EEEEN BN +1/1/60+

EPFL

Enseignant: Roger Sauser
ICS - CMS

9 avril 2025

Durée: 105 minutes

Dalton Joe

sciPER: 987654

Signature - Absent.e

Attendez le début de I’épreuve avant de tourner la page. Ce document est imprimé
recto-verso et il contient 12 pages, les dernieres pouvant étre vides. Un total de 32
points (dont deux points de bonus) est réparti sur 7 questions.

* Posez votre carte d’étudiant.e sur la table, vérifiez votre nom et votre numéro
SCIPER sur la premiere page et apposez votre signature.
* Aucun document n’est autorisé. L'utilisation d’'une calculatrice et de tout outil élec-
tronique est interdite pendant I'épreuve.
* Pour les questions a choix unique, on comptera:
les points indiqués si la réponse est correcte,
0 point s’il n'y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.
 Utilisez un stylo a encre noire ou bleu foncé et effacez proprement avec du cor-
recteur blanc si nécessaire. Toute réponse doit étre rédigée en utilisant la place
réservée a cet effet a la suite de la question. N'écrivez pas dans les marges !
* Si une question est erronée, I’enseignant se réserve le droit de I'annuler.
* Veuillez vous conformer aux indications suivantes pour les sujets qui demandent
d’écrire du code Python (avec papier-stylo):

- respectez la syntaxe Python (parenthéses, crochets, deux points, mots-clés, etc.);

- mettez en forme votre code pour qu'il soit formaté en vue d’une exécution sans
erreur;

- respectez les indentations (en sachant que la taille de I'indentation n’importe pas
en soi, mais qu’elle doit permettre d’identifier vos blocs de code de maniére claire
et immédiate).

* Les brouillons ne sont pas a rendre: ils ne seront pas corrigés. Ne pas dégrafer.

Respectez les consignes suivantes | Observe this guidelines | Beachten Sie bitte die unten stehenden Richtlinien

choisir une réponse | select an answer | ne PAS choisir une réponse | NOT select an answer Corriger une réponse | Correct an answer
Antwort auswahlen NICHT Antwort auswahlen Antwort korrigieren

X vV W L] L]

ce qu'il ne faut PAS faire | what should NOT be done | was man NICHT tun sollte

100040

EEEE B B +1/2/59+

Premieére partie, cinq questions a choix unique

Pour chaque question, marquez la case correspondante a la réponse correcte sans faire de ra-
tures. Il n’y a qu'une seule réponse correcte par question. Cette premiere partie comprend
un total de 8 points + 2 points de bonus.

Question 1 (2 points)
On cherche a déterminer une approximation des zéros d'une fonction réelle f € CZ(R) d’'une
variable réelle a I'aide de la méthode de Newton.

Parmi les cing affirmations suivantes laquelle est fausse ?

[] A chaque itération, la méthode de Newton considére la tangente & la fonction f au point
courant et le point courant suivant est pris égal au zéro de cette tangente.

[] La méthode de Newton est une méthode de point fixe.

[] La distance |z41 — x| entre deux éléments successifs de la suite itérative définie par la
méthode de Newton est inversément proportionnelle a la pente de f en z.

B La méthode de Newton est une méthode itérative qui converge toujours avec un ordre 2.

[] Avec la méthode de Newton, appliquée au voisinage d’un zéro simple ou double de f,
I’erreur numérique absolue commise diminue a chaque itération.

Question 2 (2 points)
On applique la méthode de la bissection simple a la fonction f(z) = z(x — 1)(z +2) en prenant
pour intervalle de départ I'intervalle I = [—3,2].

De quel zéro de f la méthode va-t-elle fournir une approximation ?

[] La méthode de la bissection va fournir une approximation du zéro a = 1.
[] La méthode de la bissection ne va pas converger vers un zéro de f.
[] La méthode de la bissection va fournir une approximation du zéro a = 0.

B L= méthode de la bissection va fournir une approximation du zéro a = —2.

Question 3 (2 points)
Parmi les quatre fonctions suivantes, laquelle admet au moins un point fixe dans l'intervalle
I=[,2]7?

[] f(z) = sin () [] Aucune des quatre fonc- [] f(z) = —= + 3
tions proposées 3

[] f(z) =2.2 Bz =—-22+22+1

Question 4 (2 points, question bonus)

On cherche a déterminer, par itérations successives, une approximation de la racine cinquiéme
du nombre 9, v/9 = 91/5, En supposant que |'on se base sur la méthode de Newton, quelle est
alors la relation, pour k > 0, qui permet de passer d’'une approximation a la suivante ?

Dmk+1:m,f+wk—9 |:|$Uk+1=éﬁb’k—i W=+ —

9
x = bz — — x = 5x —
[2kta S e Bt xp (] ek = —2f + 2 +9

Question 5

(2 points)

+1/3/58+

On aimerait que le code Python ci-dessous a gauche produise la figure ci-dessous a droite.

import numpy as np

import matplotlib.pyplot as plt

plt.figure(figsize=(12,12)) 1.0
plt.xlabel(’x’, size=16) 08
plt.ylabel (’y=£f(x)’, size=16) —os
&
]
BLOC DE CODE MANQUANT ~04
02
plt.xticks(size=16) 0.0
plt.yticks(size=16)
0.0 05

plt.axis(’scaled’)
plt.show ()

1.0 15 2.0 2.5 3.0

Par quelles lignes de code doit-on remplacer le “BLOC DE CODE MANQUANT” pour que ce soit
effectivement le cas?

plt.

[:] plt.

plt.
plt.

plt.

plt

Il plt:

plt.
plt.

def

plt

[pre.

plt.
plt.
plt.

def

plt

[:] plt:

plt.
plt.
plt.

def

plt

[:] plt:

plt.
plt.
plt.

np.linspace (0,np.pi,100)

plot ([x[0],x[-111, [0,0], c=’black?’)
plot([0,0], [-0.1,1.1], c=’black’)
plot(x,np.sin(x),c=’black’)

plot([1,2], [np.sin(1),np.sin(2)], c=’black’)

np.linspace(0,np.pi,100)
plot ([x[0],x[-11], [0,0], c=’black’)
plot([0,0], [-0.1,1.1], c=’black?’)

plot(x,np.sin(x),c=’black’)
plot([1,1], [0O,np.sin(1)],
plot([2,2], [0,np.sin(2)],

c=’black’)
c=’black’)

f(x):

return np.sin(x)
np.linspace(0,np.pi,100)

plot ([x[0],x[-111, [0,0], c=’black’)
plot([0,0], [-0.1,1.1], c=’black?’)
plot(x,f(x),c=’black’)

plot([1,1], [2,2], c=’black’)

plot ([0,£f(1)], [0,£f(2)], c=’black?’)

f(x):

return np.sin(x)
np.linspace(0,np.pi,5)
plot ([x[0],x[-111, [0,0], c=’black’)
plot([0,0], [-0.1,1.1], c=’black’)
plot(x,f(x),c=’black?)
plot ([1,1]1, [0,f(1)],
plot([2,2], [0,f(2)],

c=’black’)
c=’black?’)

f(x):

return np.sin(x)
np.linspace(0,np.pi,100)

plot ([x[0],x[-11], [0,0], c=’black’)
plot ([0,0], [-0.1,1.1], c=’black’)
plot (f(x) ,x,c=’black’)
plot([1,1], [0,£f(1)],
plot ([2,2]1, [0,f(2)],

c=’black’)
c=’black?’)

EEE BN 2 | +1/4/57+

Seconde partie, deux questions de “type ouvert”

Répondez dans I'espace dédié. Laissez libres les cases a cocher: elles sont réservées au
correcteur. Cette seconde partie comprend un total de 22 points.

Question 6: Cette question est notée sur 7 points.

[Js [hs [ds [Js [Js [s s
W [h[[E[][k [kl

Le code reproduit dans le cadre suivant s’exécute sans erreur:

import numpy as np

a = np.array([[[0,1,2],([3,4,5]1,[6,7,81]1,[[9,10,11]1,[12,13,14]1,[20,21,22111)
np.linspace(-1,14,6)
np.arange (5)

print (?===1===7)

print (a.ndim)

print (a.shape)

print (x.ndim)

print (x.shape)

print (r.ndim==x.ndim and r.shape==x.shape)

print(al1,0,2]1)
print(al1,:,0])
print (?===3===7)
print (x)

y = x[1:] - x[:-1]
print (y)

print (?===4===")
print (r)

print (r*x2-1)

(a) Ecrivez ci-dessous les résultats affichés suite a I’exécution de ce code, en respectant le
contenu et la mise en forme de chaque affichage. Il n'est pas nécessaire de justifier vos
réponses.

(b) Ecrivez également une ligne de code permettant de remplacer la séquence de nombres
[20,21,22] du tableau a par la ségquence [15,16,17].

Solution

3

(2, 3, 3)
1

(6,)
False

11

[912 20]

=3=

[-1. 2. 5. 8. 11. 14.]
[3. 3. 3. 3. 3.]

[012 3 4]
[-1 0 3 8 15]

al1,2,:] = [15,16,17]

N N BEN +1/5/56+

Question 7: Cette question est notée sur 15 points.

s [ds Lds s [ds s s s [ls [ds s [hs [Js [s [s
.o |:|1 |:|2 |:|3 |:|4 |:|5 Ds |:|7 Ds |:|9 |:|10 |:|11 |:|12 |:|13 |:|14 I:|15

Soit la fonction réelle d’une variable réelle f : R — R définie par

(x+1)(x—2) —x®42x+2
x2+2 x2+2

fx) =

dont la représentation graphique est donnée ci-dessous sur l'intervalle T = [—4, 4].
On cherche a résoudre numériquement I’'équation

f(x) = 0 dans l'intervalle I,

c’'est-a-dire que I'on cherche a trouver les deux valeurs a et 3 vérifiant f(a) = 0 = f(3).
Ces deux zéros de f sont indiqués sur la représentation graphique ci-dessous.

2
fix)=—X"t+x+2
) x2+2

1.0 1 ® «

| B

0.5 1

0.0 1

_05-

—-1.01

4.0 -35 3.0 —25 —2.0 1.5 —-1.0 —05 0.0 05 1.0 15 20 25 3.0 35 4.0
X

Il vous est demandé de déterminer une approximation...

(a) ...de o grace a la méthode de la sécante;
(b) ...de B grace a la méthode de point fixe.

(a)

LT N I . +1/6/55+

Approximation de « (notée sur 4 points) a I’aide de la méthode de la sécante

Déterminez graphiquement la valeur approchée x4 du zéro o obtenue apres quatre itéra-
tions en appliquant la méthode de la sécante “a la main” en choisissant comme valeurs
de départ z_; = —4 et zog = 0. “A la main” signifie ici sans écrire de code destiné a étre
exécuté par un ordinateur, en “dessinant” au stylo (ou au crayon en prenant soin de bien
appuyer sur la mine) sur la figure donnée en page 6 les différentes étapes de la méthode.
Précisez au mieux votre raisonnement a l'aide des traits de construction et indiquez sur

la figure en page 6 la position des valeurs approchées z;, =2, 3 et x4 correspondant aux
guatre premieres itérations de la méthode.

Approximation de 3 (notée sur 11 points) a I’aide de la méthode de point fixe

Pour déterminer la valeur (approchée) du zéro 3, il vous est demandé d’appliquer la
méthode de point fixe avec la fonction auxiliaire (d'itération)

en procédant en deux parties.

Premiére partie

Commencez par vérifier que la fonction ® donnée ci-dessus est une fonction d’itération
acceptable pour la recherche du zéro 3. Montrez en particulier que la méthode de point
fixe va converger vers le zéro 3 au voisinage de §.

HNNEEREEEEN
[T N N +1/7/54+

N EEN B B +1/8/53+

Seconde partie

Complétez le code Python en page suivante de maniére a ce qu’il permette d’approcher
numériquement la solution 8 de I’équation f(z) = 0 a 'aide de la méthode de point
fixe.

Plus précisément, le code a compléter doit:

1.
2.

définir les fonctions £ et Phi;

définir une fonction Python nommée mptfixe permettant de trouver une solution ap-
prochée de I'’équation ®#(x) = = par la méthode de point fixe. Cette fonction doit
avoir comme paramétres (arguments) :

e la fonction Phi pour laquelle on veut trouver un point fixe;
e le point de départ x_0 de la méthode;

e la tolérance eps souhaitée;

e le nombre maximum d’itérations autorisées k_max.

Cette fonction mptfixe doit implémenter la méthode de point fixe et itérer jusqu’a ce
que I'une des deux conditions suivantes soit satisfaite :

e soit la valeur absolue de I'incrément |zx41 — x| est inférieure a la tolérance eps;
e soit le nombre maximum d’itérations est atteint.
Dans les deux cas, la fonction doit alors retourner la valeur approchée courante de la
solution, une liste renfermant les valeurs de I'incrément |z,+1 — x| @ chaque itération,

ainsi gue le nombre d’itérations effectuées. Il n'est pas nécessaire de compléter la
définition de la fonction avec une “docstring”;

. faire appel a la fonction bisect de la librairie SciPy pour trouver I'approximation

du zéro B qui sera utilisée comme point de départ xo pour la fonction mptfixe. Les
arguments de la fonction bisect doivent étre choisis de maniere appropriée et une
tolérance de 10—2 doit étre imposée;

. faire appel a la fonction mptfixe pour trouver une approximation du zéro 3 en deman-

dant une tolérance de 1012 et un nombre maximum d’itérations de 30;

. afficher la valeur approchée trouvée, ainsi que le nombre d’itérations qui ont été

nécessaires a la place des points d’interrogation dans le message suivant: “Valeur
approchée trouvée apres ? itérations : 7 .";

. représenter graphiquement simplement (sans “décorations” particulieres) I'évolution

de lI'incrément |zx+1 — zk|, kK > 0, en fonction de I'itération k4 1, en veillant a ce que
I'axe des ordonnées soit en échelle logarithmique.

(voir code a compléter en page suivante)

[N N +1/9/52+

DEBUT DU CODE A COMPLETER

(veuillez respecter les notations spécifiées dans 1’énoncé ci-dessus)
#

import numpy as np

import matplotlib.pyplot as plt

from scipy import optimize

1. Définitions des fonctions f et Phi
def f(x):

return - (x+1)*(x-2)/(x**x2+2)

def Phi(x):
return (3*x+2)/(x+2)

2. Définition de la fonction Python mptfixe
def mptfixe(

3. Appel de la fonction bisect de SciPy pour trouver un bon point de départ

4. Appel de la fonction mptfixe
resultat = mptfixe(Phi,x_0,1e-10,30)

5. Affichage de 1’approximation trouvée du zéro beta

6. Représentation de 1l’évolution de l’incrément

plt.yscale(’log?’)
plt.show ()

FIN DU CODE A COMPLETER

HENENEEEEEN
[. +1/10/51+

Solution

(a)

f(— ,(X)=—x7+x+2
X2+

2
1.0 ® «

m B

0.51

0.0

4= -2

XL= '-A-z

X3= -0.89
] X4=-A.008

-1.0

flx),

-4.0 =35 -3.0 2.5 -2.0 -1.5 -1.0 =05 0.0 05 1.0 15 20 25 3.0 35 4.0
X

(b) Premieére partie
Tout d'abord, on vérifie que les points fixes de la fonction d’itération

3 2
B(x) = 2T
x+ 2
correspondent bien aux zéros o = —1 et 3 = 2 de la fonction
(z+1)(x—2) —=x2+x+2
fla) = - 2 - 2
x? + 2 x4 + 2
dont on cherche les racines :
3-(—1 2 -1
—142 1
3:242 8
2B)=22)=—=-=2=p.
« (P =2(2) =" "= 8

Pour s’assurer que la méthode de point fixe converge bien avec cette fonction d’itération,
on évalue la dérivée de cette derniére en a et 3. Comme
3 3x + 2 4

e AT e

[N N +1/11/50+

ona:

. @’(a):@’(—l):%:4>1;
4 1
° ’I"(,B):‘I)(Z):4—221<1.

Par le théoreme d’'Ostrowski, il existe donc un voisinage de la racine 8 dans lequel la
méthode de point fixe converge vers 3.

Seconde partie

DEBUT DU CODE A COMPLETER

(veuillez respecter les notations spécifiées dans 1’énoncé ci-dessus)
#

import numpy as np

import matplotlib.pyplot as plt

from scipy import optimize

1. Définitions des fonctions f et Phi
def f(x):
return - (x+1)*(x-2)/(x**x2+2)

def Phi(x):
return (3*x+2)/(x+2)

2. Définition de la fonction Python mptfixe
def mptfixe (Phi,x_0,eps,k_max):

iteration = 0
condition = True
liste = []

while iteration < k_max and condition:
x_1 = Phi(x_0)

condition = abs(x_1-x_0) > eps
liste.append(abs(x_1-x_0))
x_0 = x_1

iteration += 1
return x_0,liste,iteration

3. Appel de la fonction bisect de SciPy pour trouver un bon point de départ
x_0 = optimize.bisect(f,0.5,3,xtol=1e-2)

4. Appel de la fonction mptfixe
resultat = mptfixe(Phi,x_0,1e-10,30)

5. Affichage de 1’approximation trouvée du zéro beta
print (f’Valeur approchée trouvée aprés’,resultat([2],’itérations:’,resultat[0],’.?)

6. Représentation de 1l’évolution de l’incrément
k = np.arange(l,len(resultat[1])+1)
plt.plot(k,resultat[1])

plt.yscale(’log?’)

plt.show ()

FIN DU CODE A COMPLETER

HEEENEEEEEN |
([N +1/12/49+ ®

Aide-mémoire (bibliotheques) Python)

NumPy
import numpy as np

np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)

np.zeros(shape, dtype=float)

np.ones(shape, dtype=None)

np.empty(shape, dtype=float)

np.array(object, dtype=None)

np.empty_like(a)

np.zeros_like(a)

np.ones_like(a)

ndarray.ndim

ndarray.shape

ndarray.dtype

np.eye(N)

np.reshape(a, newshape)

np.dot(a, b)
a.T
a.transpose()

np.linalg.det(a)

np.linalg.inv(a)

np.linalg.eig(a)

np.random.rand(N)

np.meshgrid(x,y,indexing="ij’)

np.gradient(f)

np.loadtxt(fname, comments="#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt="%.18e’, delimiter="", newline="\n’, header="", footer="", com-
ments="#")

SciPy

from scipy import constants
from scipy import optimize
from scipy import misc

constants.c

constants.m_e

constants.g

constants.physical constants[“speed of light in vacuum”]
constants.physical constants[“electron mass”]

constants.physical constants[“standard acceleration of gravity”]
optimize.curve_fit(f, xdata, ydata)

optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full output=False)
optimize.newton(func, x0, fprime=None, tol=1.48e-08, maxiter=50, fprime2=None, full_output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)

misc.derivative(func, x0, dx=1.0, n=1, order=3)

HENEENEEEEN
[(] +1/13/48+

Matplotlib

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)

plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)

fig.suptitle(str)

ax = plt.subplot(m,n,a)

ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection="3d’) (ou ax = fig.gca(projection="3d’))
ax.plot(x, y)

ax.barh(y, width)
ax.contour(x,y,z,levels)
ax.plot_surface(x,y,z)
ax.quiver(x,y,u,v)

ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = '->’, arrowsize = 1.5)
ax.set title(str)

ax.set yticks(labels)

ax.set xlabel(xlabel)
ax.set_ylabel(ylabel)

ax.set zlabel(zlabel)

ax.imshow(x)

plt.clabel(cs)

plt.axis('equal’)

plt.axis('scaled’)

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.legend()

plt.title(label)

plt.savefig(fname)

plt.imshow(x)

plt.show()

mpimg.imread(fname)
mpimg.imsave(fname)

