 � 1

3
(x2 + 1)3/2.

y y
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Question 13: Cette question est notée sur 6 points.

0 1 2 3 4 5 6

Soit � la courbe y =
p
x� 2 � 1, et R la région bornée délimitée par �, la droite d’équation y = �1 et la

droite d’équation x = 3. Calculer le volume du solide de révolution obtenu en faisant tourner R autour de

l’axe y = �2.

Solution:

Le volume V est donné par

V =

Z 3

2
⇡

h�
(
p
x� 2� 1)� (�2)

�2 � (�1� (�2))2
i
dx

= ⇡

Z 3

2

�
(1 +

p
x� 2)2 � 1

�
dx

= ⇡

Z 3

2

�
x� 2 + 2

p
x� 2

�
dx

= ⇡


(x� 2)2

2
+

4

3
(x� 2)3/2

�3

2

=
11⇡

6
.

y y
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Question 14: Cette question est notée sur 7 points.

0 1 2 3 4 5 6 7

On considère la courbe paramétrée M(t) = (x(t), y(t)),

x(t) =
1

t� 1
, y(t) =

1

t2 + 2t� 3
, t 2 Ddéf .

(a) Étudier les branches infinies de la courbe.

(b) Trouver, s’il y en a, les points stationnaires et les points à tangence horizontale/verticale.

Solution

(a) Remarquons que

x(t) =
1

t� 1
, y(t) =

1

(t� 1)(t+ 3)

et donc Ddef = R \ {1,�3}.
Considérons les branches infinies.

• Puisque

lim
t!�3±

x(t) = �1/4 , lim
t!�3±

y(t) = ⌥1 .

la courbe possède l’asymptote verticale d’équation x = �1/4.

• Ensuite, puisque

lim
t!1±

x(t) = ±1 , lim
t!1±

y(t) = ±1 ,

on considère la possibilité d’une asymptote oblique. Comme

m = lim
t!1±

y(t)

x(t)
= lim

t!1±

1

t+ 3
=

1

4

et

h = lim
t!1±

(y(t)� (1/4)x(t)) = lim
t!1±

�1

4(t+ 3)
= � 1

16
,

on a une asymptote oblique d’équation y = 1
4x� 1

16 .

(b) Calculons le vecteur tangent :

~̇r(t) =

✓
ẋ(t)

ẏ(t)

◆
=

✓ �1
(t�1)2

�(2t+2)
(t2+2t�3)2

◆

Puisque ẋ(t) 6= 0 pour tout t 2 Ddef , il n’existe aucun point stationnaire.

Par contre, en t = �1,

~̇r(t) =

✓
�1/4

0

◆
,

on en déduit que la courbe possède un point à tangence horizontale en t = �1, c’est-à-dire au

point M(�1) = (� 1
2 ,�

1
4 ).

y y


