
y +1/1/60+ y

Enseignant : Roger Sauser
ICS - Contrôle 4 - CMS
12 juin 2024
Durée : 105 minutes

1
Nom Prénom

SCIPER : 22
Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé
recto-verso et il contient 12 pages qu’il ne faut pas désagrafer. Un total de 32 points
(dont deux points de bonus) est réparti sur 7 questions.

• Posez votre carte d’étudiant.e sur la table.
• Aucun document n’est autorisé.
• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant
l’épreuve.

• Pour les questions à choix unique (“multiple choice”), on comptera :
les points indiqués si la réponse est correcte,
0 point s’il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du cor-
recteur blanc si nécessaire. Toute réponse doit être rédigée en utilisant la place
réservée à cet effet à la suite de la question. N’écrivez pas dans les marges !

• Veuillez vous conformer aux indications suivantes pour les sujets qui demandent
d’écrire du code Python (avec papier-stylo) :

– respectez la syntaxe Python (parenthèses, crochets, deux points, mots-clés, etc.) ;
– mettez en forme votre code pour qu’il soit formaté exactement comme si vous le
tapiez en vue d’une exécution sans erreur ;

– respectez les indentations (en sachant que la taille de l’indentation n’importe pas
en soi, mais qu’elle doit permettre d’identifier vos blocs de code de manière claire
et immédiate).

y y

y +1/2/59+ y
Première partie, deux questions de “type ouvert”
Répondez dans l’espace dédié. Laissez libres les cases à cocher : elles sont réservées au
correcteur. Cette première partie comprend un total de 20 points + 2 points de bonus.

Question 1: Cette question est notée sur 12 points (dont 2 points de bonus).

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5

11 12

On considère la fonction réelle d’une variable réelle f : R → R définie par

f(x) = (1 − x3) cos (πx) .

On donne ci-dessous la représentation graphique de cette fonction sur l’intervalle (en abscisse)
[0, 2] et on considère l’intégrale définie

I =

∫ 2

0

f(x) dx .

0.0 0.5 1.0 1.5 2.0
x

8

7

6

5

4

3

2

1

0

1

2
Représentation de f(x) = (1 x3)cos (x)

f(x)

Dans les deux parties (a) et (b) ci-dessous, on cherche à approximer l’intégrale I à l’aide de
deux méthodes (formules) de quadrature différentes. La partie (c) est une question bonus à 2
points concernant l’efficacité des deux méthodes utilisées dans les parties (a) et (b).

y y

y +1/3/58+ y
(a) En vous aidant du dessin en page précédente, déterminez “à la main” (sans écrire de code

destiné à être exécuté par un ordinateur) la valeur de l’approximation numérique JTR de
I obtenue en appliquant la méthode de quadrature composite basée sur la formule du
trapèze. Considérez une partition régulière du domaine d’intégration [0, 2] en quatre
sous-intervalles. Précisez au mieux votre raisonnement en indiquant les points utiles aux
calculs sur le dessin.

y y

y +1/4/57+ y
(b) Complétez le code Python ci-contre en page 5 de manière à ce que ce dernier permette

de déterminer une approximation numérique JPM de I grâce à la formule (méthode
composite) du point milieu.
Plus précisément, le code doit :

• importer la (ou les) librairie(s) utile(s). La librairie SciPy ne doit pas être utilisée ;
• définir la fonction Python f qui correspond à la fonction mathématique f(x) à intégrer
définie plus haut ;

• définir une fonction int_pm admettant comme arguments :
– la fonction f à intégrer ;
– les bornes a et b de l’intervalle d’intégration ;
– le nombre N de sous-intervalles à considérer ;

Cette fonction int_pm doit :
– vérifier que les trois derniers arguments donnés à la fonction sont bien choisis,
c’est-à-dire qu’ils sont tels que b ≥ a, N ≥ 1, N étant un entier, et, si ce n’est
pas le cas, afficher le message “Attention au choix des arguments !” ; suite à
l’affichage du message, la fonction doit s’arrêter et retourner None ;

– calculer le pas h qui sera utilisé par la méthode composite ;
– déterminer la valeur de l’approximation Jpm en implémentant la méthode com-
posite du point milieu avec N sous-intervalles ;

– retourner la valeur de Jpm ;
• afficher l’approximation JPM de l’intégrale définie I obtenue grâce à la fonction int_pm
en considérant quatre sous-intervalles.

(le code à compléter se trouve en page suivante)

(c) L’exécution du code qu’il vous est demandé de compléter dans la partie (b) permettrait
en principe de comparer la méthode du point milieu à la méthode du trapèze utilisée
dans la partie (a). Sans faire de calcul, mais en justifiant votre réponse, comparez en
particulier l’erreur absolue commise dans l’approximation de I : une des deux méthodes
est-elle plus précise que l’autre ? Si oui, pouvez-vous indiquer le gain en précision obtenu
en utilisant une méthode plutôt qu’une autre ?

y y

y +1/5/56+ y
Suite de la réponse (partie (c)) :

Code à compléter (partie (b)) :
DEBUT du code à compléter
(veuillez respecter les notations spécifiées dans l’énoncé ci-dessus)
#
importation de la (ou des) librairie(s) utile(s)
import numpy as np

définition de la fonction f à intégrer
def f(x):

définition de la fonction Python int_pm
def int_pm(f,a,b,N):

test de cohérence des trois
derniers arguments et affichage
d’un message si nécessaire

Jpm = 0.0
h = # calcul du pas h

return Jpm

affichage de l’approximation de I demandée

FIN du code à compléter

y y

y +1/6/55+ y
Question 2: Cette question est notée sur 10 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

Dans cette question, on considère le problème de Cauchy suivant :
y′(t) = f

(
t, y(t)

)
, ∀t ∈ I = [t0, T] ,

y(t0) = y0 ,

avec
f
(
t, y(t)

)
=

3t2

2y(t)
, t0 = 0 , T = 4 et y0 = 3 .

Les parties (a), (b) et (c) ci-dessous peuvent être résolues de manière indépendante.

(a) Vérifiez, par un calcul analytique, que la fonction y(t) =
√
t3 + 9 est solution du problème

de Cauchy ci-dessus.

(b) Calculez “à la main”, en utilisant la méthode d’Euler progressive, une approximation
de la solution y(t) du problème de Cauchy ci-dessus en T = 4. Déterminez cette appro-
ximation en considérant deux sous-intervalles avec un pas de 2.

y y

y +1/7/54+ y

(c) Complétez le code Python donné en page suivante de manière à ce qu’il permette de
déterminer, grâce à la méthode de Heun, une approximation de la solution y(t) du
problème de Cauchy ci-dessus de t0 = 0 à T = 4.

Plus précisément, le code doit :

• importer la librairie NumPy ;
• définir le problème de Cauchy donné ci-dessus en définissant la fonction Python f
correspondant à f(t, y) ainsi que la condition initiale (condition de Cauchy) ;

• définir une fonction Python nommée Heun admettant pour paramètres (arguments)
la fonction f, le moment (temps) initial t_0, la valeur initiale y_0, le moment final T,
ainsi que le nombre de sous-intervalles N considérés.
La fonction Heun doit créer un “vecteur” (ndarray) temps t renfermantN+1 éléments
régulièrement espacés entre t0 et T .
De plus, la fonction Heun doit créer un “vecteur” (ndarray) u avec également N + 1

éléments. Le premier élément de u correspond à la condition initiale et les autres
éléments sont déterminés en utilisant la méthode de Heun.
La fonction Heun doit retourner le vecteur t ainsi que le vecteur u contenant la solution
approchée ;

• appeler la fonction Heun avec un nombre N = 10 de sous-intervalles ;
• afficher la valeur du pas utilisé dans la méthode ainsi que la valeur approchée de

y(T) à la place des points d’interrogation dans le message suivant : “Avec un pas
de ?, la solution approchée prend la valeur ? en T=4.”.

(le code à compléter se trouve en page suivante)y y

y +1/8/53+ y
Code à compléter (partie (c)) :

DEBUT DU CODE A COMPLETER
(veuillez respecter les notations spécifiées dans l’énoncé ci -dessus)
#
importation de la librairie NumPy
import numpy as np

définition du problème de Cauchy
def f(t,y):

définition de la fonction Python Heun
def Heun(f,t_0 ,y_0 ,T,N):

t =

return

appel de la fonction Heun

affichage demandé

FIN DU CODE A COMPLETER

y y

y +1/9/52+ y
Seconde partie, cinq questions à choix unique
Pour chaque question, marquez la case correspondante à la réponse correcte sans faire de
ratures. Il n’y a qu’une seule réponse correcte par question. Cette seconde partie comprend
un total de 10 points.

Les questions 3 et 4 se rapportent à l’énoncé suivant.
Soit le tableau de Butcher suivant associé à une méthode de Runge-Kutta à un pas :

0 0 0 0

1/3 1/3 0 0

2/3 0 2/3 0

1/4 0 3/4

Question 3 (à 2 points)

La méthode définie par le tableau de Butcher ci-dessus est une. . .

. . .méthode implicite à 3 étapes.

. . .méthode implicite à 2 étapes.

. . .méthode implicite à 4 étapes.

. . .méthode explicite à 4 étapes.

. . .méthode explicite à 3 étapes.

. . .méthode explicite à 2 étapes.

Question 4 (à 2 points)

Parmi les pentes et les schémas numériques suivants, laquelle (ou lequel) n’est pas associé(e)
au tableau de Butcher ci-dessus ?

un+1 = un + h1
4
K1 + h3

4
K3

un+1 = un + h1
3
K2 + h2

3
K3

K3 = f(tn + 2
3
h, un + h2

3
K2)

K2 = f(tn + 1
3
h, un + h1

3
K1)

K1 = f(tn, un)

K2 = f(t0 + 3n+1
3

h, un + h1
3
K1)

Les questions 5 et 6 se rapportent à l’énoncé suivant.
Soit f une fonction réelle de la variable réelle t :

f(t) = (1 + t)(t − 2)2 .

Question 5 (à 2 points)

Parmi les six polynômes ci-dessous, lequel est le polynôme d’interpolation (de Lagrange) qui
passe par les trois points d’abscisse t1 = −1, t2 = 0 et t3 = 2 du graphe de la fonction f(t) ?

−t2 + 3t + 4

t4 − t2 + 4

t3 − t2 − 4t + 4

−2t2 + 2t + 4

2t2 − 6t + 4

(1 + t)(t − 2)

Question 6 (à 2 points)

Parmi les six polynômes ci-dessous, lequel est un polynôme de la base de Lagrange associée
aux trois points d’abscisse t1 = −1, t2 = 0 et t3 = 2 du graphe de la fonction f(t) ?

1
6
t(t + 1)

1
3
(t + 1)

−3
2
t2 + 3

2
t + 4

t3 − 3t2 + 4

−2t2 + 2t + 4

t + 1

y y

y +1/10/51+ y

Question 7 (à 2 points)

On aimerait que le code Python ci-dessous
produise la figure ci-contre qui représente le
champ de directions de l’équation différen-
tielle ordinaire y′ = 2t2y . Par quelles lignes
de code doit-on remplacer le “BLOC DE CODE
MANQUANT” pour que ce soit effectivement
le cas ?
import numpy as np
import matplotlib.pyplot as plt
def f(t,y):

return 2*y*t** 2
axe_t = np.linspace(-2, 2, 21)
axe_y = np.linspace(-2, 2, 21)
plt.figure(figsize=(5,5))

BLOC DE CODE MANQUANT

plt.grid()
plt.xlabel(’t’)
plt.ylabel(’y’)
plt.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Choisissez parmi les cinq propositions suivantes, le bloc de code permettant d’obtenir la figure
souhaitée :

t, y = np.meshgrid(axe_t , axe_y)
direction_t = 1
direction_y = y
norme = np.sqrt(direction_t **2 + direction_y ** 2)
plt.quiver(t, y, direction_t/norme , direction_y/norme)

t, y = np.meshgrid(axe_t , axe_y)
direction_t = 1
direction_y = f(t,y)
norme = direction_t **2 + direction_y **2
plt.quiver(t, y, direction_t/norme , direction_y/norme)

t, y = np.meshgrid(axe_t , axe_y)
direction_t = 1
direction_y = f(t,y)
plt.quiver(t, y, direction_t , direction_y)

direction_t = 1
direction_y = f(axe_t ,axe_y)
norme = np.sqrt(direction_t **2 + direction_y ** 2)
plt.quiver(axe_t , axe_y , direction_t/norme , direction_y/norme)

t, y = np.meshgrid(axe_t , axe_y)
direction_t = 1
direction_y = f(t,y)
norme = np.sqrt(direction_t **2 + direction_y ** 2)
plt.quiver(t, y, direction_t/norme , direction_y/norme)

y y

y +1/11/50+ y
Aide-mémoire (librairies Python)

NumPy
import numpy as np

np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)
np.zeros(shape, dtype=float)
np.ones(shape, dtype=None)
np.empty(shape, dtype=float)
np.array(object, dtype=None)
np.empty_like(a)
np.zeros_like(a)
np.ones_like(a)
ndarray.ndim
ndarray.shape
ndarray.dtype
np.eye(N)
np.reshape(a, newshape)
np.dot(a, b)
a.T
a.transpose()
np.linalg.det(a)
np.linalg.inv(a)
np.linalg.eig(a)
np.random.rand(N)
np.meshgrid(x,y,indexing=’ij’)
np.gradient(f)
np.loadtxt(fname, comments=’#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’, newline=’\n’, header=’ ’, footer=’ ’,

comments=’#’)

SciPy
from scipy import constants
from scipy import optimize
from scipy import misc
from scipy import integrate

constants.c
constants.m_e
constants.g
constants.physical constants[“speed of light in vacuum”]
constants.physical constants[“electron mass”]
constants.physical constants[“standard acceleration of gravity”]
optimize.curve_fit(f, xdata, ydata)
optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full_output=False)
optimize.newton(func, x0, fprime=None, tol=1.48e-08, maxiter=50, fprime2=None, full_output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)
misc.derivative(func, x0, dx=1.0, n=1, order=3)
integrate.quad(f, a, b)
integrate.odeint(f, y0, t, tfirst=True)

y y

y +1/12/49+ y
Matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)
plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)
plt.quiver(x,y,u,v)
fig.suptitle(str)
ax = plt.subplot(m,n,a)
ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection=’3d’) (ou ax = fig.gca(projection=’3d’))
ax.plot(x, y)
ax.barh(y, width)
ax.contour(x,y,z,levels)
ax.plot_surface(x,y,z)
ax.quiver(x,y,u,v)
ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = ’->’, arrowsize = 1.5)
ax.set_title(str)
ax.set_yticks(labels)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)
ax.imshow(x)
plt.fill_between(x, y1, y2)
plt.clabel(cs)
plt.axis(’equal’)
plt.axis(’scaled’)
plt.grid()
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
plt.title(label)
plt.savefig(fname)
plt.imshow(x)
plt.show()
mpimg.imread(fname)
mpimg.imsave(fname)

y y

