Analyse A Mise a Niveau, EPFL
Série 09: Fonctions trigonométriques réciproques

Ex-09-01: Calculer, sans machine, les valeurs suivantes :

a) sin(arccos(% ) b) tan(w — arctan(2)) ¢) cos(2 arccos(%))
d) arccos(cos(+£%)) e) arctan(tan(—22)) f) arcsin(cos(—17))

a) On exprime A = sin(arccos(z)) & l'aide de la fonction cosinus en utilisant la relation de Pytha-

gore : Y
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A2 = sin? (arccos (%)) |
= 1—cos® (arccos (é)) }
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- <5) 25 01— L x
\ ! /
5

Or a= arccos(%) est un angle qui appartient a l'intervalle [0, 7], on en déduit donc que son
sinus est positif :
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A=+ —:7\/6_
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b) Les points P(a) et P(m —«) sont symétriques par rapport a ’axe des ordonnées! o

On en déduit que tan(r — a) = —tana.
Y
P(B) P(«a)
B = tan(w — arctan(2))
= —tan(arctan(2)) 8 a
- _9. X
a = arctan(2) \\\
B = m — arctan(2 \\\
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¢) On utilise 'expression du cosinus de I'angle double :  cos(2a) = 2 cos?(a) — 1.
C = cos (2 arccos (%)) Y
= 2 cos’ (arccos (%)) —1 P2« <”)
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d) On cherche a exprimer cos(
principale du cosinus : [0, 7].

T) comme le cosinus d'un angle appartenant a la détermination

X




cos(1%) = cos(18F — Z) = cos(—F) = cos(%).

Dot :  arccos(cos(1EE)) = arccos(cos(%)) = g
e) On cherche & exprimer tan(—%r) comme la tangente d’un angle appartenant a la détermination
principale de la tangente : | — 5, 5.

tan(—ﬁ) = taun(—%r +7) = tan(%r) .
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ot :  arctan(tan(—{3)) = arctan(tan(35)) = 13
f) On cherche a exprimer cos(—z—”) comme le sinus d’'un angle appartenant a la détermination
principale du sinus : [, T ].
cos(— 1) =sin[Z — (—72)] = sin(L) = sin(r — L) =sin(—5).
D'oti:  arcsin(cos(—75)) = arcsin(sin(—75)) = —112.

Ex-09-02: Résoudre les équations et inéquations suivantes sur ['intervalle donné :

a) sinz = —2, re [0,2n],
b) sin(2z) = 2, re [-m, 0],
¢c) cos(%) =1, x € [m,3n],
d) tanz = -2, ze [0, 2n],
e) cos(2z) > -3, r e [0, 2r],
f) tan(2x) > 2, —1<x<0.
a) Resolution de '¢quation sinz = —2 sur l'intervalle [0, 27].

e Résolution sur R

9 T = arcsin (—%) +2km
sin:c:—g = ou
r = 7 — arcsin (—%) +2km

Y

T — « ) 21 + o

e Résolution sur l'intervalle [0, 27]

Soit o = arcsin (—%) )

Sur l'intervalle [0, 27], D'équation sinz = —% admet deux solutions

kelZ.




* 'une est engendrée par o+ 2km avec k=1,

x l'autre est engendrée par m — o+ 2km avec k=0.

S = {71' — arcsin (—%) , 27 4+ arcsin (—%)} ,

ou S = {7r + arcsin (%) , 2m — arcsin (%)} .

sur Uintervalle [—m, 0].

wiNo

b) Résolution de I’équation sin(2z) =

e Résolution sur R

2x = arcsin (%) +2km

2
sin(2z) = 3 © ou
2r = m — arcsin (%) +2km

= L arcsin (%) +kr

r=3
& ou keZ.
x:g—%arcsin(%)+k:7r
Y

% arcsin (%) -7

7g — % arcsin (%)

e Résolution sur lintervalle [—7, 0]

Sur 'intervalle [—m, 0], l'équation sin(2z) = % admet deux solutions

* 'une est engendrée par % arcsin (%) +knm avec k=-—1,
* l'autre est engendrée par 5 — 1 arcsin (%) +km avec k= —1.

S = {% arcsin (%) -, =5 — % arcsin (%)} .
c¢) Reésolution de 'équation cos(%) = % sur l'intervalle [r, 37].

e Résolution sur R

= arccos (%) +2km
u

1
cos(g) = 3 @

g O iR

= — arccos (%) +2km

T = 2 arccos (%) +4kn
& ou kelZ.

T = —2 arccos (%) +4kn



e Résolution sur lintervalle [7, 37]
Sur l'intervalle [, 37], Déquation cos(%) =3 n’admet pas de solution.
x Pour k=0, les deux solutions sont inférieures & .

En effet 0 < arccos (%) <3, dou
0 < 2 arccos (%) <m et —m < —2arccos (%) < 0.

x Pour k=1, les deux solutions sont supérieures & 3m. En effet :

47 < 2 arccos (%) +4m < 5w et 3w < —2 arccos (%) +4r < 47 .

S=40.
d) Résolution de I'équation tanz = —3 sur lintervalle [0, 27].
e Résolution sur R
3 3
tanx:—i & x = arctan(—3) + km, keZ.
Y

T+ «

e Résolution sur Uintervalle [0, 27 ]
- 3
Soit o = arctan (—3).

Sur 'intervalle [0, 27], l'équation tanxz = —% admet deux solutions :
r=7+a et r=27+ .

S = {7T + arctan (—%) , 2m + arctan (—%)} .

e) Résolution de l'inéquation  cos(2z) > —3  sur lintervalle [0, 2r]

e Représentation des points P(2x) tels que cos(2z) > —%.

On représente, sur ’axe des cosinus, les valeurs plus grandes que —% .
Puis on représente les points du cercle trigonométrique dont I'abscisse est plus grande que —3

cos(2z) > —2 & —arccos(—3) 4 2km < 2z < arccos(—3) + 2kw, kEZ.
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e On en déduit les points P(x) solution de 'inéquation  cos(2x) > —

) 3 arccos(—32)

[N

|
o

N[O

— arccos(—3) + 2km < 2z < arccos(—32) + 2k7

& —1arccos(—3) + kr <2 < L arccos(—3)+kr, keZ.

e Toujours graphiquement, on retient les solutions qui appartiennent a l'intervalle [0, 27 ] :

S = [0, 3 arccos(—3)]|
U ]m— 3 arccos(—32

)
U Jor—1 —3
7 — 5 arccos(—y), 2m].

Y
™ — 3 arccos(—2) % arccos(—2)
0
O X
27
T+ & arccos(—3) 2m — 5 arccos(—3)

f) Résolution de I'inéquation tan(2x) > 2  sur l'intervalle [—m, 0]

e Représentation des points P(2x) tels que tan(2z) > 2.

On représente, sur 'axe des tangentes, les valeurs plus grandes que 2.

Puis on représente les points correspondants sur le cercle trigonométrique.

tan(2z) > 2 < arctan(2) +kr <22 < 5 +kn, kcZ.



arctan(2) L arctan(2)

2

X

X

P(2x)

e On en déduit les points P(z) solution de I'inéquation  tan(2z) > 2.

arctan(2) + kr < 2z < § + k7

& Larctan(2)+ kI <z <Z+kZ, kelZ.

e Graphiquement, on retient les solutions qui appartiennent a l'intervalle [—m, 0] :

S =[-m+ 3% arctan(2), —2F [ U [-Z + % - arctan(2), —7F[.

= arctan(2)

Ex-09-03: Montrer que pour tout x € R,

arccot(zr) = g — arctan(z) .




Premiere méthode : Fixons z € R. Par la relation entre tangente et cotangente,

1
tan(5 — arctan(x))
1

—arctan(z))
—arctan(zx))

1

cos(arctan(z))
sin(arctan(z))

N
cot(arctan(zx))

cot(§ — arctan(x)) =

= tan(arctan(z))

= cot(arccot(z)) .
Puisque § — arctan(z) €]0, [ et arccot(z) €]0, 7], I'injectivité de cot sur |0, 7[ implique donc
5 — arctan(z) = arccot(x) .

Deuxiéme méthode : Comme arctan et arccot sont dérivables sur R, et comme

1
t =
(arctan(x)) a2
1
(arccot(z)) = i

on déduit que (arctan(z) + arccot(x))’ = 0, et donc (voir Analyse B, conséquence du Théoréme des
accroissements finis) il existe une constante C' telle que

arctan(z) + arccot(z) =C  Vz € R.

On peut trouver la valeur de la constante en évaluant la fonction en un point quelconque, par exemple
enxz=0:
T
C = arctan(0) + arccot(0) = 0 + 5

On a donc bien montré que

arccot(z) = § — arctan(z).

Ex-09-04: Calculer, sans machine, l’angle S = arctan 7 + arctan 8.

Soient « = arctan7 et (3 = arctan8.

On localise 'angle a4+ 3, puis on calcule sa tangente.
eac[0,5[ e pBe[0,F5] = a+pc[0,n].

tan o + tan 8 748 3
t = = = —— .
o tan(a+5) l1—tanatang 1—-7-8 11

Dott S =a+ 8 =arctan(—+) + 7 =7 — arctan 2 .

Ex-09-05: Montrer que : arcsin(g) + arccos(%) = arcsin(%) ]

ST (3 15 x
Indication : commencer par montrer que arcsin(2), arccos(12) € 0, 5[ .




Soient « = arcsin(2) et B = arccos(12

2.

\]

Pour montrer que « + § = arcsin
caractéristiques qui définissent arcsin(

i) a+pel-5, 5]
ii) et sin(a+p)=Z

\]/\

5
5)

&l

n(I7), il faut montrer que o + B vérifie les deux propriétés

i) Pour vérifier que o+ € [~5, 5], on peut montrer, par exemple, que

T T
0 — t 0 —.
<a<4 e <ﬁ<4

. U
* Montrons que a = arcsm(%) est compris entre 0 et —.

4
. 3 f
sma—g et 0< 7

\/i
2

?

OT\OO

dou O<sina< —

Or la fonction sinus est strictement croissante
sur 'intervalle [0, T ],

0]
donc O<a< il . \
4
*x Montrons que (= arccos(i—?) est compris entre 0 et Z
15 V2 15
=— et —<-—x<1,
cosf=17 e 5 <y
2

d’ot \Zf <cosf<1.

Or la fonction cosinus est strictement décrois-

sante sur l'intervalle [0, 5],

donc 0<B<%.

s
* On en conclut que a4+ 3 est compris entre 0 et 5
ii) Calcul de sin(a+ ) avec « = arcsin(2) et B = arccos(12).

sin(a+ ) = sina-cosf+ cosa-sinf

= L@ -y

P(7)
(6%

X
P(%)
B
[ X
15
17

S 315+ V5 = 3. /172 — 152

5.17

85[

ZSJ%+W7J1

= —[45+4-8
85[ +4-8]

77

85

En conclusion :

454+ V25— 9. /(17T — 15) - (17+15)]

sin(a+p8)=F et a+Be€(0,5] = a+p=arcsin(Z).



Ex-09-06: Soit la fonction f de ACR dans B CR définie par f(x)=sinz + cosz.

Déterminer A et B de sorte que f soit une bijection.

Déterminer alors la fonction réciproque de f .

Indication : Commencer par écrire sin x+cos x comme une seule fonction trigonométrique.

En vue de déterminer ’ensemble Im f, on cherche & exprimer f & l'aide d’une seule fonction
trigonométrique :

f(x) = sinx 4+ cosx
= \/5[? SiniL'—l—?COS.ﬁ}

= V2 [cos() sinz +sin(Z) cosz ]

y = sin(x), y = cos(x), Y | y=sin(z) + cos(z) = v2 |sin(z + )

NGRS

On déduit donc que Im f = [—\@, ﬁ}, B = [—\/i, \/i]

e Une solution
On définit ’ensemble de départ A en se servant de la détermination principale du sinus : 1'in-
tervalle [—%, g]
La fonction c(z) = V2 sin(z + F) est injectivesi 2+ 2 € [-5, 2] :

La fonction f: A= [731, %

1 — B= [—ﬂ, ﬁ] est donc bijective.

x — V2sin(z 4+ I)

Elle admet une fonction réciproque f~1.

Pour déterminer l'expression de cette fonction réciproque, on résout l'équation y = f(x) par
rapport & la variable x en considérant y comme un paramétre.
Y

y=+V2sin(z+%) & sin(m+%):—2

Y Y
sin(fzx +§) == & o+ f=arcsin(X%) & x=-F+arcsin(%

)

)

Cette fonction réciproque de f(z) = sinz + cosz est donc définie par

VI = [

x — =1+ arcsin(%)

)

e Une autre solution

On définit 'ensemble de départ A en se servant d’une détermination non principale du sinus :
par exemple l'intervalle [” S

55



La fonction c(z) =2 sin(z + §) est injectivesi z+ 5 € [F, 37”} :

La fonction f: A= [%, %’T] — B= [—\@, ﬂ] est donc bijective.

8

— V2sin(z + %)

Elle admet une fonction réciproque f~1.

Pour déterminer lexpression de cette fonction réciproque, on résout I'équation y = f(x) par
rapport a la variable x en considérant gy comme un parameétre.

y=+V2sin(z+7%) & sinfz+7I)=

Sl

Or %6[—1,1] et 3:—1—%6[%,37”], donc
sin(z+4)=-—F%= & z+7=

V2

Cette fonction réciproque de f(z) = sinz + cosz est donc définie par

e =2Vl — [

3 .
x — T — arcsm(%)

T — arcsin(%) & p=3- arcsin(\%) .

e Une troisiéme solution

On exprime f a l'aide de la fonction cosinus, puis on définit ’ensemble de départ A en se
servant de la détermination principale du cosinus : lintervalle [0, 7].

f(x) = cosx+sinx
= ﬂ{@ cosx—i—@sinx}
= V2 [cos(F) cosz +sin(%) sinz |
= 2 cos(x — 7).

La fonction c(z) =2 cos(x — %) est injectivesi z —Z € [0, 7] :
La fonction f: A= [%, %”] — B= [—ﬂ, ﬂ] est donc bijective.
x — V2 cos(z — F)

Elle admet une fonction réciproque f~1.

Pour déterminer 1’expression de cette fonction réciproque, on résout l'équation y = f(z) par
rapport a la variable x en considérant y comme un paramétre.

y = V2 cos(z — T & cos(x—7)=

Sl

Or %6[—1,1] et x—75¢€[0,7], donc

cos(x — ) == & x—F=arccos(%) & x=7+arccos(%

v 5 5

Cette fonction réciproque de f(z) = sinz + cosz est donc définie par

e VE VI =[5 %]

x — I+ arccos(%)

)

Remarque : il s’agit de la méme fonction f~! que dans la deuxiéme solution. seule son expression
est différente.

Ez-09-07: Exercice facultatif
Calculer la dérivée de arctan(z) + arctan (1) ,  z € R*.

En déduire la représentation graphique de la fonction arctan (%) a partir de celle de



la fonction arctan(z) .

1
On pose f(x) = arctan(x) + arctan <> Le domaine de définition de f est R*. On calcule sa dérivée
x
sur R* :
I U T S 1
1+ a2 1—|—x—12x2_1—|—:n2 1+ 22

f(z)
Par conséquent, f est une constante sur chaque intervalle de son domaine de définition. Donc on a

1 c1, T <0
arctan(z) + arctan (x) = { oz > 0,

Pour déterminer ¢; et ¢y on évalue la fonction. On a

- -7 T T w7
—1)=—"+—=—et f(l)==+-+=—-.
JEU =t =get/W=3+5=3
Par conséquent, on a ¢; = —g et co = % et on conclut que

1 m
arctan () = sgn(:c)§ — arctan(z).
x

Le graphe de arctan (%) se construit donc par translation de £7 de celui de — arctan(z).

Y
/2
arctan(z)
x
— arctan(z)
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Y
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x
— arctan(z)
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