
y +1/1/60+ y

Enseignant : Roger Sauser
ICS - CMS
14 juin 2023
Durée : 105 minutes

1
RS

SCIPER : 22

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé recto-verso.
Il contient 20 pages et 7 questions. Ne pas dégrafer.

• Posez votre carte d’étudiant sur la table.
• Aucun document n’est autorisé.
• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant l’épreuve.
• Pour les questions à choix unique (“multiple choice”), on comptera :

les points indiqués si la réponse est correcte,
0 point s’il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire. Toute réponse doit être rédigée en utilisant la place réservée à cet effet à la suite de
la question. N’écrivez pas dans les marges !

• Veuillez vous conformer aux indications suivantes pour les sujets qui demandent d’écrire du code
Python (avec du papier et un stylo) :

– respectez la syntaxe Python (parenthèses, crochets, accolades, deux points, mots-clés, etc.) ;

– mettez en forme votre code pour qu’il soit formaté exactement comme si vous le tapiez en vue
d’une exécution sans erreur ;

– respectez les indentations (en sachant que la taille de l’indentation n’importe pas en soi, mais
elle doit permettre d’identifier vos blocs de code de manière claire et immédiate) ;

– votre réponse doit comporter uniquement du code exécutable, à l’exception de quelques com-
mentaires (au format habituel) si ceux-ci sont véritablement nécessaires et aident à la com-
préhension.

y y

y +1/2/59+ y
Première partie, trois questions de “type ouvert”

Répondez dans l’espace dédié. Laissez libres les cases à cocher : elles sont réservées au correcteur.
Cette première partie comprend un total de 24 points (22 points + 2 points de bonus).

Question 1: Cette question est notée sur 12 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5

11 12

Soit la fonction réelle d’une variable réelle f : R → R définie par

f(x) = 2(x+ 1)2(x− 2) .

On donne ci-dessous la représentation graphique de cette fonction sur l’intervalle [−2, 3] et on considère
l’intégrale définie

I =

∫ 3

−2

f(x) dx .

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

10
8
6
4
2
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

Représentation de f(x) = 2x3 6x 4

f(x)

Les parties (a) et (b) en pages 3 et 4 peuvent être résolues de manière indépendante. Pour comprendre la
partie (b), il faut toutefois avoir lu la partie (a).

y y

y +1/3/58+ y
(a) Complétez le code Python en page suivante de manière à ce qu’il permette de déterminer une approxi-

mation numérique J de l’intégrale définie I grâce à l’une des deux méthodes de quadrature composite
suivantes :

• méthode basée sur la formule dite du point de gauche ;

• méthode basée sur la formule de Simpson.

Plus précisément, le code doit définir une fonction integration admettant comme arguments :

• la fonction f à intégrer ;

• les bornes a et b de l’intervalle d’intégration ;

• le nombre n de sous-intervalles à considérer ;

• la méthode choisie : gauche pour la méthode du point de gauche ou simpson pour la méthode
de Simpson.

Cette fonction integration doit :

• vérifier que la borne b est bien plus grande que la borne a ; la fonction doit afficher le message
“L’intervalle [a,b] est mal défini.” et retourner “None” si ce n’est pas le cas ;

• vérifier que la méthode donnée en argument à la fonction integration est soit gauche soit
simpson ; si ce n’est pas le cas, la fonction doit afficher le message “La méthode demandée n’est
pas implémentée.” et retourner “None” ;

• calculer le pas dx qui sera utilisé par la méthode composite ;

• déterminer la valeur J de l’approximation en implémentant la méthode composite choisie ;

• retourner la valeur J .

(le code à compléter se trouve en page suivante)

y y

y +1/4/57+ y
Code à compléter pour la partie (a) de la Question 1 :

DEBUT du code à compléter
(veuillez respecter les notations spécifiées dans l’énoncé)
#
définition de la fonction Python integration
def

if # test de la cohérence de
l’intervalle et affichage
d’un message d’erreur
#
test de la méthode
demandée et affichage

print("La méthode demandée n’est pas implémentée.") # d’un message d’erreur
#

else:
J = 0.0
dx = # calcul du pas dx

x_gauche = a # initialisation des bornes des sous -intervalles
x_droite = a + dx # utilisées ensuite dans l’implémentation de la

méthode d’intégration numérique choisie

for _ in range # implémentation de la méthode précisée
en argument

if

return J

FIN du code à compléter

(b) Donnez l’affichage qui sera alors produit par la suite d’instructions suivante :

def f(x):
return 2*(x+1) **2*(x-2)

print("J_gauche =",integration(f,-2,3,5,’gauche ’))
print("J_simpson =",integration(f,-2,3,1,’simpson ’))

Votre réponse doit être soigneusement justifiée, par exemple en vous appuyant sur la représentation
graphique de la fonction f donnée en page 2 . Comparez les valeurs approchées obtenues à la valeur
exacte de I (sans forcément faire le calcul de la valeur exacte de I, mais en justifiant votre conclusion).

(réponse en page suivante)

y y

y +1/5/56+ y

y y

y +1/6/55+ y
Question 2: Cette question est notée sur 3 points.

0

.5 .5 .5

1 2 3

Soient m+1 noeuds (points) de quadrature distincts −1 ≤ t0 < t1 < . . . < tm ≤ 1 et {φ0, φ1, . . . , φj , . . . , φm}
la base de Lagrange de l’espace vectoriel Pm (espace vectoriel des polynômes de degré inférieur ou égal à m)
associée à ces points de quadrature.

Soit la formule de quadrature

J(g) =

m∑
j=0

µjg(tj) .

Montrez que si les poids de quadrature µj , ∀j ∈ {0, 1, . . . ,m}, sont donnés par

µj =

∫ 1

−1

φj(t)dt ,

alors le degré d’exactitude de la formule de quadrature ci-dessus est (au moins) m.

y y

y +1/7/54+ y

y y

y +1/8/53+ y
Question 3: Cette question est notée sur 9 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5

6 7 8 9

Soit c(t) une fonction du temps t correspondant à la concentration d’une substance dans le sang d’un être
vivant. On suppose que l’évolution de c est décrite par l’équation différentielle suivante :

c′(t) = 2 exp(−t)− (c(t))2 ,

où le temps t est donné en heures et la concentration c en g/l. Cette équation différentielle est complétée
par la condition initiale (à t0 = 0h) :

c(0) = 0 g/l .

Les parties (a) et (b) ci-dessous peuvent être résolues de manière indépendante. Pour comprendre la partie
(b), il faut toutefois avoir lu la partie (a). La partie (b) est une question bonus valant 2 points sur les
9 points de la question.

(a) Complétez le code Python donné en page suivante de manière à ce qu’il permette de déterminer
l’évolution de la concentration c de t0 = 0h à T = 10h.

Plus précisément, le code doit :

• importer la librairie NumPy ;

• définir le problème de Cauchy que l’on se propose de résoudre dans cette question en définissant
la fonction f(t, y) ainsi que la condition initiale ;

• créer un “vecteur” (ndarray) temps t avec 51 instants régulièrement espacés entre 0 et 10 heures ;

• créer un “vecteur” (ndarray) concentration c avec 51 éléments dont le premier élément correspond
à la condition initiale et dont les autres éléments seront déterminés par la suite ;

• déterminer l’évolution de la concentration en utilisant la méthode de Crank-Nicolson (pour la
partition régulière mentionnée) et mettre à jour au fur et à mesure les valeurs des éléments du
“vecteur” c ; l’équation implicite intervenant dans la méthode de Crank-Nicolson doit être résolue
à l’aide de la méthode de Picard (méthode du point fixe) en prenant comme point de départ la
valeur obtenue en appliquant le schéma d’Euler progressif, et en choisissant une tolérance de 10−8

et un nombre maximum d’itérations de 20 ; la librairie SciPy ne doit pas être utilisée ;

• afficher la valeur approchée de la concentation après 10 heures.

(le code à compléter se trouve en page suivante)

y y

y +1/9/52+ y
Code à compléter pour la partie (a) de la Question 3 :

DEBUT du code à compléter
(veuillez respecter les notations spécifiées dans l’énoncé)
#

importation de la librairie NumPy

définition du problème de Cauchy :
* équation différentielle à résoudre (membre de droite)
def

* condition initiale (valeur de la concentration c en t=0)
y_0 = 0

t_0 = 0 # instant initial
T = 10 # instant final
N = 51 # nombre d’instants

tol = # tolérance

i_max = 20 # nombre maximum d’itérations

t =

c =

c[0] = y_0

h = T/(N-1)

for n in range(N-1):
fn = f(t[n], c[n])
calcul du point de départ avec Euler progressif

FIN du code à compléter

(b) Cette partie (b) est une question bonus valant 2 points.

En représentant les résultats obtenus en fonction du temps (c’est-à-dire en représentant le “vecteur”
c en fonction du “vecteur” t), on observe que la concentration commence par augmenter avant de
diminuer.

En supposant avoir exécuté le code de la partie (a), donnez ci-dessous les quelques lignes de code
supplémentaires permettant d’estimer après combien d’heures la concentration est redescendue à la
moitié de la valeur maximale qu’elle a atteinte.

(réponse en page suivante)y y

y +1/10/51+ y

y y

y +1/11/50+ y
Seconde partie, quatre questions à choix unique

Pour chaque question, marquez la case correspondante à la réponse correcte sans faire de ratures. Il n’y a
qu’une seule réponse correcte par question. Cette seconde partie comprend un total de 8 points.

Question 4 (à 2 points)

On cherche à intégrer sur un intervalle [a, b] une fonction d’une variable réelle suffisamment régulière (plus
précisément, une fonction dont les dérivées sont continues). Pour ce faire, on utilise une formule de quadrature
composite basée sur une méthode de quadrature non composite de degré d’exactitude 3.
En passant d’une partition régulière comprenant n sous-intervalles à une partition régulière plus fine com-
prenant 3n sous-intervalles, on observe que l’erreur absolue commise est divisée par un certain facteur k.
Quel est, en bonne approximation, ce facteur ?

k = 8

k = 9

k = 64

k = 16

k = 81

k = 3

Question 5 (à 2 points)

On considère le polynôme de Lagrange p(t) associé aux cinq points suivants :

P0 = (−2, 1), P1 = (−1, 0), P2 = (0,−1), P3 = (1,−2) et P4 = (2, 21) .

Parmi les affirmations suivantes, laquelle est fausse ?

Le polynôme p(t) a pour expression : p(t) = t4 + 2t3 − t2 − 3t− 1 .

Le polynôme p(t) est de degré 4 .

Le polynôme p(t) peut s’écrire sous la forme d’une combinaison linéaire : p(t) =
∑3

j=0 pjφj(t), où
les polynômes φj(t), j ∈ {0, 1, 2, 3}, forment une base de l’espace vectoriel des polynômes de degré
inférieur ou égal à 4 .

Le polynôme p(t) est l’unique polynôme d’interpolation pour les cinq points P0, P1, P2, P3 et P4.

Le polynôme p(t) passe par les cinq points P0, P1, P2, P3 et P4 .

y y

y +1/12/49+ y

Question 6 (à 2 points)

Soit le problème de Cauchy suivant :
y′(t) = t2 sin (y(t)) , ∀t ∈ I = [t0, T] ,

y(t0) =
π

2
.

Vers quelle valeur réelle va tendre la solution y(t) lorsque l’on considère des temps t grands (c’est-à-dire
lorsque l’on considère un intervalle I avec T grand) ?

−2π

0

−π/2

2π

π

−π

Question 7 (à 2 points)

A laquelle des équations différentielles suivantes correspond le champ de directions représenté ci-dessous ?

y′(t) = y(t) + exp(t)

y′(t) = y(t)− exp(t)

y′(t) = −y(t)− exp(−t)

y′(t) = −y(t) + exp(t)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Champ de directions

y y

y +1/13/48+ y

y y

y +1/14/47+ y

y y

y +1/15/46+ y

y y

y +1/16/45+ y
Aide-mémoire (librairies Python)

NumPy
import numpy as np

np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)
np.zeros(shape, dtype=float)
np.ones(shape, dtype=None)
np.empty(shape, dtype=float)
np.array(object, dtype=None)
np.empty_like(a)
np.zeros_like(a)
np.ones_like(a)
ndarray.ndim
ndarray.shape
ndarray.dtype
np.eye(N)
np.reshape(a, newshape)
np.dot(a, b)
a.T
a.transpose()
np.linalg.det(a)
np.linalg.inv(a)
np.linalg.eig(a)
np.random.rand(N)
np.meshgrid(x,y,indexing=’ij’)
np.gradient(f)
np.loadtxt(fname, comments=’#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’, newline=’\n’, header=’ ’, footer=’ ’, comments=’#’)

SciPy
from scipy import constants
from scipy import optimize
from scipy import misc
from scipy import integrate

constants.c
constants.m_e
constants.g
constants.physical constants[“speed of light in vacuum”]
constants.physical constants[“electron mass”]
constants.physical constants[“standard acceleration of gravity”]
optimize.curve_fit(f, xdata, ydata)
optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full_output=False)
optimize.newton(func, x0, fprime=None, tol=1.48e-08, maxiter=50, fprime2=None, full_output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)
misc.derivative(func, x0, dx=1.0, n=1, order=3)
integrate.quad(f, a, b)

y y

y +1/17/44+ y
Matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)
plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)
fig.suptitle(str)
ax = plt.subplot(m,n,a)
ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection=’3d’) (ou ax = fig.gca(projection=’3d’))
ax.plot(x, y)
ax.barh(y, width)
ax.contour(x,y,z,levels)
ax.plot_surface(x,y,z)
ax.quiver(x,y,u,v)
ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = ’->’, arrowsize = 1.5)
ax.set_title(str)
ax.set_yticks(labels)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)
ax.imshow(x)
plt.fill_between(x, y1, y2)
plt.clabel(cs)
plt.axis(’equal’)
plt.axis(’scaled’)
plt.grid()
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
plt.title(label)
plt.savefig(fname)
plt.imshow(x)
plt.show()
mpimg.imread(fname)
mpimg.imsave(fname)

y y

y +1/18/43+ y
Aide-mémoire (préparé par les étudiant(e)s)

Matplotlib, Numpy et Scipy

• plt.axhline(y, xmin, xmax) # dessiner une ligne horizontale / xmin et xmax arguments optionnels

• plt.axvline(x, ymin, ymax) # dessiner une ligne verticale / ymin et ymax arguments optionnels

• Graphe d’un champ vectoriel Pour représenter un champ vectoriel à 2 dimensions
#»

C =

(
Cx(x, y)

Cy(x, y)

)
défini par une fonction scalaire Ψ(x, y) : R2 −→ R2, qu’on définira ici par psi(xv, yv) (formule
généralement donnée en exercice), avec a et b bornes inférieures et supérieures pour x et y (même
longueur) :

a, b = -4, 4 # bornes du plan considéré
x = y = np.linspace(a, b, 40) # on peut choisir autre que 40
xv , yv = np.meshgrid(x, y, indexing = ’ij’) # création de deux matrices avec les composantes

x et y à chaque point
tableau_psi = psi(xv, yv)
direction_x , direction_y = np.gradient(tableau_psi) # dérivées partielles pour représenter

la pente à chaque point

fig = plt.figure (1); ax = plt.gca()
ax.quiver(xv, yv, direction_x , direction_y) # cette fonction représente le champ vectoriel

sur la figure

Compléments d’analyse

• Formule de Taylor. Pour f : I → R une fonction n+ 1 fois différentiable sur l’intervalle ouvert I,

f(x) = f(x0) + f ′(x0)(x− x0) + . . .+ f (n)(x0)
(x− x0)

n

n!
+ f (n+1)(ξ)

(x− x0)
n+1

(n+ 1)!

• Interpolation de Lagrange. Pour approximer une fonction passant par m+1 points distincts connus{
(t0, p0), . . . (tk, pk), . . . (tm, pm)|(tk, pk) ∈ R2

}
, on a:

– Les polynômes φk(t) =
∏m

j ̸=k
t−tj
tk−tj

où l’on exclut l’indice k de l’itération pour j : 0, . . . , k −
1, �k, k + 1 . . . ,m

– L’approximation finale p(t) =
∑n

k=1 pkφk(t) qui est un polynôme de degré m

Équations non linéaires

• Méthode des parties proportionnelles :

xn =
anf(bn)− bnf(an)

f(bn)− f(an)
, pour un intervalle fermé [an, bn] respectant la condition de Bolzano

• Méthode de Newton : xn+1 = xn − f(xn)
f ′(xn)

• Méthode de la corde : xn+1 = xn − f(xn)
f ′(x0)

, pour un x0 choisi au départ

• Méthode de la sécante : xn+1 = xn − f(xn)(xn−xn−1)
f(xn)−f(xn−1)

y y

y +1/19/42+ y
Calcul intégral

Formules de quadrature non composites Pour une fonction donnée f sur un intervalle [i, j],

⋆ “Scaling” :
∫ xi+1

xi
f(x) dx = xi+1−xi

2

∫ 1

−1
g(t) dt où g(t) = f

(
xi+xi+1

2 + t · xi+1−xi

2

)
, et x = xi+xi+1

2 +

t · xi+1−xi

2

⋆ Poids de quadrature µj =
∫ 1

−1
φj(t) dt, où φj est la base de Lagrange associée aux points tj , j =

0, . . . ,m.

• Point milieu (m = 0) : JPM
i (f) = (xi+1 − xi)f

(
xi+xi+1

2

)
• Trapèze (m = 1) : JTr

i (f) = (xi+1 − xi)
(

f(xi)+f(xi+1)
2

)
• Simpson (m = 2) : JS

i (f) = (xi+1 − xi)
[
1
6f(xi) +

4
6f

(
xi+xi+1

2

)
+ 1

6f(xi+1)
]

• 3
8 de Newton (m = 3):
JN
i (f) = (xi+1 − xi)

[
1
8f(xi) +

3
8f

(
xi +

1
3 (xi+1 − xi)

)
+ 3

8f
(
xi +

2
3 (xi+1 − xi)

)
+ 1

8f(xi+1)
]

Formules de quadrature composites Pour un intervalle [a, b] divisé en n sous-intervalles,

• Formule générale :
∫ b

a
f(x) dx ≃ I(f) =

∑n−1
i=0 Ji(f), où Ji est une formule de quadrature non-

composite.

• Avec pas régulier h = b−a
n : h peut être mis en évidence (en facteur devant l’opérateur de sommation

Σ).

– Simpson “dopé”
(
ISreg

)++
=

16(IS
reg)kfin

−(IS
reg)kfin−1

15

Estimation d’erreur Pour une formule de quadrature composite I(f) qui utilise une formule non-composite
d’exactitude r et à pas (fixe) h, ∃ constante C ∈ R∗ telle que

∣∣∣∫ b

a
f(x) dx− I(f)

∣∣∣ ≤ Chr+1, avec :

• Point Milieu (r = 1) : CPM
reg = b−a

24 max
ξ∈]a,b[

|f ′′(ξ)|

• Trapèze (r = 1) : CTr
reg =

∣∣− b−a
12

∣∣ max
ξ∈]a,b[

|f ′′(ξ)|

• Simpson (r = 3) : CS
reg = b−a

90·32 max
ξ∈]a,b[

∣∣f IV (ξ)
∣∣

Équations différentielles (ordinaires)

Méthodes de résolution d’EDO d’ordre 1 (problème de Cauchy)
En posant fn = f(tn, un), h = tn+1 − tn, et fn+1 = f(tn+1, un+1) :

• Schéma général{
un+1 = un + h · (méthode)

u0 = y0

• Euler progressif: un+1 = un + hfn

• Euler rétrograde: un+1 = un+hfn+1, avec fn+1

qui dépend de un+1

• Crank-Nicolson: un+1 = un + h
2 (fn + fn+1)

• Heun: un+1 = un + h
2 [fn + f(tn + h, un + hfn)]

• Euler modifiée:
un+1 = un + hf

(
tn + 1

2h, un + h
2 fn

)
• Runge-Kutta classique:

un+1 = un + h
6 (K1 + 2K2 + 2K3 +K4)

↪→ K1 = f(tn, un)

↪→ K2 = f
(
tn + h

2 , un + h
2K1

)
↪→ K3 = f

(
tn + h

2 , un + h
2K2

)
↪→ K4 = f(tn+1, un + hK3)

y y

y +1/20/41+ y
• Tableau de Butcher

Le tableau suivant :

c1 a1,1 . . . a1,s
...

...
. . .

...
cs as,1 . . . as,s

b1 . . . bs

se décode dans la forme du schéma général d’une
méthode de résolution d’EDO1 de la manière sui-
vante:

un+1 = un + h (b1K1 + . . .+ biKi + . . .+ bsKs)

avec Ki = f
(
tn + cih, un + h

∑s
j=1 ai,jKj

)
Estimation d’erreur

• Erreur de troncature : connaissant les solutions exactes yn−1 et yn, la solution approchée (obtenue
à partir de la solution exacte au point précédent) ũn = yn−1 + h · (méthode), ainsi que la solution
approximée un à partir du schéma de base, on aura à une itération n:

– Erreur totale etot = |yn − un| = |yn − ũn + ũn − un|

– Erreur locale absolue eloc = |yn − ũn|

– Erreur transportée absolue etrans = |ũn − un|

• Erreur de troncature locale

|yn − ũn| = 1
2h

2|y′′(θn)|

τn(h) =
|yn − ũn|

h
(erreur de troncature locale unitaire)

τ(h) = 1
2hM = 1

2hmaxt∈]t0,T [|y′′(t)|

• Stabilité et erreur de troncature transportée

condition de stabilité globale : h ≤ 2

maxt∈]t0,T [| ∂f
∂y (t,y(t))|

• Précisions supplémentaires

Euler rétrograde: τn(h) =
1
2h|y

′′(θn)|

Crank-Nicolson: τn(h) =
1
12h

2|y′′′(θn)|

y y

