
y +1/1/60+ y

Enseignant : Roger Sauser
ICS - CMS
9 avril 2025
Durée : 105 minutes

1
Dalton Joe

SCIPER : 987654

Signature Absent.e

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé
recto-verso et il contient 12 pages, les dernières pouvant être vides. Un total de 32
points (dont deux points de bonus) est réparti sur 7 questions.

• Posez votre carte d’étudiant.e sur la table, vérifiez votre nom et votre numéro
SCIPER sur la première page et apposez votre signature.

• Aucun document n’est autorisé. L’utilisation d’une calculatrice et de tout outil élec-
tronique est interdite pendant l’épreuve.

• Pour les questions à choix unique, on comptera :
les points indiqués si la réponse est correcte,
0 point s’il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et e�acez proprement avec du cor-
recteur blanc si nécessaire. Toute réponse doit être rédigée en utilisant la place
réservée à cet e�et à la suite de la question. N’écrivez pas dans les marges !

• Si une question est erronée, l’enseignant se réserve le droit de l’annuler.
• Veuillez vous conformer aux indications suivantes pour les sujets qui demandent
d’écrire du code Python (avec papier-stylo) :
– respectez la syntaxe Python (parenthèses, crochets, deux points, mots-clés, etc.) ;
– mettez en forme votre code pour qu’il soit formaté en vue d’une exécution sans
erreur ;

– respectez les indentations (en sachant que la taille de l’indentation n’importe pas
en soi, mais qu’elle doit permettre d’identifier vos blocs de code de manière claire
et immédiate).

• Les brouillons ne sont pas à rendre : ils ne seront pas corrigés. Ne pas dégrafer.

y y

y +1/2/59+ y
Première partie, cinq questions à choix unique

Pour chaque question, marquez la case correspondante à la réponse correcte sans faire de ra-
tures. Il n’y a qu’une seule réponse correcte par question. Cette première partie comprend
un total de 8 points + 2 points de bonus.

Question 1 (2 points)
On cherche à déterminer une approximation des zéros d’une fonction réelle f 2 C2(R) d’une
variable réelle à l’aide de la méthode de Newton.
Parmi les cinq a�rmations suivantes laquelle est fausse ?

A chaque itération, la méthode de Newton considère la tangente à la fonction f au point
courant et le point courant suivant est pris égal au zéro de cette tangente.
La méthode de Newton est une méthode de point fixe.
La distance |xk+1 � xk| entre deux éléments successifs de la suite itérative définie par la
méthode de Newton est inversément proportionnelle à la pente de f en xk.
La méthode de Newton est une méthode itérative qui converge toujours avec un ordre 2.
Avec la méthode de Newton, appliquée au voisinage d’un zéro simple ou double de f ,
l’erreur numérique absolue commise diminue à chaque itération.

Question 2 (2 points)
On applique la méthode de la bissection simple à la fonction f(x) = x(x�1)(x+2) en prenant
pour intervalle de départ l’intervalle I = [�3, 2].
De quel zéro de f la méthode va-t-elle fournir une approximation ?

La méthode de la bissection va fournir une approximation du zéro ↵ = 1.
La méthode de la bissection ne va pas converger vers un zéro de f .
La méthode de la bissection va fournir une approximation du zéro ↵ = 0.
La méthode de la bissection va fournir une approximation du zéro ↵ = �2.

Question 3 (2 points)
Parmi les quatre fonctions suivantes, laquelle admet au moins un point fixe dans l’intervalle
I = [1, 2] ?

f(x) = sin (x)

f(x) = 2.2

Aucune des quatre fonc-
tions proposées

f(x) = �
x

3
+ 3

f(x) = �x2 + 2x + 1

Question 4 (2 points, question bonus)
On cherche à déterminer, par itérations successives, une approximation de la racine cinquième
du nombre 9, 5

p
9 = 91/5. En supposant que l’on se base sur la méthode de Newton, quelle est

alors la relation, pour k � 0, qui permet de passer d’une approximation à la suivante ?

xk+1 = x 5
k + xk � 9

xk+1 = 5xk �
9

x 4
k

xk+1 =
4

5
xk �

9

5x 4
k

xk+1 = 5xk +
9

x 4
k

xk+1 =
4

5
xk +

9

5x 4
k

xk+1 = �x 5
k + xk + 9

y y

y +1/3/58+ y
Question 5 (2 points)
On aimerait que le code Python ci-dessous à gauche produise la figure ci-dessous à droite.

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(12 ,12))
plt.xlabel(’x’, size=16)
plt.ylabel(’y=f(x)’, size=16)
#

BLOC DE CODE MANQUANT

#

plt.xticks(size=16)
plt.yticks(size=16)
plt.axis(’scaled ’)
plt.show()

Par quelles lignes de code doit-on remplacer le “BLOC DE CODE MANQUANT” pour que ce soit
e�ectivement le cas ?

x = np.linspace(0,np.pi ,100)
plt.plot([x[0],x[-1]], [0,0], c=’black ’)
plt.plot([0,0], [-0.1 ,1.1], c=’black’)
plt.plot(x,np.sin(x),c=’black’)
plt.plot([1,2], [np.sin (1),np.sin(2)], c=’black’)

x = np.linspace(0,np.pi ,100)
plt.plot([x[0],x[-1]], [0,0], c=’black ’)
plt.plot([0,0], [-0.1 ,1.1], c=’black’)
plt.plot(x,np.sin(x),c=’black’)
plt.plot([1,1], [0,np.sin(1)], c=’black’)
plt.plot([2,2], [0,np.sin(2)], c=’black’)

def f(x):
return np.sin(x)

x = np.linspace(0,np.pi ,100)
plt.plot([x[0],x[-1]], [0,0], c=’black ’)
plt.plot([0,0], [-0.1 ,1.1], c=’black’)
plt.plot(x,f(x),c=’black’)
plt.plot([1,1], [2,2], c=’black’)
plt.plot([0,f(1)], [0,f(2)], c=’black ’)

def f(x):
return np.sin(x)

x = np.linspace(0,np.pi ,5)
plt.plot([x[0],x[-1]], [0,0], c=’black ’)
plt.plot([0,0], [-0.1 ,1.1], c=’black’)
plt.plot(x,f(x),c=’black’)
plt.plot([1,1], [0,f(1)], c=’black ’)
plt.plot([2,2], [0,f(2)], c=’black ’)

def f(x):
return np.sin(x)

x = np.linspace(0,np.pi ,100)
plt.plot([x[0],x[-1]], [0,0], c=’black ’)
plt.plot([0,0], [-0.1 ,1.1], c=’black’)
plt.plot(f(x),x,c=’black’)
plt.plot([1,1], [0,f(1)], c=’black ’)
plt.plot([2,2], [0,f(2)], c=’black ’)

y y

y +1/4/57+ y
Seconde partie, deux questions de “type ouvert”

Répondez dans l’espace dédié. Laissez libres les cases à cocher : elles sont réservées au
correcteur. Cette seconde partie comprend un total de 22 points.

Question 6: Cette question est notée sur 7 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5

6 7

Le code reproduit dans le cadre suivant s’exécute sans erreur :

import numpy as np

a = np.array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[20,21,22]]])
x = np.linspace(-1,14,6)
r = np.arange (5)

print(’===1=== ’)
print(a.ndim)
print(a.shape)
print(x.ndim)
print(x.shape)
print(r.ndim==x.ndim and r.shape==x.shape)
print(’===2=== ’)
print(a[1,0,2])
print(a[1,:,0])
print(’===3=== ’)
print(x)
y = x[1:] - x[:-1]
print(y)
print(’===4=== ’)
print(r)
print(r** 2-1)

(a) Ecrivez ci-dessous les résultats a�chés suite à l’exécution de ce code, en respectant le
contenu et la mise en forme de chaque a�chage. Il n’est pas nécessaire de justifier vos
réponses.

(b) Ecrivez également une ligne de code permettant de remplacer la séquence de nombres
[20,21,22] du tableau a par la séquence [15,16,17].

y y

y +1/5/56+ y

y y

y +1/6/55+ y
Question 7: Cette question est notée sur 15 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5 .5

11 12 13 14 15

Soit la fonction réelle d’une variable réelle f : R ! R définie par

f(x) = �
(x + 1)(x � 2)

x2 + 2
=

�x2 + x + 2

x2 + 2

dont la représentation graphique est donnée ci-dessous sur l’intervalle I = [�4, 4].
On cherche à résoudre numériquement l’équation

f(x) = 0 dans l’intervalle I,

c’est-à-dire que l’on cherche à trouver les deux valeurs ↵ et � vérifiant f(↵) = 0 = f(�).
Ces deux zéros de f sont indiqués sur la représentation graphique ci-dessous.

Il vous est demandé de déterminer une approximation . . .
(a) . . . de ↵ grâce à la méthode de la sécante ;
(b) . . . de � grâce à la méthode de point fixe .y y

y +1/7/54+ y
(a) Approximation de ↵ (notée sur 4 points) à l’aide de la méthode de la sécante

Déterminez graphiquement la valeur approchée x4 du zéro ↵ obtenue après quatre itéra-
tions en appliquant laméthode de la sécante “à la main” en choisissant comme valeurs
de départ x�1 = �4 et x0 = 0. “A la main” signifie ici sans écrire de code destiné à être
exécuté par un ordinateur, en “dessinant” au stylo (ou au crayon en prenant soin de bien
appuyer sur la mine) sur la figure donnée en page 6 les di�érentes étapes de la méthode.
Précisez au mieux votre raisonnement à l’aide des traits de construction et indiquez sur
la figure en page 6 la position des valeurs approchées x1, x2, x3 et x4 correspondant aux
quatre premières itérations de la méthode.

(b) Approximation de � (notée sur 11 points) à l’aide de la méthode de point fixe
Pour déterminer la valeur (approchée) du zéro �, il vous est demandé d’appliquer la
méthode de point fixe avec la fonction auxiliaire (d’itération)

�(x) =
3x + 2

x + 2
,

en procédant en deux parties.
Première partie
Commencez par vérifier que la fonction � donnée ci-dessus est une fonction d’itération
acceptable pour la recherche du zéro �. Montrez en particulier que la méthode de point
fixe va converger vers le zéro � au voisinage de �.

y y

y +1/8/53+ y

y y

y +1/9/52+ y
Seconde partie
Complétez le code Python en page suivante de manière à ce qu’il permette d’approcher
numériquement la solution � de l’équation f(x) = 0 à l’aide de la méthode de point
fixe.
Plus précisément, le code à compléter doit :

1. définir les fonctions f et Phi ;
2. définir une fonction Python nommée mptfixe permettant de trouver une solution ap-

prochée de l’équation �(x) = x par la méthode de point fixe. Cette fonction doit
avoir comme paramètres (arguments) :

• la fonction Phi pour laquelle on veut trouver un point fixe ;
• le point de départ x_0 de la méthode ;
• la tolérance eps souhaitée ;
• le nombre maximum d’itérations autorisées k_max .

Cette fonction mptfixe doit implémenter la méthode de point fixe et itérer jusqu’à ce
que l’une des deux conditions suivantes soit satisfaite :
• soit la valeur absolue de l’incrément |xk+1 � xk| est inférieure à la tolérance eps ;
• soit le nombre maximum d’itérations est atteint.

Dans les deux cas, la fonction doit alors retourner la valeur approchée courante de la
solution, une liste renfermant les valeurs de l’incrément |xk+1�xk| à chaque itération,
ainsi que le nombre d’itérations e�ectuées. Il n’est pas nécessaire de compléter la
définition de la fonction avec une “docstring” ;

3. faire appel à la fonction bisect de la librairie SciPy pour trouver l’approximation
du zéro � qui sera utilisée comme point de départ x0 pour la fonction mptfixe. Les
arguments de la fonction bisect doivent être choisis de manière appropriée et une
tolérance de 10�2 doit être imposée ;

4. faire appel à la fonction mptfixe pour trouver une approximation du zéro � en deman-
dant une tolérance de 10�10 et un nombre maximum d’itérations de 30 ;

5. a�cher la valeur approchée trouvée, ainsi que le nombre d’itérations qui ont été
nécessaires à la place des points d’interrogation dans le message suivant : “Valeur
approchée trouvée après ? itérations : ? .” ;

6. représenter graphiquement simplement (sans “décorations” particulières) l’évolution
de l’incrément |xk+1 �xk|, k � 0, en fonction de l’itération k+1, en veillant à ce que
l’axe des ordonnées soit en échelle logarithmique.

(voir code à compléter en page suivante)

y y

y +1/10/51+ y
DEBUT DU CODE A COMPLETER

(veuillez respecter les notations spécifiées dans l’énoncé ci -dessus)

#

import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

1. Définitions des fonctions f et Phi

def f(x):
return -(x+1)*(x-2)/(x **2+2)

def Phi(x):
return (3*x+2)/(x+2)

2. Définition de la fonction Python mptfixe

def mptfixe(

3. Appel de la fonction bisect de SciPy pour trouver un bon point de départ

4. Appel de la fonction mptfixe

resultat = mptfixe(Phi ,x_0 ,1e-10,30)

5. Affichage de l’approximation trouvée du zéro beta

6. Représentation de l’évolution de l’incrément

plt.yscale(’log’)
plt.show()

FIN DU CODE A COMPLETER

y y

y +1/11/50+ y
Aide-mémoire (bibliothèques) Python)

NumPy
import numpy as np

np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)
np.zeros(shape, dtype=float)
np.ones(shape, dtype=None)
np.empty(shape, dtype=float)
np.array(object, dtype=None)
np.empty_like(a)
np.zeros_like(a)
np.ones_like(a)
ndarray.ndim
ndarray.shape
ndarray.dtype
np.eye(N)
np.reshape(a, newshape)
np.dot(a, b)
a.T
a.transpose()
np.linalg.det(a)
np.linalg.inv(a)
np.linalg.eig(a)
np.random.rand(N)
np.meshgrid(x,y,indexing=’ij’)
np.gradient(f)
np.loadtxt(fname, comments=’#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’, newline=’\n’, header=’ ’, footer=’ ’, com-
ments=’#’)

SciPy
from scipy import constants
from scipy import optimize
from scipy import misc

constants.c
constants.m_e
constants.g
constants.physical constants[“speed of light in vacuum”]
constants.physical constants[“electron mass”]
constants.physical constants[“standard acceleration of gravity”]
optimize.curve_fit(f, xdata, ydata)
optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full_output=False)
optimize.newton(func, x0, fprime=None, tol=1.48e-08, maxiter=50, fprime2=None, full_output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)
misc.derivative(func, x0, dx=1.0, n=1, order=3)

y y

y +1/12/49+ y
Matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)
plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)
fig.suptitle(str)
ax = plt.subplot(m,n,a)
ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection=’3d’) (ou ax = fig.gca(projection=’3d’))
ax.plot(x, y)
ax.barh(y, width)
ax.contour(x,y,z,levels)
ax.plot_surface(x,y,z)
ax.quiver(x,y,u,v)
ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = ’->’, arrowsize = 1.5)
ax.set_title(str)
ax.set_yticks(labels)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)
ax.imshow(x)
plt.clabel(cs)
plt.axis(’equal’)
plt.axis(’scaled’)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
plt.title(label)
plt.savefig(fname)
plt.imshow(x)
plt.show()
mpimg.imread(fname)
mpimg.imsave(fname)

y y

