EEEEN BN +1/1/60+

EPFL

Enseignant : Roger Sauser
ICS - CMS

14 juin 2023

Durée: 105 minutes

RS

SCIPER: 22

Attendez le début de 1’épreuve avant de tourner la page. Ce document est imprimé recto-verso.
Il contient 20 pages et 7 questions. Ne pas dégrafer.

e Posez votre carte d’étudiant sur la table.

e Aucun document n’est autorisé.

e L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant I’épreuve.

e Pour les questions a choix unique (“multiple choice”), on comptera :

les points indiqués si la réponse est correcte,
0 point s’il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

e Utilisez un stylo & encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire. Toute réponse doit étre rédigée en utilisant la place réservée a cet effet a la suite de
la question. N’écrivez pas dans les marges !

e Veuillez vous conformer aux indications suivantes pour les sujets qui demandent d’écrire du code
Python (avec du papier et un stylo):

respectez la syntaxe Python (parenthéses, crochets, accolades, deux points, mots-clés, etc.);

— mettez en forme votre code pour qu’il soit formaté exactement comme si vous le tapiez en vue
d’une exécution sans erreur;

— respectez les indentations (en sachant que la taille de 'indentation n’importe pas en soi, mais
elle doit permettre d’identifier vos blocs de code de maniére claire et immeédiate) ;

— votre réponse doit comporter uniquement du code exécutable, & ’exception de quelques com-
mentaires (au format habituel) si ceux-ci sont véritablement nécessaires et aident a la com-
préhension.

Respectez les consignes suivantes | Observe this guidelines | Beachten Sie bitte die unten stehenden Richtlinien

choisir une réponse | select an answer | ne PAS choisir une réponse | NOT select an answer Corriger une réponse | Correct an answer
Antwort auswahlen NICHT Antwort auswahlen Antwort korrigieren

X ¥V & [] []

ce qu'il ne faut PAS faire | what should NOT be done | was man NICHT tun sollte

% O Q0

EEEE B B +1/2/59+

Premiére partie, trois questions de “type ouvert”

Répondez dans I'espace dédié. Laissez libres les cases & cocher: elles sont réservées au correcteur.
Cette premiére partie comprend un total de 24 points (22 points 4+ 2 points de bonus).

Question 1: Cette question est notée sur 12 points.

Ll s s)s Dlslds sl dsl s sl s
DO Dl D2 DS D4 DS Dﬁ D7 DS DQ DIO Dll DIZ
Soit la fonction réelle d’une variable réelle f : R — R définie par
flx)=2(x+1)*(x—-2).

On donne ci-dessous la représentation graphique de cette fonction sur intervalle [—2,3] et on considére
I'intégrale définie

I:/_Zf(x)d:v.

Représentation de f(x) =2x3 —6x—4

32 A1
30 1
28 1
26
24 1
22 A
20 1
18 A
16 A
14 4
12 4
10 A
8
6
4 -
2

0 -
—2 1 \
—4 4

—0

—81 — fx)

_10 T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Les parties (a) et (b) en pages 3 et 4 peuvent étre résolues de maniére indépendante. Pour comprendre la
partie (b), il faut toutefois avoir lu la partie (a).

[T N +1/3/58+

(a) Complétez le code Python en page suivante de maniére a ce qu’il permette de déterminer une approxi-
mation numérique J de l'intégrale définie I grace a I'une des deux méthodes de quadrature composite
suivantes :

e méthode basée sur la formule dite du point de gauche;

e méthode basée sur la formule de Simpson.
Plus précisément, le code doit définir une fonction integration admettant comme arguments:

e la fonction f a intégrer;

e les bornes a et b de 'intervalle d’intégration ;

e le nombre n de sous-intervalles & considérer;

e la méthode choisie : gauche pour la méthode du point de gauche ou simpson pour la méthode
de Simpson.

Cette fonction integration doit:

e vérifier que la borne b est bien plus grande que la borne a ; la fonction doit afficher le message

)

“L’intervalle [a,b] est mal défini.” et retourner “None” si ce n’est pas le cas;

e vérifier que la méthode donnée en argument a la fonction integration est soit gauche soit

simpson ; si ce n’est pas le cas, la fonction doit afficher le message “La méthode demandée n’est

’ et retourner “None” ;

pas implémentée.’
e calculer le pas dx qui sera utilisé par la méthode composite;
e déterminer la valeur J de 'approximation en implémentant la méthode composite choisie;

e retourner la valeur J.

(le code a compléter se trouve en page suivante)

+1/4/57+ Py

Code a compléter pour la partie (a) de la Question 1 :

DEBUT du code & compléter
(veuillez respecter les notations spécifiées dans 1’énoncé)
#
définition de la fonction Python integration
def
if # test de la cohérence de
1’intervalle et affichage
d’un message d’erreur
#
test de la méthode
demandée et affichage
print ("La méthode demandée n’est pas implémentée.") # d’un message d’erreur
#
else:
J =0.0
dx = # calcul du pas dx
x_gauche = a # initialisation des bornes des sous-intervalles
x_droite = a + dx # utilisées ensuite dans 1’implémentation de la
méthode d’intégration numérique choisie
for _ in range # implémentation de la méthode précisée
en argument
if

return J

FIN du code a compléter

Donnez ’affichage qui sera alors produit par la suite d’instructions suivante :

def f(x):
return 2% (x+1) **2x(x-2)

print ("J_gauche =",integration(f,-2,3,5,’gauche’))
print ("J_simpson =",integration(f,-2,3,1,’simpson’))

Votre réponse doit étre soigneusement justifiée, par exemple en vous appuyant sur la représentation
graphique de la fonction f donnée en page 2. Comparez les valeurs approchées obtenues a la valeur
exacte de I (sans forcément faire le calcul de la valeur exacte de I, mais en justifiant votre conclusion).

(réponse en page suivante)

HEEEENEEEEN
HEE B ______EEn +1/5/56+

°® LT N I . +1/6/55+

Question 2: Cette question est notée sur 8 points.

[Js [Js [Js
[l [e[

Soient m+1 noeuds (points) de quadrature distincts —1 <tg <t; < ... <ty < let {vo,01,...,¢j, ..., Pm}
la base de Lagrange de 1’espace vectoriel P, (espace vectoriel des polynomes de degré inférieur ou égal a m)
associée a ces points de quadrature.

Soit la formule de quadrature

J(9) = mig(ty).
=0

Montrez que si les poids de quadrature p;, Vj € {0,1,...,m}, sont donnés par

1
Hj :/1@j(t)dt7

alors le degré d’exactitude de la formule de quadrature ci-dessus est (au moins) m.

HNNEEREEEEN
[T N N +1/7/54+

N EEN B B +1/8/53+

Question 3: Cette question est notée sur 9 points.

Ll sl Js [l] [ls[Js[][Is
[l [llelhllell [hlllllh

Soit ¢(t) une fonction du temps ¢ correspondant a la concentration d’une substance dans le sang d’un étre
vivant. On suppose que 1’évolution de ¢ est décrite par I’équation différentielle suivante :

¢(t) = 2exp(~t) — (c(t)),

ot le temps ¢ est donné en heures et la concentration ¢ en g/l. Cette équation différentielle est complétée
par la condition initiale (a to = 0h) :
c(0) =0g/1.

Les parties (a) et (b) ci-dessous peuvent étre résolues de maniére indépendante. Pour comprendre la partie
(b), il faut toutefois avoir lu la partie (a). La partie (b) est une question bonus valant 2 points sur les
9 points de la question.

(a) Complétez le code Python donné en page suivante de maniére a ce qu’il permette de déterminer
I’évolution de la concentration ¢ de tg =0h a T'= 10h.

Plus précisément, le code doit :

e importer la librairie NumPy ;

e définir le probléme de Cauchy que 1'on se propose de résoudre dans cette question en définissant
la fonction f(¢,y) ainsi que la condition initiale ;

e créer un “vecteur” (ndarray) temps t avec 51 instants réguliérement espacés entre 0 et 10 heures ;

e créer un “vecteur” (ndarray) concentration c avec 51 éléments dont le premier élément correspond
a la condition initiale et dont les autres éléments seront déterminés par la suite ;

o déterminer I’évolution de la concentration en utilisant la méthode de Crank-Nicolson (pour la
partition réguliére mentionnée) et mettre a jour au fur et & mesure les valeurs des éléments du
“vecteur” c ; I’équation implicite intervenant dans la méthode de Crank-Nicolson doit étre résolue
a l'aide de la méthode de Picard (méthode du point fixe) en prenant comme point de départ la
valeur obtenue en appliquant le schéma d’Euler progressif, et en choisissant une tolérance de 10~8
et un nombre maximum d’itérations de 20 ; la librairie SciPy ne doit pas étre utilisée ;

e afficher la valeur approchée de la concentation aprés 10 heures.

(le code a compléter se trouve en page suivante)

[N N +1/9/52+ ®

Code a compléter pour la partie (a) de la Question 3 :

DEBUT du code & compléter
(veuillez respecter les notations spécifiées dans 1’énoncé)
#

importation de la librairie NumPy

définition du probléme de Cauchy

* équation différentielle & résoudre (membre de droite)

def
* condition initiale (valeur de la concentration c en t=0)
y_0 =0
t_0 =0 # instant initial
T = 10 # instant final
N = 51 # nombre d’instants
tol = # tolérance
i_max = 20 # nombre maximum d’itérations
t =
c =
cf0o]l = y_o0

h = T/(N-1)

for n in range(N-1):
fn = £(t[nl, clnl)
calcul du point de départ avec Euler progressif

FIN du code a& compléter

Cette partie (b) est une question bonus valant 2 points.

En représentant les résultats obtenus en fonction du temps (c’est-a-dire en représentant le “vecteur”
c en fonction du “vecteur” t), on observe que la concentration commence par augmenter avant de
diminuer.

En supposant avoir exécuté le code de la partie (a), donnez ci-dessous les quelques lignes de code
supplémentaires permettant d’estimer aprés combien d’heures la concentration est redescendue a la
moitié de la valeur maximale qu’elle a atteinte.

(réponse en page suivante)

HENENEEEEEN
[. +1/10/51+

[N N +1/11/50+

Seconde partie, quatre questions a choix unique

Pour chaque question, marquez la case correspondante & la réponse correcte sans faire de ratures. Il n’y a
qu’'une seule réponse correcte par question. Cette seconde partie comprend un total de 8 points.

Question 4 (a 2 points)

On cherche a intégrer sur un intervalle [a,b] une fonction d’une variable réelle suffisamment réguliére (plus
précisément, une fonction dont les dérivées sont continues). Pour ce faire, on utilise une formule de quadrature
composite basée sur une méthode de quadrature non composite de degré d’exactitude 3.

En passant d’une partition réguliére comprenant n sous-intervalles a une partition réguliére plus fine com-
prenant 3n sous-intervalles, on observe que ’erreur absolue commise est divisée par un certain facteur k.
Quel est, en bonne approximation, ce facteur ?

[Jk=8
[k=9
[J k=64
[Jk=16
[k=281
[Jk=3

Question 5 (a 2 points)

On consideére le polynéome de Lagrange p(t) associé aux cing points suivants :
PO = (—2,1), P1 = (—1,0), P2 = (O,—l), P3 = (1,—2) et P4 = (2,21)
Parmi les affirmations suivantes, laquelle est fausse 7

D Le polynéme p(t) a pour expression : p(t) = t* +2t3 — 2 — 3¢t — 1.

[] Le polynome p(t) est de degré 4.

[] Le polynome p(t) peut s’écrire sous la forme d'une combinaison linéaire : p(t) = Z;’:O pip;(t), on
les polynomes ¢;(t), j € {0,1,2,3}, forment une base de 'espace vectoriel des polynémes de degré
inférieur ou égal a 4.

D Le polynéme p(t) est 'unique polynéme d’interpolation pour les cing points Py, Pi, Pa, Ps et Py.
D Le polynome p(t) passe par les cing points Py, Py, Ps, P3 et Py.

[] |
[T [. +1/12/49+

Question 6 (& 2 points)
Soit le probléme de Cauchy suivant :

y'(t) = tEsin(y(t)), Vtel = [ty,T],

y(to) = g

Vers quelle valeur réelle va tendre la solution y(t) lorsque 'on considére des temps ¢ grands (c’est-a-dire
lorsque l'on considére un intervalle I avec T grand) ?

|:| —2m D 2m
Llo mE;
[[]—n/2 =

Question 7 (& 2 points)

A laquelle des équations différentielles suivantes correspond le champ de directions représenté ci-dessous 7

L] o/ (t) = y(t) + exp(t) L] y/(t) = —y(t) — exp(—t)
L]/ (t) = y(t) — exp(t) L] y/(t) = —y(t) + exp(t)

Champ de directions

2.5
| | ~ 1 1
200y v N N N =7
1.5 \ » -~ 7 1 1
L . .
10 N0 N N = > x /f f ‘A'
0.5 ~a = = - ” 7 f f ‘A'
T o0l > > o xS 7 1 f
R A AN B B B
IS I N R S B B B R
-2.0 -15 -1.0 -05 0.0 05 1.0 1.5 2.0

t

+1/13/48+

Aide-mémoire (langage Python)

Opérations communes aux séquences

Opérations avec des sets (objets set ou

— cas du type list frozenset)

lis[i] len(se)

lis[i:j] elin se

lis[i:j:K] el not in se

lis + seq s_this.isdisjoint(s_that)

lis*n ou n*lis

s_this.issubset(s_that)

xin lis s_this <= s_that
x not in lis s_this <s_that
lis.index(x) s_this.issuperset(s_that)

lis.count(x)

s_this >=s_that

len(lis) s_this > s_that
min(lis) s_this.union(*s_that)
max(lis) s_this |s_that 1| ...

Opérations communes aux séquences

mutables — cas du type list

s_this.intersection(*s_that)

lis[i] = x

s_this & s that 1 & ...

lis[i:j] =it s_this.difference(*s_that)

lis[i:j:k] =it s_this-s that 1-...

lis.append(x) s_this.symmetric_difference(s_that)
lis.insert(i, x) s_this * s_that

lis.extend(it) ou lis +=it

s_this.copy()

lis *=n

del lis[i:j:K]

lis.pop(i)

lis.remove(x)

lis.clear()

lis.copy()

lis.reverse()

[N N +1/14/47+
Opérations avec des objets mutables de type
o= iter(dic)
s_this.update(*s_that) reversed(dic)
s_this |=s that 1] ... dic.values()
s_this.intersection_update(*s_that) dic.clear()
s_this &=s that 1 & ... dic.copy()
s_this.difference update(*s_that) dic.setdefault(key, val)
s _this -=s that 1]... dicl.update(dic2)
s_this.symmetric_difference update(s_that | dicl | dic2
)
s_this *=s that dicl |= dic2

s_this.add(el)

Opérations avec des strings

s_this.remove(el)

sli]

s_this.discard(el) s[i:j]
s_this.pop() slizj:k]
s_this.clear() sl +5s2

Opérations avec des dictionnaires

s*n ou n*s

len(dic) subins
dic[key] sub not in s
dic[key] = val s.index(sub)
del dic[key] s.count(sub)
key in dic len(s)

key not in dic min(s)
dic.get(key) max(s)
dic.pop(key)

dic.popitem()

dic.items()

dic.keys()

list(dic)

[N +1/15/46+

Meéthodes d'instance de la classe str

A\

YV VV VYV V V V VYV V V VYV V V V VYV VY

s.upper()
s.lower()

s.capitalize()
s.split(sep=None, maxsplit=-1)
s.rsplit(sep=None, maxsplit=-1I)
s.splitlines(keepends)
s.join(iterable)

s.find(sub, start, end)
s.rfind(sub, start, end)
s.rindex(sub)

s.replace(old, new, count)
s.strip(chars)

s.Istrip()

s.rstrip()

s.startswith(prefix, start, end)
s.endswith(suffix, start, end)
s.removeprefix(prefix)
s.removesuffix(suffix)

s.swapcase()

l EEEE B B +1/16/45+

Aide-mémoire (librairies Python)

NumPy

import numpy as np

np.linspace(start, stop, num=>50, endpoint=True, retstep=False)
np.logspace(start, stop, num=>50, endpoint=True)
np.arange(start, stop, step)

np.zeros(shape, dtype=float)

np.ones(shape, dtype=None)

np.empty(shape, dtype=float)

np.array (object, dtype=None)

np.empty _like(a)

np.zeros_ like(a)

np.ones_like(a)

ndarray.ndim

ndarray.shape

ndarray.dtype

np.eye(N)

np.reshape(a, newshape)

np.dot(a, b)

a. T

a.transpose()

np.linalg.det(a)

np.linalg.inv(a)

np.linalg.eig(a)

np.random.rand(N)

np.meshgrid(x,y,indexing="ij’)

np.gradient(f)

np.loadtxt(fname, comments="#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt="%.18¢’, delimiter="", newline="\n’, header="", footer="", comments="#")

SciPy

from scipy import constants
from scipy import optimize
from scipy import misc
from scipy import integrate

constants.c

constants.m_ e

constants.g

constants.physical constants[“speed of light in vacuum”|
constants.physical constants[‘electron mass”|

constants.physical constants[‘standard acceleration of gravity”]
optimize.curve _fit(f, xdata, ydata)

optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full output=False)
optimize.newton (func, x0, fprime=None, tol=1.48e-08, maxiter=>50, fprime2=None, full output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)

misc.derivative(fune, x0, dx=1.0, n=1, order=3)

integrate.quad(f, a, b)

 EEN B BN +1/17/44+

Matplotlib

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)

plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)

fig.suptitle(str)

ax = plt.subplot(m,n,a)

ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection='3d") (ou ax = fig.gca(projection="3d’))
ax.plot(x, y)

ax.barh(y, width)
ax.contour(x,y,z,levels)

ax.plot _surface(x,y,z)

ax.quiver(x,y,u,v)

ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = ’->’, arrowsize = 1.5)
ax.set_ title(str)

ax.set _yticks(labels)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)

ax.imshow (x)

plt.fill between(x, y1, y2)

plt.clabel(cs)

plt.axis(’equal’)

plt.axis(’scaled’)

plt.grid()

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.legend()

plt.title(label)

plt.savefig(fname)

plt.imshow(x)

plt.show()

mpimg.imread(fname)
mpimg.imsave(fname)

BN NN +1/18/43+

Aide-mémoire (préparé par les étudiant(e)s)

Matplotlib, Numpy et Scipy

e plt.axhline(y, xmin, xmax) + dessiner une ligne horizontale / xmin et xmax arguments optionnels
e plt.axvline(x, ymin, ymax) dessiner une ligne verticale / ymin et ymax arguments optionnels

Cw(x,y)>
Cy(zay)
défini par une fonction scalaire ¥(z,y) : R? — R2, qu’on définira ici par psi(xv, yv) (formule

généralement donnée en exercice), avec a et b bornes inférieures et supérieures pour x et y (méme

e Graphe d’un champ vectoriel Pour représenter un champ vectoriel & 2 dimensions C= <

longueur) :

a, b = -4, 4 # bornes du plan considéré

x = y = np.linspace(a, b, 40) # on peut choisir autre que 40

xv, yv = np.meshgrid(x, y, indexing = ’ij’) # création de deux matrices avec les composantes

x et y a chaque point
tableau_psi = psi(xv, yv)

direction_x, direction_y = np.gradient(tableau_psi) # dérivées partielles pour représenter

la pente & chaque point

fig = plt.figure(1l); ax = plt.gca()

ax.quiver(xv, yv, direction_x, direction_y) # cette fonction représente le champ vectoriel

sur la figure

Compléments d’analyse

e Formule de Taylor. Pour f: I — R une fonction n + 1 fois différentiable sur I'intervalle ouvert I,

(x — x0)" L

@) = fla) + £ zo)a = 0) .o+ £ o) T g o

n!

e Interpolation de Lagrange. Pour approximer une fonction passant par m+1 points distincts connus
{(t07p0)7 s (tkapk)a s (tmapm)|<tk7pk) € Rz}a on a:

— Les polynomes o (t) = []7., —4- o 'on exclut Vindice k de litération pour j : 0, ..

j?fkltk—tj k_
LEKk+1...,m

*

— L’approximation finale p(t) = >"}'_; prr(t) qui est un polynome de degré m
Equations non linéaires

e Méthode des parties proportionnelles :

= anj(bn)"bnf(an)
" fn) = flan)

pour un intervalle fermé [a,, b,] respectant la condition de Bolzano

e Méthode de Newton : z,.1 = x,, —]{,((Z"))
e Méthode de la corde : z,, 11 =z, —]{/((”;;)), pour un zg choisi au départ

e Méthode de la sécante : 2,41 =z, — F@)= f@n 1)

BN B BN +1/19/42+ ®

Calcul intégral

Formules de quadrature non composites Pour une fonction donnée f sur un intervalle [i, j],

« “Sealing” : [f(w)dw = S5 1 g(t)dt on glt) = f (S 1) et @ = S

L Tip1 T
t 2

* Poids de quadrature p; = fil @;(t)dt, ou ¢; est la base de Lagrange associée aux points t;, j =
0,...,m.

Point milieu (m =0) : JY(f) = (zip1 — 2:) f (%)
o Trapéze (m=1): JI"(f) = (wiy1 — =) (%)

Simpson (m =2) : J(f) = (wis1 — @) [§f () + 4 (55) + ()]

3 de Newton (m = 3):
JiN(f) = (Tiy1 — [% (z:) + 8f(3fz ($z+1)) 8f(3fz ($z+1)) + %f(ﬂ?iﬂ)]

Formules de quadrature composites Pour un intervalle [a, b] divisé en n sous-intervalles,

e Formule générale : f(f flx)de ~ I(f) = Z:’;Ol Ji(f), ot J; est une formule de quadrature non-
composite.

e Avec pas régulier h = b*Ta : h peut étre mis en évidence (en facteur devant 'opérateur de sommation
Y).

16(17%),,, —(1eg)
— Simpson “dopé” (IS) ++ — g kﬁnl5 9/ kfin—1

reg

Estimation d’erreur Pour une formule de quadrature composite I(f) qui utilise une formule non-composite
d’exactitude r et a pas (fixe) h, 3 constante C' € R* telle que ’f: f(z)dx — I(f)‘ < Ch™1, avec :

o Point Milieu (r =1) : CPM = b= max |f"(¢)]
£€a,b]
o Trapéze (r=1): CL7 =|-22| max |f”
p () reg ‘ |£€] ,[| (§)|

e Simpson (r = 3) : C’feg = gbo_.:gz HﬁaX ’fIV(§)|
Equations différentielles (ordinaires)

Méthodes de résolution d’EDO d’ordre 1 (probléme de Cauchy)
En posant fn = f(tnaun)a h = thy1 — tp, et fn+1 = f(tn+17un+1) :

e Schéma général e Euler modifiée:

Unp, :un+h tn‘i’lhaun“i’ﬁn
Upt1 = Upn + h - (méthode) 1 / (2 2/)
Uuo = Yo e Runge-Kutta classique:

. un+1:un+%(K1+2K2+2K3+K4)
Euler progressif: up11 = un + hfp

Euler rétrograde: u,41 = up+hfni1, avec fr41 = K= f(tn, un)

qui dépend de ;11 — Ko=f(tn+ 2 u, + LK)

Crank-Nicolson: wu,+1 = u, + ﬁ(fn + fot1) — Kg=f (tn + %’ Uy, + %KQ)

e Heun: w41 = up + 5 [fn+f(t + byt +)] — K4 = f(tns1,un + hKs)

N BN B BE +1/20/41+

e Tableau de Butcher

c1 a1 ... a1s se décode dans la forme du schéma général d’une

méthode de résolution d’EDO1 de la maniére sui-

Le tableau suivant : vante:
Cs | Gs1 ... Qg

)

by b un+1:Un+h(blK1+...+biKi+...+bsKs)
avec K; = f (tn + cih, uy, + hZ;:l aij)

Estimation d’erreur

e Erreur de troncature : connaissant les solutions exactes y,—1 et yn, la solution approchée (obtenue
a partir de la solution exacte au point précédent) @, = y,—1 + h - (méthode), ainsi que la solution
approximée u,, 4 partir du schéma de base, on aura a une itération n:

— Erreur totale eyt = |y — Un| = |yn — Un + Uy — Uy
— Erreur locale absolue ejoc = |y, — Uy

— Erreur transportée absolue eyans = |y, — Uy

e Erreur de troncature locale
|yn - ﬂn| = %h2|y”(9n)|
Tn(h) = lym =] (erreur de troncature locale unitaire)

h
T(h) = LhM = %hmaxte]toj[ly” ()]

2

e Stabilité et erreur de troncature transportée

condition de stabilité globale : h <

2

o
maXielty, T |%(t,y(t))|
e Précisions supplémentaires

Euler rétrograde: 7,(h) = 2h|y”(6,)|

Crank-Nicolson: 7,(h) = 15h%[y" (6,,)]

