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Série 03: Méthode de preuve

Ex-03-01: En utilisant la méthode directe, démontrer les propositions suivantes :

a) Si n est un nombre pair alors n2 + 1 est impair.

b) Si n est un nombre impair alors n2 − 1 est pair.

c) Si n est un nombre impair alors n2 + 2 est impair.

d) Si n est un entier positif alors n2 − n est pair.

e) Si n est un entier positif alors n3 − n est un multiple de 3.

f) Si n est impair alors il existe k ∈ N tel que n2 = 8k + 1 .

g) Soit a ∈ N, si a n'est pas un multiple de 3 alors a2 + 2 est
un multiple de 3.

h) Si m est pair ou n est pair alors m2+n2 est impair ou m2+n2 est un multiple
de 4.

i) Soit m ∈ N, si m est la somme de 5 entiers consécutifs alors m est un multiple de 5.
Peut-on généraliser cet énoncé à la somme d'un nombre quelconque d'entiers consécu-
tifs ? Justi�er la réponse par une démonstration.

j) Soient A et B des sous-ensembles de E :

A ∪B = A ∩B ⇒ A = B .

a) Démonstration par la méthode directe.

n est pair ⇔ ∃ k ∈ Z , n = 2k

m est impair ⇔ ∃ l ∈ Z , m = 2l + 1

Référentiel : Z

Hypothèse : n pair

Conclusion : ∃ l ∈ Z , n2 + 1 = 2l + 1

Preuve :

n pair ⇔ ∃ k ∈ Z , n = 2k

n2 + 1 = (2k)2 + 1

= 4k2 + 1

= 2 (2k2) + 1 : on pose 2k2 = l ∈ N

= 2l + 1 où l ∈ N

b) Démonstration par la méthode directe.

n est pair ⇔ ∃ k ∈ Z , n = 2k

m est impair ⇔ ∃ l ∈ Z , m = 2l + 1

Référentiel : Z

Hypothèse : n impair

Conclusion : ∃ l ∈ N , n2 − 1 = 2l

Preuve :



n impair ⇔ ∃ k ∈ Z , n = 2k + 1

n2 − 1 = (2k + 1)2 − 1

= 4k2 + 4k

= 2 (2k2 + 2k) : on pose 2k2 + 2k = l ∈ N

= 2l où l ∈ N

Remarque : une autre preuve est aussi possible. Par exemple :

n2 − 1 = (n− 1)(n+ 1)
n étant impair, n− 1 et n+ 1 sont pairs donc leur produit est pair.

c) Démonstration par la méthode directe.

n est impair ⇔ ∃ k ∈ Z , n = 2k + 1

Référentiel : Z

Hypothèse : n impair

Conclusion : ∃ l ∈ N , n2 + 2 = 2l + 1

Preuve :

n impair ⇔ ∃ k ∈ Z , n = 2k + 1

n2 + 2 = (2k + 1)2 + 2

= 4k2 + 4k + 1 + 2

= 2 (2k2 + 2k + 1) + 1 : on pose 2k2 + 2k + 1 = l ∈ N

= 2l + 1 où l ∈ N
d) Démonstration par la méthode directe.

Factoriser n2 − n et conclure.

Référentiel : N

Hypothèse : n est un entier positif

Conclusion : ∃ l ∈ N , n2 − n = 2l

Preuve :

n2 − n = n (n− 1)
ce qui est le produit de deux entiers consécutifs, donc l'un des deux est pair. Le produit est donc

pair.

Remarque : une autre preuve est aussi possible. Par exemple par disjonction

de l'hypothèse :

si n = 2k : n2 − n = 4k2 − 2k = 2 (2k2 − k) = 2l
ou

si n = 2k + 1 : n2 − n = 4k2 + 4k + 1− 2k − 1 = 4k2 + 2k = 2l

e) Démonstration par la méthode directe.

Factoriser n3 − n et conclure.

Référentiel : N

Hypothèse : n est un entier positif

Conclusion : ∃ l ∈ N , n3 − n = 3l



Preuve :

n3 − n = n (n2 − 1) = n(n− 1)(n+ 1)
ce qui est le produit de trois entiers consécutifs, donc l'un est un multiple de 3. Le produit est

donc un multiple de 3.

Remarque : une preuve par disjonction des cas de l'hypothèse n'est ici pas adéquate.

f) Démonstration par la méthode directe.

n est impair ⇔ ∃ l ∈ Z , n = 2l + 1

Référentiel : Z

Hypothèse : n impair

Conclusion : ∃ k ∈ N , n2 = 8k + 1

Preuve :

n impair ⇔ ∃ l ∈ Z , n = 2l + 1

n2 = (2l + 1)2

= 4l2 + 4l + 1

= 4l (l + 1) + 1 : or l (l + 1) est le produit de 2 entiers consécutifs donc est pair

= 4 · 2k + 1 : on a posé l(l + 1) = 2k

= 8k + 1 où k ∈ N

g) Démonstration par la méthode directe.

a ∈ N n'est pas un multiple de 3

⇔
∃ k ∈ N , a = 3k + 1 ou a = 3k + 2

Référentiel : N

Hypothèse : a n'est pas un multiple de 3

Conclusion : a2 + 2 est un multiple de 3

Preuve :

a n'est pas un multiple de 3

⇔
∃ k ∈ N , a = 3k + 1 ou a = 3k + 2

1er cas : a = 3k + 1

a2 + 2 = (3k + 1)2 + 2

= 9k2 + 6k + 1 + 2

= 9k2 + 6k + 3

= 3(3k2 + 2k + 1) = 3k′ où k′ ∈ N

⇒ a2 + 2 est un multiple de 3.

2ème cas : a = 3k + 2



a2 + 2 = (3k + 2)2 + 2

= 9k2 + 12k + 4 + 2

= 9k2 + 12k + 6

= 3(3k2 + 4k + 2) = 3k′′ où k′′ ∈ N

⇒ a2 + 2 est un multiple de 3.

Au �nal, si a n'est pas un multiple de 3 , alors a2 + 2 est un multiple de 3 .

h) Démonstration par la méthode directe.

Il faut traduire correctement le "ou" de l'hypothèse : seulement 2 cas sont à envisager.

Référentiel : Z

Hypothèse : m pair ou n pair

Conclusion : m2 + n2 = 2k′ + 1 ou m2 + n2 = 4l′

Preuve :

1er cas : m et n sont pairs

m = 2k et n = 2l

n2 +m2 = 4k2 + 4l2

= 4 (k2 + l2)

= 4l′ où l′ ∈ N

⇒ m2 + n2 est un multiple de 4.

2ème cas : m et n ne sont pas de même parité

Soit : m = 2k et n = 2p+ 1

m2 + n2 = 4k2 + 4p2 + 4p+ 1

= 2 (2k2 + 2p2 + 2p) + 1

= 2l′ + 1 où l′ ∈ N
i) Démonstration par la méthode directe.

On additionne un nombre impair d'entiers consécutifs. Il est donc judicieux de les écrire en utilisant

des symétries par rapport au terme de rang milieu. Par exemple :

n− 1 , n , n+ 1 sont 3 entiers consécutifs.

Référentiel : N

Hypothèse : m est la somme de 5 entiers consécutifs

Conclusion : m = 5k , k ∈ N

Preuve :

Soit 5 entiers consécutifs. On peut toujours les écrire de la manière suivante :

n− 2 , n− 1 , n , n+ 1 , n+ 2 , n ∈ N .

Par hypothèse, m est la somme de ces 5 entiers consécutifs donc :

m = n− 2 + n− 1 + n+ n+ 1 + n+ 2 = 5n ⇔ m est un multiple de 5.

Si m est la somme de 2k + 1 entiers consécutifs, alors m est un multiple de 2k + 1
car



on écrit ces 2k + 1 entiers ainsi :

n− k , n− k + 1 , n− k + 2 , ... , n− 2 , n− 1 , n , n+ 1 , ... , n+ k
et en les additionnant on obtient :

m = (2k + 1)n ⇔ m est un multiple de 2k + 1

Par contre la somme de 2k entiers consécutifs n'est pas un multiple de 2k.
Un contre-exemple le montre.

j) Démonstration par la méthode directe.

• Montrer A = B ⇔ montrer A ⊂ B et B ⊂ A

• A ⊂ B ⇔ ∀x ∈ A , x ∈ B

Référentiel : E

Hypothèse : A ∪B = A ∩B

Conclusion : A = B

Preuve :

A ⊂ B :

x ∈ A ⇒ x ∈ A ou x ∈ B

⇔ x ∈ A ∪B

⇔ x ∈ A ∩B

⇔ x ∈ A et x ∈ B

⇒ x ∈ B

B ⊂ A :

x ∈ B ⇒ x ∈ A ou x ∈ B

⇔ x ∈ A ∪B

⇔ x ∈ A ∩B

⇔ x ∈ A et x ∈ B

⇒ x ∈ A

Ex-03-02: Ecrire l'énoncé contraposé des théorèmes suivants (on ne demande pas de dé-
monstration).

a) Soient ABC un triangle et D le milieu du côté AB .

Si E est le milieu du côté AC alors DE est parallèle à BC .

b) ∀ a , b ∈ N∗ , si a ou b sont pairs alors ab est pair.

c) ∀x ∈ R , x (x− 3) > 0 ⇒ x < 0 ou x > 3 .

d) ∀x ∈ R , x2 − 1 < 0 ⇒ x < 1 et x > −1 .

e) ∀n , m ∈ N , (m ≤ 3 et n ≤ 3) ⇒ m · n ̸= 15 .

f) ∀n , m ∈ N , m+ n = 0 ⇒ m = 0 et n = 0 .

g) ∀n , m ∈ N , (m = 0 ou n = 0) ⇒ m · n = 0 .



h) ∀ a ∈ R , (∀ ε > 0 , |a| < ε ) ⇒ a = 0 .

Déterminer l'énoncé contraposé d'un théorème.

Soit le théorème :

T : ∀x ∈ E , A ⇒ B

A est l'hypothèse et B est la conclusion.

Son énoncé contraposé est :

C : ∀x ∈ E , non B ⇒ non A

non B est l'hypothèse de C et non A est sa conclusion.

Le référentiel du théorème et de son contraposé est le même.

a) Référentiel : Soient ABC un triangle et D le milieu du côté AB .

E est le milieu du côté AC ⇒ DE est parallèle à BC .

non B : DE n'est pas parallèle à BC
non A : E n'est pas le milieu de AC .

D'où l'énoncé contraposé :

Soient ABC un triangle, D le milieu de AB .

DE n'est pas parallèle à BC ⇒ E n'est pas le milieu de AC

b) Référentiel : ∀ a , b ∈ N∗

a ou b pairs ⇒ ab pair.

non B : ab impair

non A : a et b impairs

D'où l'énoncé contraposé :

∀ a , b ∈ N∗ : ab impair ⇒ a et b impairs

c) Référentiel : ∀x ∈ R
x (x− 3) > 0 ⇒ x < 0 ou x > 3

non B : x ≥ 0 et x ≤ 3
non A : x(x− 3) ≤ 0

D'où l'énoncé contraposé :

∀x ∈ R : x ≥ 0 et x ≤ 3 ⇒ x(x− 3) ≤ 0

d) Référentiel : ∀x ∈ R
x2 − 1 < 0 ⇒ x < 1 et x > −1

non B : x ≥ 1 ou x ≤ −1
non A : x2 − 1 ≥ 0

D'où l'énoncé contraposé :

∀x ∈ R : x ≥ 1 ou x ≤ −1 ⇒ x2 − 1 ≥ 0



e) Référentiel : ∀m, n ∈ N
m ≤ 3 et n ≤ 3 ⇒ m · n ̸= 15.

non B : m · n = 15
non A : m > 3 ou n > 3

D'où l'énoncé contraposé :

∀m, n ∈ N : m · n = 15 ⇒ m > 3 ou n > 3

f) Référentiel : ∀m, n ∈ N
m+ n = 0 ⇒ m = 0 et n = 0.

non B : m ̸= 0 ou n ̸= 0
non A : m+ n ̸= 0

D'où l'énoncé contraposé :

∀m, n ∈ N : m ̸= 0 ou n ̸= 0 ⇒ m+ n ̸= 0

g) Référentiel : ∀m, n ∈ N
m = 0 ou n = 0 ⇒ m · n = 0.

non B : m · n ̸= 0
non A : m ̸= 0 et n ̸= 0

D'où l'énoncé contraposé :

∀m, n ∈ N : m · n ̸= 0 ⇒ m ̸= 0 et n ̸= 0

h) Référentiel : ∀ a ∈ R
( ∀ ε > 0 , |a| < ε ) ⇒ a = 0.

non B : a ̸= 0
non A : ∃ ε > 0 , |a| ≥ ε

D'où l'énoncé contraposé :

∀ a ∈ R : a ̸= 0 ⇒ ∃ ε > 0 , |a| ≥ ε

Ex-03-03: Démontrer par la contraposée les théorèmes suivants :

a) ∀n , m ∈ N , m · n pair ⇒ m est pair ou n est pair.

b) ∀n , m ∈ N∗ , mn impair ⇒ m est impair ou n est impair.

c) ∀n , m ∈ N , (m2+n2 est impair ou m2+n2 = 4k, k ∈ N) ⇒ m est pair ou n est pair.

d) ∀n , m ∈ N∗ , m2 − n2 n'est pas une multiple de 8 ⇒ m est pair ou n est pair.

e) Si n2 est un multiple de 3 alors n est aussi un multiple de 3, n étant un entier positif.

f) A ∩B = ∅ ⇔ A ⊂ B .

g) A ⊂ B ⇔ E = A ∪B .

h) ∀ A,B,C ⊂ E, (A ∩B) ⊂ C =⇒ CA(C) ∩ CB(C) = ∅ .
(CA(C) est le complémentaire de C dans A).

Démontrer un théorème en utilisant son énoncé contraposé :



• on écrit l'énoncé contraposé C,

• on démontre C par la méthode directe.

Soit le théorème : T : [ ∀n,m ∈ N, P ⇒ Q ]

et son énoncé contraposé C : [∀n,m ∈ N, nonQ ⇒ nonP ]

Ces deux énoncés sont logiquement équivalents : C vrai ⇔ T vrai.

a) Soit le théorème T :

Référentiel : m,n ∈ N

Hypothèse P : m · n pair

Conclusion Q : m est pair ou n est pair

On écrit la proposition contraposée C :

Référentiel : m,n ∈ N

Hypothèse non Q : m est impair et n est impair

Conclusion non P : m · n est impair

Preuve de la proposition contraposée :

Par hypothèse :

 m = 2k + 1 , k ∈ N

n = 2l + 1 , l ∈ N

m · n = (2k + 1) · (2l + 1) = 4 kl + 2 k + 2 l + 1

= 2 (2kl + k + l) + 1

= 2k′ + 1 où k′ ∈ N

⇒ m · n est impair.

L'énoncé contraposé C est vrai donc T est aussi vrai.

b) Référentiel : m,n ∈ N∗

Hypothèse P : mn impair

Conclusion Q : m est impair ou n est impair

On écrit la proposition contraposée :

Référentiel : m,n ∈ N∗

Hypothèse non Q : m est pair et n est pair

Conclusion non P : mn est pair

Preuve de la proposition contraposée :

Par hypothèse :

 m = 2k , k ∈ N∗

n = 2l , l ∈ N∗



mn = (2k)2l = 22l · k2l

= 2(22l−1 · k2l)

= 2k′ où k′ = 22l−1 · k2l ∈ N∗

⇒ mn est pair.

L'énoncé contraposé C est vrai donc T est aussi vrai.

c) Référentiel : m,n ∈ N

Hypothèse P : m2 + n2 est impair ou m2 + n2 = 4k , k ∈ N

Conclusion Q : m est pair ou n est pair

On écrit la proposition contraposée :

Référentiel : m,n ∈ N

Hypothèse non Q : m est impair et n est impair

Conclusion non P : m2 + n2 est pair et m2 + n2 ̸= 4k , k ∈ N

Preuve de la proposition contraposée :

Par hypothèse :

 m = 2k + 1 , k ∈ N

n = 2l + 1 , l ∈ N

m2 + n2 = 4k2 + 4k + 1 + 4l2 + 4l + 1

= 4 (k2 + k + l2 + l) + 2

= 4 k′ + 2 où k′ ∈ N

= 2 (2k′ + 1)

ainsi m2 + n2 est pair mais n'est pas multiple de 4 car 2k′ + 1 est impair.

L'énoncé contraposé C est vrai donc T est aussi vrai.

d) Référentiel : m,n ∈ N∗

Hypothèse P : m2 − n2 n'est pas un multiple de 8

Conclusion Q : m est pair ou n est pair

On écrit la proposition contraposée :

Référentiel : m,n ∈ N∗

Hypothèse non Q : m est impair et n est impair

Conclusion non P : m2 − n2 est un multiple de 8

Preuve de la proposition contraposée :

Par hypothèse :

 m = 2l + 1 , l ∈ N

n = 2p+ 1 , p ∈ N



m2 − n2 = (2l + 1)2 − (2p+ 1)2

= 4 (l2 + l − p2 − p)

= 4 l (l + 1) − 4 p (p+ 1)

= 4 · 2 a− 4 · 2 b a , b ∈ Z
car l et l + 1 sont deux entiers consécutifs donc leur produit est pair, de même pour p et p+ 1 .

⇒ m2 − n2 = 8a− 8b = 8k, k ∈ Z

ainsi m2 − n2 est un multiple de 8 .

L'énoncé contraposé C est vrai donc T est aussi vrai.

e) Référentiel : n ∈ N

Hypothèse P : n2 = 3k , k ∈ N

Conclusion Q : n = 3k′ , k′ ∈ N

On écrit la proposition contraposée :

Référentiel : n ∈ N

Hypothèse non Q : n ̸= 3k′ , k′ ∈ N

Conclusion non P : n2 ̸= 3k , k ∈ N

Preuve de la proposition contraposée :

• On suppose : n = 3l + 1 , l ∈ N

n2 = (3l + 1)2 = 9l2 + 6l + 1 = 3(3l2 + 2l) + 1 = 3l′ + 1 , l′ ∈ N
Ainsi n2 n'est pas un multiple de 3.

• On suppose : n = 3l + 2 , l ∈ N

n2 = (3l + 2)2 = 9l2 + 12l + 4 = 9l2 + 12l + 3 + 1 = 3(3l2 + 4l + 1) + 1 = 3l′ + 1 , l′ ∈ N
Ainsi n2 n'est pas un multiple de 3.

L'énoncé contraposé C est vrai donc T est aussi vrai.

f) Soit le théorème T :

∀A , B ⊂ E : A ∩B = ∅ ⇔ A ⊂ B

On écrit la proposition contraposée C :

∀A , B ⊂ E : A ∩B ̸= ∅ ⇔ A ̸⊂ B

Preuve de C par la méthode directe :

A ∩B ̸= ∅ ⇔ ∃x ∈ E , x ∈ A ∩B

⇔ ∃x ∈ E , x ∈ A et x ∈ B

⇔ ∃x ∈ E , x ∈ A et x /∈ B

⇔ A ̸⊂ B

L'énoncé contraposé C est vrai donc T est aussi vrai.



g) Soit le théorème T : ∀A , B ⊂ E , P ⇔ Q

et son énoncé contraposé C : ∀A , B ⊂ E , nonP ⇔ nonQ

Ces deux énoncés sont logiquement équivalents : C vrai ⇔ T vrai.

Soit le théorème T :

∀A , B ⊂ E : A ⊂ B ⇔ E = A ∪B

On écrit la proposition contraposée C :

∀A , B ⊂ E : A ̸⊂ B ⇔ E ̸= A ∪B

Preuve de C par la méthode directe :

A ̸⊂ B ⇔ ∃x ∈ E , x ∈ A et x /∈ B

⇔ ∃x ∈ E , x ∈ A et x ∈ B

⇔ ∃x ∈ E , x ∈ A ∩B

⇔ ∃x ∈ E , x /∈ A ∩B

⇔ ∃x ∈ E , x /∈ A ∪B

⇔ E ̸= A ∪B

L'énoncé contraposé C est vrai donc T est aussi vrai.

h) Soit le théorème T : ∀A , B ,C ⊂ E , P ⇒ Q

et son énoncé contraposé C : ∀A , B , C ⊂ E , nonQ ⇒ nonP

Ces deux énoncés sont logiquement équivalents : C vrai ⇔ T vrai.

Soit le théorème T :

∀ A,B,C ⊂ E, (A ∩B) ⊂ C ⇒ CA(C) ∩ CB(C) = ∅ .

On écrit la proposition contraposée C :

∀A , B , C ⊂ E : CA(C) ∩ CB(C) ̸= ∅ ⇒ (A ∩B) ̸⊂ C

Preuve de C par la méthode directe :

CA(C) ∩ CB(C) ̸= ∅ ⇒ ∃x ∈ E , x ∈ CA(C) ∩ CB(C)

⇒ ∃x ∈ E , x ∈ CA(C) et x ∈ CB(C)

⇒ ∃x ∈ E , (x ∈ A et x /∈ C) et (x ∈ B et x ̸∈ C)

⇒ ∃x ∈ E , x ∈ A et x ∈ B et x /∈ C

⇒ ∃x ∈ E , x ∈ (A ∩B) et x /∈ C

⇒ (A ∩B) ̸⊂ C

L'énoncé contraposé C est vrai donc T est aussi vrai.



Ex-03-04: En utilisant la méthode par l'absurde, démontrer les propositions suivantes :

a) Si x est irrationnel et y rationnel alors x+ y est irrationnel.

b) ∀a ∈ N∗, si a2 + 2 est un multiple de 3 alors a n'est pas un multiple de 3.

c) ∀m,n ∈ N , m ≤ 3 et n ≤ 3 ⇒ m · n ̸= 15.

d) Soient A et B des sous-ensembles du référentiel E.
∀ A,B ⊂ E, A ⊂ B ⇒ Ā ∪ B = E.

e)
√
3 est irrationnel.

Indication : utiliser que si n2 est un multiple de 3, alors n est un multiple de 3. (la
preuve se fera plus loin)

a) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Référentiel : R

Hypothèse : x ∈ R \Q et y ∈ Q : H

Conclusion : x+ y ∈ R \Q : C

Ecrire les hypothèses H et non C.

On suppose : H : x ∈ R \Q et y ∈ Q

non C : x+ y ∈ Q

Ainsi par hypothèse

(x+ y) ∈ Q ⇔ x+ y =
m

n
, m ∈ Z , n ∈ Z∗ et m,n premiers entre eux

et

y ∈ Q ⇔ y =
a

b
, a ∈ Z , b ∈ Z∗ et a , b premiers entre eux

D'où : x+
a

b
=

m

n
⇒ x =

m

n
− a

b
=

bm− an

nb
=

c

d
, c , d ∈ Z ⇒ x ∈ Q .

Mais par hypothèse, x ∈ R \Q .

L'hypothèse (non C vraie) aboutit à une situation contradictoire où l'on a simultanément x ∈ Q
et x ∈ R \Q .

Ce qui est impossible donc la conclusion ( x+ y irrationnel) est vraie.

b) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Référentiel : N

Hypothèse : a ∈ N∗ , a2 + 2 = 3k k ∈ N∗ : H

Conclusion : a n'est pas multiple de 3 : C

Ecrire les hypothèses H et non C.

On suppose :{
H : a ∈ N∗ , a2 + 2 = 3k k ∈ N∗

non C : a = 3n , n ∈ N∗

Ainsi par hypothèse



{
a2 + 2 = 3k
a2 + 2 = (3n)2 + 2 = 9n2 + 2

d'où

3k = 9n2 + 2 ⇒ 2 = 3 (k − 3n2) c'est-à-dire 2 est multiple de 3.

L'hypothèse (non C vraie) aboutit à la situation absurde où 2 est un multiple de 3.

Ce qui est impossible donc la conclusion (a n'est pas multiple de 3) est vraie.

c) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Référentiel : N

Hypothèse : m, n ∈ N , m ≤ 3 et n ≤ 3 : H

Conclusion : m · n ̸= 15 : C

Ecrire les hypothèses H et non C.

On suppose :{
H : m, n ∈ N , m ≤ 3 et n ≤ 3

non C : m · n = 15

• si n ̸= 0 : m · n = 15 ⇒ m =
15

n
≥ 5 car n ≤ 3 .

On a donc silmultanément m ≤ 3 et m ≥ 5 : ce qui est impossible.

Ainsi (m · n ̸= 15) est vrai.

• si n = 0 : on a simultanément m · n = 0 et m · n = 15 : ce qui est impossible.

Ainsi la conclusion (m · n ̸= 15) est vraie.

d) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Remarque : on note A le complémentaire de A dans E .

Référentiel : un ensemble E

Hypothèse : A , B ⊂ E , A ⊂ B : H

Conclusion : A ∪ B = E : C

Ecrire les hypothèses H et non C.

Remarque : on note A le complémentaire de A dans E .

On suppose :{
H : A , B ⊂ E , A ⊂ B

non C : A ∪ B ̸= E

Par hypothèse :

A ∪B ̸= E ⇒ ∃x ∈ E , x /∈ A ∪B

⇒ ∃x ∈ E , x ∈ A ∪B

⇒ ∃x ∈ E , x ∈ A ∩B

⇒ ∃x ∈ E , x ∈ A et x ∈ B

⇒ ∃x ∈ E , x ∈ A et x /∈ B

⇒ A ̸⊂ B



L'hypothèse (non C vraie) aboutit à une situation contradictoire où l'on a simultanément A ⊂ B
et A ̸⊂ B .

Ce qui est impossible donc la conclusion (A ∪ B = E) est vraie.

e) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Référentiel : R

Hypothèse : x =
√
3

Conclusion : x est irrationnel

Ecrire les hypothèses H et non C.

On suppose :
H : x =

√
3

non C : x =
√
3 est rationnel

Par hypothèse :

√
3 est rationnel

⇔
∃ a ∈ N et b ∈ N∗ premiers entre eux tels que :

√
3 =

a

b
> 0

⇔ 3 =
a2

b2

⇔ a2 = 3b2

⇔ a2 est multiple de 3

⇔ a est multiple de 3

⇔ a = 3a′ , a′ ∈ N∗

√
3 rationnel ⇔

√
3 =

3a′

b
> 0

⇔ 3 =
9a′2

b2

⇔ b2 = 3a′2

⇔ b2 est multiple de 3

⇔ b est multiple de 3

⇔ b = 3b′ , b′ ∈ N∗

Ainsi
√
3 est rationnel ⇔

√
3 =

3a′

3b′
=

a

b

donc a et b ont un facteur commun, mais par hypothèse, a et b sont premiers entre eux.

Ainsi en supposant
√
3 rationnel, on a simultanément que a et b ont un facteur commun et a

et b sont premiers entre eux : ce qui est impossible. Donc
√
3 est irrationnel.



Ex-03-05: Soit la proposition T suivante :

T : ∀m,n ∈ N , n ̸= 0 ⇒ m+ n
√
2 est irrationnel.

a) Démontrer la proposition T par l'absurde.

b) Enoncer la contraposée C de la proposition T . C est-elle vraie ?

c) Enoncer la réciproque R de la proposition T et la démontrer par la méthode de la
contraposée.

a) Démonstration de l'énoncé H ⇒ C par la méthode par l'absurde :

montrer que les hypothèses H et non C vraies aboutissent à une situation contradictoire.

Référentiel : N

Hypothèse : n , m ∈ N , n ̸= 0 : H

Conclusion : m+ n
√
2 ∈ R \Q : C

Ecrire les hypothèses H et non C.

On suppose :{
H : n , m ∈ N , n ̸= 0

non C : m+ n
√
2 ∈ Q

Ainsi par hypothèse

m+ n
√
2 ∈ Q ⇔ m+ n

√
2 =

a

b
, a ∈ Z , b ∈ Z∗ et a , b premiers entre eux

Or n ̸= 0 , d'où
√
2 =

a− bm

nb
=

c

d
, c , d ∈ Z ⇒

√
2 ∈ Q

Mais
√
2 ∈ R \Q (pour la démonstration voir le point f)

L'hypothèse (non C vraie) aboutit à une situation contradictoire où l'on a simultanément
√
2 ∈ Q

et
√
2 ∈ R \Q .

Ce qui est impossible donc la conclusion (m+ n
√
2 irrationnel) est vraie.

b) Ecrire la contraposée d'un énoncé de la forme H ⇒ C.

Le théorème T : ∀n , m ∈ N , H ⇒ C

a pour contraposée C : ∀n , m ∈ N , non C ⇒ non H

Soit le théorème T : ∀m, n ∈ N , n ̸= 0 ⇒ m+ n
√
2 ∈ R \Q

Il a pour énoncé contraposé :

C : ∀m, n ∈ N , m+ n
√
2 ∈ Q ⇒ n = 0

Cet énoncé est logiquement équivalent à T , donc C est vrai.

c) Ecrire la réciproque R d'un énoncé de la forme H ⇒ C.

Ecrire la contraposée de R et la montrer par la méthode directe.

Le théorème T : ∀n , m ∈ N , H ⇒ C

a pour réciproque R : ∀n , m ∈ N , C ⇒ H

Soit le théorème T : ∀m, n ∈ N , n ̸= 0 ⇒ m+ n
√
2 ∈ R \Q

Il a pour énoncé réciproque :



R : ∀m, n ∈ N , m+ n
√
2 ∈ R \Q ⇒ n ̸= 0

Pour montrer R, on montre son énoncé contraposé CR qui lui est logiquement équivalent. On écrit

donc d'abord CR.

CR : ∀m, n ∈ N , n = 0 ⇒ m+ n
√
2 ∈ Q

ce qui est évident car N ⊂ Q.

CR est vrai donc R est vrai.

Ex-03-06: Ecrire la négation des propositions P suivantes.
Dans le cas où la proposition est fausse, donner un contre-exemple.

a) ∀x ∈ R , x2 = 9 ⇒ x = 3 .

b) ∀x, y ∈ R , x2 = y2 ⇒ x = y .

c) ∀x ∈ R , x ≤ 2 ⇒ x ≤ 0 .

d) ∀x ∈ R , x ∈ R ⇒ x ∈ Q .

e) ∀x ∈ R , 2x2 = 8 ⇒ x = 2 ou x = −2 .

f) ∀ (n; m) ∈ N2 , n+m = 0 ⇒ n = m = 0 .

g) ∀ (a; b) ∈ R2 , a < b ⇒ ∃x ∈ Q , a < x < b .

h) Un nombre est irrationnel lorsqu'il s'écrit comme produit de deux nombres irrationnels.

i) a et b étant irrationnels, leur quotient est irrationnel.

Ecrire la négation d'une proposition P .

Utiliser la méthode du contre-exemple lorsque P est fausse.

• La proposition P : ∀x ∈ E , R ⇒ S

a pour négation non P : ∃x ∈ E , R et non S

Attention au quanti�cateur !

Attention la négation d'une implication n'est pas une implication !

• Pour montrer que P est fausse, on montre que non P est vraie. C'est-à-dire il existe un élément

de E qui véri�e R et non S (méthode du contre-exemple) : l'hypothèse de P est vraie et sa

conclusion fausse.

a) P : ∀x ∈ R , x2 = 9 ⇒ x = 3 .

non P : ∃x ∈ R , x2 = 9 et x ̸= 3
P faux ; contre-exemple : si x = −3 , l'hypothèse de P est vraie et sa conclusion est fausse.

b) P : ∀x, y ∈ R , x2 = y2 ⇒ x = y .

non P : ∃x , y ∈ R , x2 = y2 et x ̸= y
P faux ; contre-exemple : si x = 2 , y = −2 , l'hypothèse de P est vraie et sa conclusion est fausse.

c) P : ∀x ∈ R , x ≤ 2 ⇒ x ≤ 0 .

non P : ∃x ∈ R , x ≤ 2 et x > 0
P faux ; contre-exemple : si x = 1 , l'hypothèse de P est vraie et sa conclusion est fausse.

d) P : ∀x ∈ R , x ∈ R ⇒ x ∈ Q .

non P : ∃x ∈ R , x ∈ R et x ̸∈ Q
P faux ; contre-exemple : si x =

√
2 , l'hypothèse de P est vraie et sa conclusion est fausse.

e) P : ∀x ∈ R , 2x2 = 8 ⇒ x = 2 ou x = −2 .

non P : ∃x ∈ R , 2x2 = 8 et (x ̸= 2 et x ̸= −2)
P vrai.



f) P : ∀ (n; m) ∈ N2 , n+m = 0 ⇒ n = m = 0 .

non P : ∃ (n; m) ∈ N2 , n+m = 0 et (n ̸= 0 ou m ̸= 0)
P vrai.

g) P : ∀ (a; b) ∈ R2 , a < b ⇒ ∃x ∈ Q , a < x < b .

non P : ∃ (a; b) ∈ R2 , a < b et ( ∀x ∈ Q , a ≥ x ou x ≥ b )
P vrai.

h) P : Un nombre est irrationnel lorsqu'il s'écrit comme produit de deux nombres irrationnels.

On commence par réécrire la proposition :

∀x ∈ R , x est produit de 2 irrationnels ⇒ x est irrationnel.

non P : ∃x ∈ R , x est produit de 2 irrationnels et x est rationnel

P faux ; contre-exemple : si x =
√
2 ·

√
2 , l'hypothèse de P est vraie et sa conclusion est fausse.

i) P : a et b étant irrationnels, leur quotient est irrationnel.

On commence par réécrire la proposition :

∀ a , b ∈ R , a et b sont irrationnels ⇒ a

b
est irrationnel.

non P : ∃ a , b ∈ R , a et b sont irrationnels et
a

b
est rationnel

P faux ; contre-exemple : si a =
√
2 et b =

√
2 , l'hypothèse de P est vraie et sa conclusion est

fausse.

Ex-03-07: Démontrer par récurrence :

a) ∀n ∈ N∗ : Sn = 1 + 2 + 3 + · · ·+ n = 1
2
n(n+ 1) .

b) ∀n ∈ N∗ : Sn = 2 + 4 + 6 + · · ·+ 2n = n(n+ 1) .

c) ∀n ∈ N∗ : Sn = 12 + 32 + 52 + · · ·+ (2n− 1)2 = n (2n−1) (2n+1)
3

.

d) ∀n ∈ N∗ : Sn = 2 + 6 + 18 + · · ·+ 2 · 3n−1 = 3n − 1 .

e) ∀n ∈ N∗ : Sn = 13 + 23 + 33 + · · ·+ n3 =
(

n (n+1)
2

)2

.

f) ∀n ∈ N∗ : Sn = 3 + 32 + 33 + · · ·+ 3n = 3
2
(3n − 1) .

g) ∀n ∈ N∗ : Sn = 1
1·2 +

1
2·3 + · · ·+ 1

n (n+1)
= n

n+1
.

h) ∀n ∈ N∗ : Sn = 12 − 22 + 32 − · · ·+ (−1)n+1n2 = 1
2
(−1)n+1n (n+ 1) .

i) ∀n ∈ N∗ : 5n + 5 < 5n+1 .

j) ∀n ∈ N : 10n − 1 est un multiple de 9.

k) ∀n ∈ N : 22n + 2 est divisible par 3.

l) ∀n ∈ N et n ≥ 6 : 2n ≥ 6n+ 7 .

m) ∀n ∈ N et n ≥ 4 : 2n < n! .

n) ∀n ∈ N et n ≥ 7 :
(
4
3

)n
> n .

o) ∀n ∈ N∗ :
(2n)!

n!n!
≤ 22n−1

p) 33n + 1 est un multiple de 7 pour tout n impair et n ≥ 1 .

Démonstration par récurrence.

Marche à suivre.



• Véri�er la proposition pour le plus petit n .

• Démontrer le �pas� de récurrence.

∗ Expliciter l'hypothèse et la conclusion du �pas� de récurrence.

∗ Rédiger la preuve.

a) Véri�cation de la proposition pour n = 1 .

S1 = 1 et
1

2
n (n+ 1)

∣∣∣∣
n=1

= 1 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = 1
2 n (n+ 1) pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
1
2 (n+ 1) (n+ 2) .

Preuve :

Sn+1 = 1 + 2 + · · ·+ n︸ ︷︷ ︸
=Sn

+ (n+ 1)

Sn+1 = Sn + n+ 1 .

Or par hypothèse, Sn = 1
2 n (n+ 1) , donc

Sn+1 =
1
2 n (n+ 1) + n+ 1 ,

Sn+1 = (12n+ 1) (n+ 1) = 1
2 (n+ 1) (n+ 2)

b) Véri�cation de la proposition pour n = 1 .

S1 = 2 et n (n+ 1) |n=1 = 2 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = n (n+ 1) pour un n ∈ N∗ donné.

Conclusion : Sn+1 = (n+ 1) (n+ 2) .

Preuve :

Sn+1 = 2 + 4 + 6 + · · ·+ 2n︸ ︷︷ ︸
=Sn

+ 2(n+ 1)

Sn+1 = Sn + 2(n+ 1) .

Or par hypothèse, Sn = n (n+ 1) , donc

Sn+1 = n (n+ 1) + 2(n+ 1) = (n+ 1) (n+ 2)

c) Véri�cation de la proposition pour n = 1 .

S1 = 11 = 1 et
1

3
n (2n− 1) (2n+ 1)

∣∣∣∣
n=1

= 1 .



la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = 1
3 n (2n− 1) (2n+ 1) pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
1
3 (n+ 1) (2n+ 1) (2n+ 3) .

Preuve :

Sn+1 = 12 + 32 + · · ·+ (2n− 1)2︸ ︷︷ ︸
=Sn

+ (2n+ 1)2

Sn+1 = Sn + (2n+ 1)2 .

Or par hypothèse, Sn = 1
3 n (2n− 1) (2n+ 1) , donc

Sn+1 = 1
3 n (2n− 1) (2n+ 1) + (2n+ 1)2

= (2n+ 1) 1
3 (2n

2 − n+ 6n+ 3)

= (2n+ 1) 1
3 (2n

2 + 5n+ 3)

= 1
3 (2n+ 1) 2 (n+ 3

2) (n+ 1)

= 1
3 (2n+ 1) (2n+ 3) (n+ 1)

d) Véri�cation de la proposition pour n = 1 .

S1 = 2 et 3n − 1 |n=1 = 2 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = 3n − 1 pour un n ∈ N∗ donné.

Conclusion : Sn+1 = 3n+1 − 1 .

Preuve :

Sn+1 = 2 + 6 + 18 + · · ·+ 2 · 3n−1︸ ︷︷ ︸
=Sn

+ 2 · 3n

Sn+1 = Sn + 2 · 3n .

Or par hypothèse, Sn = 3n − 1 , donc

Sn+1 = 3n − 1 + 2 · 3n = 3n (1 + 2) − 1 = 3n+1 − 1

e) Véri�cation de la proposition pour n = 1 .

S1 = 13 = 1 et

(
n (n+ 1)

2

)2
∣∣∣∣∣
n=1

= 1 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.



Hypothèse : Sn =
(
n (n+1)

2

)2
pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
(
(n+1) (n+2)

2

)2
.

Preuve :

Sn+1 = 13 + 23 + 33 + · · ·+ n3︸ ︷︷ ︸
=Sn

+ (n+ 1)3

Sn+1 = Sn + (n+ 1)3 .

Or par hypothèse, Sn =
(
n (n+1)

2

)2
, donc

Sn+1 =
(
n (n+1)

2

)2
+ (n+ 1)3

= (n+ 1)2 1
4 (n

2 + 4n+ 4)

= 1
4 (n+ 1)2 (n+ 2)2

f) Véri�cation de la proposition pour n = 1 .

S1 = 3 et
3

2
(3n − 1)

∣∣∣∣
n=1

= 3 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = 3
2 (3

n − 1) pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
3
2 (3

n+1 − 1) .

Preuve :

Sn+1 = 3 + 32 + 33 + · · ·+ 3n︸ ︷︷ ︸
=Sn

+ 3n+1

Sn+1 = Sn + 3n+1 .

Or par hypothèse, Sn = 3
2 (3

n − 1) , donc

Sn+1 = 3
2 (3

n − 1) + 3n+1

= 1
2 3

n+1 + 3n+1 − 3
2

= 3n+1 (12 + 1) − 3
2

= 3
2 (3

n+1 − 1)

g) Véri�cation de la proposition pour n = 1 .

S1 =
1

2
et

n

n+ 1

∣∣∣∣
n=1

=
1

2
.

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.



Hypothèse : Sn =
n

n+ 1
pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
n+ 1

n+ 2
.

Preuve :

Sn+1 =
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)︸ ︷︷ ︸
=Sn

+
1

(n+ 1) · (n+ 2)

Sn+1 = Sn +
1

(n+ 1) · (n+ 2)
.

Or par hypothèse, Sn =
n

n+ 1
, donc

Sn+1 =
n

n+ 1
+

1

(n+ 1) · (n+ 2)

=
n(n+ 2) + 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1) · (n+ 2)

=
n+ 1

n+ 2

h) Véri�cation de la proposition pour n = 1 .

S1 = 1 et
1

2
(−1)n+1 n (n+ 1)

∣∣∣∣
n=1

= 1 .

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : Sn = 1
2 (−1)n+1 n (n+ 1) pour un n ∈ N∗ donné.

Conclusion : Sn+1 =
1
2 (−1)n+2 (n+ 1) (n+ 2) .

Preuve :

Sn+1 = 12 − 22 + 32 − · · ·+ (−1)n+1 n2︸ ︷︷ ︸
=Sn

+ (−1)n+2 (n+ 1)2

Sn+1 = Sn + (−1)n+2 (n+ 1)2 .

Or par hypothèse, Sn = 1
2 (−1)n+1 n (n+ 1) , donc

Sn+1 =
1
2 (−1)n+1 n (n+ 1) + (−1)n+2 (n+ 1)2 ,

Sn+1 = (−1)n+2 (n+ 1)
[
−1

2 n+ (n+ 1)
]
,

Sn+1 = (−1)n+2 (n+ 1)
[
1
2 n+ 1

]
,

Sn+1 = (−1)n+2 (n+ 1) 1
2 [n+ 2 ] ,



Sn+1 =
1
2 (−1)n+2 (n+ 1) (n+ 2) .

i) Véri�cation de la proposition pour n = 1 .

5 + 5 < 52

On a : 10 < 25 donc la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : 5n + 5 < 5n+1 pour un n ∈ N∗ donné.

Conclusion : 5n+1 + 5 < 5n+2 .

Preuve :

5n+1 + 5 = 5n+1 + 25− 20 = 5(5n + 5)− 20 < 5 · 5n+1 − 20 par hypothèse d'induction

donc

5n+1 + 5 < 5n+2 − 20 < 5n+2

j) Véri�cation de la proposition pour n = 0 .

100 − 1 = 1− 1 = 0 = 9 · 0
donc la proposition est vraie pour n = 0 .

Démonstration du �pas� de récurrence.

Hypothèse : 10n − 1 = 9k pour un n ∈ N donné et k ∈ N .

Conclusion : 10n+1 − 1 = 9 l, l ∈ N .

Preuve :

10n+1 − 1 = 10 · 10n − 1 = 10 (9k + 1)− 1 car par hypothèse d'induction 10n = 9k + 1

donc

10n+1 − 1 = 10 · 9k + 10− 1 = 10 · 9k + 9 = 9 l, l = 10k + 1 ∈ N
10n+1 − 1 est donc un multiple de 9.

k) Véri�cation de la proposition pour n = 0 .

20 + 2 = 1 + 2 = 3
donc la proposition est vraie pour n = 0 .

Démonstration du �pas� de récurrence.

Hypothèse : 22n + 2 = 3k pour un n ∈ N donné et k ∈ N .

Conclusion : 22(n+1) + 2 = 3 l, l ∈ N .

Preuve :

22(n+1) + 2 = 22n+2 + 2 = 4 · 22n + 2 = 3 · 22n + 22n + 2

or par hypothèse d'induction 22n + 2 = 3k

donc

22(n+1) + 2 = 3 · 22n + 3k = 3 l, l = 22n + k ∈ N
22(n+1) + 2 est donc un multiple de 3, c'est-à-dire il est divisible par 3.

l) Véri�cation de la proposition pour n = 6 .

2n = 26 = 64

6n+ 7 = 36 + 7 = 43

et 64 > 43

donc la proposition est vraie pour n = 6 .



Démonstration du �pas� de récurrence.

Hypothèse : 2n ≥ 6n+ 7 pour un n ∈ N donné et n ≥ 6 .

Conclusion : 22n+1 ≥ 6(n+ 1) + 7, n ∈ N et n ≥ 6 .

Preuve :

2n+1 = 2 · 2n ≥ 2 · (6n+ 7) par hypothèse d'induction

2n+1 ≥ 12n+ 14 = 6n+ 6n+ 6 + 7 + 1 = 6(n+ 1) + 7 + 6n+ 1

ainsi

2n+1 ≥ 6(n+ 1) + 7 + 6n+ 1 ≥ 6(n+ 1) + 7

m) Véri�cation de la proposition pour n = 4 .

24 = 16
et 4! = 4 · 3 · 2 · 1 = 24

On a : 16 < 24 donc la proposition est vraie pour n = 4 .

Démonstration du �pas� de récurrence.

Hypothèse : 2n < n! n ∈ N et n ≥ 4 donné.

Conclusion : 2n+1 < (n+ 1)! .

Preuve : pour n ≥ 4

2n < n! | · 2
2n+1 < 2 · n! < (n+ 1)!

car : 2 · n! < (n+ 1)!

en e�et :

2 · n! < (n+ 1) · n!
2 < n+ 1 ce qui est vrai car n ≥ 4

n) Véri�cation de la proposition pour n = 7 .(
4
3

)7
> 7 car 1 >

(
3
4

)7 · 7
donc la proposition est vraie pour n = 7 .

Démonstration du �pas� de récurrence.

Hypothèse :
(
4
3

)n
> 7 n ∈ N et n ≥ 7 donné.

Conclusion :
(
4
3

)n+1
> n

Preuve : pour n ≥ 7(
4
3

)n
> n | · 4

3(
4
3

)n+1
> n · 4

3 > n+ 1

car : n · 4
3 > n+ 1

en e�et :

4n > 3n+ 3

n > 3 ce qui est vrai car n ≥ 7

o) Véri�cation de la proposition pour n = 1 .

(2n)!

n!n!
=

(2 · 1)!
1!1!

=
2!

1 · 1
=

2

1
= 2



et 22n−1 = 22·1−1 = 21 = 2

On a 2 ≤ 2 et la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse :
(2n)!

n!n!
≤ 22n−1 pour un n ∈ N∗ donné.

Conclusion :
(2n+ 2)!

(n+ 1)!(n+ 1)!
≤ 22n+1

Preuve :

(2n+ 2)!

(n+ 1)!(n+ 1)!
=

(2n+ 2)(2n+ 1)(2n)!

(n+ 1)(n+ 1)n!n!

=
(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
· (2n)!
n!n!

≤ (2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
· 22n−1 par hypothèse

=
2(n+ 1)(2n+ 1)

(n+ 1)(n+ 1)
· 22n−1

=
2(2n+ 1)

(n+ 1)
· 22n−1

=
(2n+ 1)

(n+ 1)
· 22n

≤ 22n+1

car
(2n+ 1)

(n+ 1)
≤ 2

en e�et

2n+ 1 ≤ 2(n+ 1)

⇔ 2n+ 1 ≤ 2n+ 2

c'est vrai !

p) Véri�cation de la proposition pour n = 1 .

33n + 1 = 33·1 + 1 = 33 + 1 = 28 = 7 · 4

la proposition est vraie pour n = 1 .

Démonstration du �pas� de récurrence.

Hypothèse : 33(2l+1) + 1 = 7k , k ∈ N∗ , pour un n = 2l + 1 donné , l ∈ N

Conclusion : 33(2l+3) + 1 = 7k′ , k′ ∈ N∗ ,

Preuve :



33(2l+3) + 1 = 36l+9 + 1

= 36 · 36l+3 + 1

= 36 · 36l+3 + 36 − 36 + 1

= 36
(
33(2l+1) + 1

)
− 36 + 1

= 729 · 7k − 729 + 1 : par hypothèse de récurrence et 36 = 729

= 729 · 7k − 728

= 7 (729k − 104)

= 7k′ avec k′ = 729k − 104 ∈ N∗


