EEEEN BN +1/1/60+

EPFL

Enseignant: Roger Sauser
ICS - CMS

17 avril 2024

Durée: 105 minutes

RS

SCIPER: 22

Attendez le début de I’épreuve avant de tourner la page. Ce document est imprimé
recto-verso et il contient 12 pages qu’il ne faut pas désagrafer. Un total de 32 points
(dont deux points de bonus) est réparti sur 7 questions.

* Posez votre carte d’étudiant sur la table.
* Aucun document n’est autorisé.
e L'utilisation d’une calculatrice et de tout outil électronique est interdite pendant
I’épreuve.
* Pour les questions a choix unique (“multiple choice”), on comptera:
les points indiqués si la réponse est correcte,
0 point s’il n'y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.
 Utilisez un stylo a encre noire ou bleu foncé et effacez proprement avec du cor-
recteur blanc si nécessaire. Toute réponse doit étre rédigée en utilisant la place
réservée a cet effet a la suite de la question. N'écrivez pas dans les marges !
¢ Veuillez vous conformer aux indications suivantes pour les sujets qui demandent
d’écrire du code Python (avec papier-stylo) :

- respectez la syntaxe Python (parenthéses, crochets, deux points, mots-clés, etc.);

- mettez en forme votre code pour qu'il soit formaté exactement comme si vous le
tapiez en vue d’'une exécution sans erreur;

- respectez les indentations (en sachant que la taille de I'indentation n’'importe pas
en soi, mais qu’elle doit permettre d’identifier vos blocs de code de maniere claire
et immédiate).

Respectez les consignes suivantes | Observe this guidelines | Beachten Sie bitte die unten stehenden Richtlinien

choisir une réponse | select an answer ne PAS choisir une réponse | NOT select an answer Corriger une réponse | Correct an answer
Antwort auswahlen NICHT Antwort auswahlen Antwort korrigieren

X ¥V & L] []

ce qu'il ne faut PAS faire | what should NOT be done | was man NICHT tun sollte

% O Q0

HENENNEEEEN
LT - . +1/2/59+

Premieére partie, deux questions de “type ouvert”

Répondez dans |'espace dédié. Laissez libres les cases a cocher: elles sont réservées au
correcteur. Cette premiére partie comprend un total de 22 points.

Question 1: Cette question est notée sur 5 points.

[:]5 [:]5 [:]5 [:]5 [:]5
lI° []1 [:]2 []3 [:]4 [:k

Le code reproduit dans le cadre suivant est extrait d’une cellule Jupyter Notebook et s’exécute
sans erreur:

import numpy as np
m = np.array([[[0,1],[2,3]],[[4,5],[6,71],[(8,9]1,[10,11111)
v = np.linspace(-3,7,3)

print (?===1===7)
print (m.ndim)
print (m.shape)
print (v.ndim)
print (v.shape)

print (?===2===7)
print(m[2,1])
print (v)

print (?===3===")

print (v+2)

print (m[:,0,0]*v)
print (?===4===7)
v[1:2] = 0.5
print (v)

w = v>0

print (w)

Ecrivez ci-dessous les résultats affichés suite a I'exécution de ce code, en respectant le contenu
et la mise en forme de chaque affichage. Il n'est pas nécessaire de justifier vos réponses.

Solution

3

(3, 2, 2)

1

(3,)

—_—

[10 11]

[-3. 2. 7.1

[-1. 4. 9.]

[-0. 8. 56.]

[—

[-3. 0.5 7.1
[False True Truel]

HNNEEEEEEEN
PS [T W +1/3/58+

Question 2: Cette question est notée sur 17 points.

[l [ds[sl ds[Js sl Js[s JsJs [Js[Js [s [Js [s
.o |:|1 |:|2 |:|3 |:|4 Ds |:|6 |:|7 |:|8 I:'g |:|10 |:|11 |:|12 I:|13 |:|14 |:|15

Soit la fonction réelle d’une variable réelle f : R — R définie par
f(x) =1—3xcoszx

dont la représentation graphique est donnée ci-dessous sur l'intervalle I = [-1, 2].
On cherche a résoudre numériqguement I’équation

f(x) = 0dans l'intervalle I,

c’est-a-dire que I'on cherche a trouver les deux valeurs a et 3 vérifiant f(a) = 0 = f(B3)
(ces deux zéros de f sont indiqués sur la représentation graphique).

—— f(x)=1-3xcosx
357 @ «a

m B
3.0 A
2.5 -
2.0
1.5 A
1.0 A
0.5 -
0.0 -
_0.5-

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Ci-dessous, il vous est demandé de déterminer une approximation...

(a) ...de o grace a la méthode de Halley proposée par la fonction newton de la librairie
SciPy;

(b) ...de a grace a la méthode de la corde;

(c) ...de B grace a la méthode de Newton.

EEREEEEEEEN |
PS EEE BN BN | +1/4/57+

(a) Approximation de « (notée sur 4 points) a I’aide de la méthode de Halley

Completez le code Python ci-dessous de maniere a ce qu'il permette de déterminer (et
d’'afficher) une approximation du zéro a grace a la méthode de Halley proposée par
la fonction newton de la librairie SciPy. Le code doit faire en sorte que la fonction
utilise la méthode de Halley. Il doit s’exécuter de maniere indépendante et sans erreur.
Choisissez la tolérance proposée par défaut par la fonction.

DEBUT DU CODE A COMPLETER
#
import numpy as np

def f(x):
return 1 - 3*x*np.cos(x)

FIN DU CODE A COMPLETER

(b) Approximation de o (notée sur 10 points) a I’aide de la méthode de la corde
Completez le code Python en page suivante de maniére a ce qu’il permette d’approcher
numériquement la solution « de I’équation f(x) = 0 a I'aide de la méthode de la corde.
Plus précisément, le code a compléter doit:

1. définir la fonction £ ;

2. définir une fonction Python nommée mcorde permettant de trouver une solution ap-
prochée de I"’équation f(x) = 0 par la méthode de la corde. Cette fonction doit avoir
comme parametres (arguments) :

e la fonction £ pour laquelle on veut trouver un zéro;

les extrémités a et b d’'un “bon” intervalle de départ renfermant le zéro cherché;
le point de départ x_0 de la méthode;

la tolérance eps souhaitée;

le nombre maximum d’itérations autorisées k_max.

Cette fonction mcorde doit implémenter la méthode de la corde en s’assurant que la
valeur utilisée comme approximation de la pente a partir des extrémités a et b est
supérieure a 10~%. Une valeur inférieure doit conduire a une exception “ValueError”
et a I'affichage “Attention : choix inadapté de I'intervalle !".

La fonction doit itérer jusqu’a ce que I'une des deux conditions suivantes soit satis-
faite:

e soit la valeur absolue de I'incrément |z4+1 — xk| est inférieure a la tolérance eps;
la fonction retourne alors la valeur approchée courante de la solution ainsi que le
nombre d’itérations effectuées;

+1/5/56+

e soit le nombre maximum d'itérations est atteint ; la fonction retourne alors la
valeur approchée courante de la solution ainsi que le nombre d’itérations effec-
tuées.

Il n’est pas nécessaire de compléter la définition de la fonction avec une “docstring”;

3. faire appel a la fonction mcorde pour trouver le zéro o de la fonction f définie ci-
dessus en imposant une tolérance de 108 et un nombre maximum d’itérations de 50;
I'intervalle [a, b] et le point de départ z¢ doivent étre choisis de maniére appropriée;

4. afficher la valeur approchée trouvée ainsi que le nombre d’itérations qui ont été
nécessaires a la place des points d’interrogation dans le message suivant: “Approxi-
mation de la racine : ? (obtenue apres ? itérations)”.

DEBUT DU CODE A COMPLETER

(veuillez respecter les notations spécifiées dans 1’énoncé ci-dessus)
#

import numpy as np

1. définition de la fonction f

def

2. définition de la fonction Python mcorde
def mcorde

return
3. appel de la fonction mcorde pour trouver l’approximation cherchée
a =
b =
x_0 =
tolerance = 1le-8

k_max = 50

4. affichage de la valeur trouvée

FIN DU CODE A COMPLETER

+1/6/55+

(c) Approximation de 3 (notée sur 3 points) a I’aide de la méthode de Newton

Déterminez la valeur approchée du zéro 3 obtenue apreés trois itérations en appliquant
la méthode de Newton “a la main” en choisissant comme valeur de départ zo = 1.
“A la main” signifie ici sans écrire de code destiné a étre exécuté par un ordinateur, en
“dessinant” au stylo (ou au crayon en prenant soin de bien appuyer sur la mine) sur la
figure donnée en page 4 les différentes étapes de la méthode.

Précisez au mieux votre raisonnement et indiquez sur la figure en page 4 la position
des valeurs approchées z,, x> et £3 correspondant aux trois premieres itérations de la
méthode.

+1/7/54+

Solution

(a)

DEBUT DU CODE A COMPLETER
#
import numpy as np
from scipy import optimize
def f(x):

return 1 - 3*x*np.cos(x)

def fprime(x):
return - 3*np.cos(x) +3*x*np.sin(x)

def fseconde(x):
return +6*np.sin(x) + 3*x*np.cos(x)

alpha = optimize.newton(f,-0.5,fprime=fprime,fprime2=fseconde)
print (alpha)

FIN DU CODE A COMPLETER

0.3555759893429734

DEBUT DU CODE A COMPLETER
(veuillez respecter les notations spécifiées dans 1’énoncé ci-dessus)
#
import numpy as np
1. définition de la fonction f
def f(x):
return 1 - 3%*x*np.cos(x)

2. définition de la fonction Python mcorde
def mcorde(f,a,b,x_0,eps,k_max):

nb_iterations = 0
erreur = abs(a-b)
x_k = x_0

q = (£(b)-£(a))/(b-a)
if abs(q) < le-6:
raise ValueError ("Attention : choix inadapté de 1l’intervalle !")

while erreur > eps and nb_iterations < k_max:

x = x_k - f(x_k)/q

erreur = abs(x-x_k)

x_k = x

nb_iterations += 1
return x_k, nb_iterations

3. appel de la fonction mcorde pour trouver l’approximation cherchée
a = 0.5

b =10.6

x_0 = 0.2

tolerance = 1le-8

k_max = 50

X, nb_it = mcorde(f,a,b,x_0,tolerance,k_max)

4. affichage de la valeur trouvée
print (’Approximation de la racine : ’,x, ’(obtenue aprés ’,nb_it,’itérations)’)

FIN DU CODE A COMPLETER

Approximation de la racine : 0.3555759866610588 (obtenue aprés 22 itérations)

(W[. +1/8/53+

—— f(x) =1—-3xcosx
3.5 1

3.0

2.5

2.0+

1.54

1.0 1

0.5 1

—0.5 1

~1.0 ~0.5 0.0 0.5 1.0 15

Approximation trouvée par la méthode (Newton) : x = 1.314393803189098
x_0 (vert) 1

x_1 (bleu) = 1.6872194454729699

x_2 (cyan) 1.3918323810223283

x_3 (jaune) = 1.3200183961424858

HENEEEEEEEN
[W +1/9/52+

Seconde partie, cinq questions a choix unique

Pour chaque question, marquez la case correspondante a la réponse correcte sans faire de
ratures. lln’y a gu'une seule réponse correcte par question. Cette seconde partie comprend
un total de 8 points + 2 points de bonus.

Question 3 (a 2 points, question bonus)

On souhaite déterminer une approximation de la racine carrée de 2 en cherchant le zéro positif
a de la fonction f(z) = =2 —2. Pour ce faire, on construit, a I’aide de la méthode de la bissection
appliquée sur I'intervalle de départ [1,1.5], une suite {xx}, k > 0, de valeurs approchées de a.
A partir de quel entier knin, les approximations xx, k > kmnin, seront-elles distantes de moins
de 10—5 de la valeur exacte a = v/2?

D kmin = 6 D Emin = 22 l:, kmin = 21 - kmin = 15
D kmin =8 D kmin =14 l:, kmin =23 D kmin =7
D kmin = 16 D kmin = 11 D kmin = 12 D kmin = 18

Question 4 (a 2 points)
On cherche a déterminer une approximation des zéros d’une fonction réelle f d'une variable
réelle a I'aide de la méthode de la bissection.
Parmi les cing affirmations suivantes laquelle est vraie?
[] La méthode de la bissection est une méthode de point fixe.
[] La méthode de la bissection utilise la pente de f.
I La méthode de la bissection est une méthode itérative qui converge toujours.

[] Avec la méthode de la bissection, I’erreur numérique absolue commise diminue a chaque
itération.

[] La méthode de la bissection permet toujours de déterminer une approximation des zéros
de f.

Question 5 (a 2 points)
On cherche a déterminer numériquement les deux zéros o = 1 et 3 = 2 de la fonction
flx)=2®> -3z +2=(x—1)(z—2).
Pour ce faire, on applique la méthode de Picard en utilisant la fonction d’itération
() =x+ f(x) = x® — 2z + 2.

En supposant avoir choisi un point de départ =, suffisamment proche du zéro cherché, laguelle
des quatre affirmations suivantes est vraie?

[] La méthode converge vers « et vers g.
[] La méthode converge vers 3, mais pas vers a.

[] La méthode ne converge ni vers a, ni vers g.
B La méthode converge vers a, mais pas vers 3.

HENENEEEEEN
[. +1/10/51+

Question 6 (a 2 points)

La représentation graphique suivante indique I'erreur absolue commise par trois méthodes
itératives en fonction du nombre d’itérations effectuées dans le cas de la recherche du zéro 3
de la fonction f définie dans la Question 2 en page 4. Les trois méthodes itératives considérées
sont : la méthode de la corde, la méthode de la sécante et la méthode de Newton.

10° -

= =

o o
Lol
1 1

[
o
|
[o)]
1

erreur absolue

8 10 12 14
nombre d'itérations

Parmi les six propositions ci-dessous, laquelle correspond a la Iégende la plus vraisemblable
pour la représentation graphique ?

[] 1: méthode de la sécante, 2 : méthode de Newton, 3 : méthode de la corde
B 1 : méthode de la sécante, 2 : méthode de la corde, 3 : méthode de Newton
[] 1: méthode de la corde, 2 : méthode de Newton, 3 : méthode de la sécante
[] 1: méthode de la corde, 2 : méthode de la sécante, 3 : méthode de Newton
[] 1: méthode de Newton, 2 : méthode de la corde, 3 : méthode de la sécante
[] 1: méthode de Newton, 2 : méthode de la sécante, 3 : méthode de la corde

[. N +1/11/50+

Question 7 (a 2 points)

On aimerait que le code Python ci-dessous
produise la figure ci-contre. Par quelles
lignes de code doit-on remplacer le “BLOC
DE CODE MANQUANT” pour que ce soit ef- 0] ———
fectivement le cas?

import numpy as np

import matplotlib.pyplot as plt
x = np.linspace(-1,1,10000)

dc = np.sqrt(l-x**2)
plt.figure(figsize=(12,12))
plt.xlabel(’abscisses’, size=16)
plt.ylabel (’ordonnées’, size=16)

0.5

0.0

ordonnées

-0.5

BLOC DE CODE MANQUANT

plt.xticks (size=16) 10 —L
plt.yticks(size=16)
plt.axis(’equal’)

plt.show () -15 -1.0 -0.5 00 05
abscisses

Choisissez parmi les cing propositions suivantes, le bloc de code permettant d’obtenir la figure
souhaitée:

plt.plot([-1.75,-1.25]1,[1,1],c="black’)
plt.plot([-1.5,-1.5],[-1,1],c=’black’)
D plt.plot([-1.75,-1.25],[-1,-1],c="black’)
plt.plot(x,-dc,c=’black’)
plt.plot([0.75, 0.25, 0.25, 0.75, 0.75, 0.25]1,[1,1,0,0,-1,-1],c="black?’)

plt.plot([-1.75,-1.25],[1,1],c="black’)
plt.plot([-1.5,-1.5]1,[-1,1]1,c="black’)

- plt.plot([-1.75,-1.25],[-1,-1],c="black’)
plt.plot(-dc,x,c=’black?’)
plt.plot([0.25,0.75,0.75,0.25,0.25,0.75],[-1,-1,0,0,1,1],c=black’)

plt.plot([-1.75,-1.25],[1,1],c="black’)
plt.plot([-1.5,-1.5],[-1,1],c="black’)

[] plt.plot([-1.75,-1.25],[-1,-1],c="black’)
plt.plot(dc,x,c=’black?’)
plt.plot([0.25,0.75,0.75,0.25,0.25,0.75],[-1,-1,0,0,1,1],c="black’)

plt.plot([-1.75,-1.25],[-1,-1],c="black’)
plt.plot([-1.75,-1.25]1,[1,1],c="black?)
D plt.plot([-1.5,-1.5]1,[-1,1],c="black?’)
plt.plot(-dc,x,c=’black?’)
plt.plot([0.75, 0.25, 0.25, 0.75, 0.75, 0.75],[1,1,0,0,-1,-1],c="black?’)

plt.plot([-1.75,-1.25],[1,1],c="black’)
plt.plot([-1.5,-1.5],[-1,1],c="black’)

[] plt.plot([-1.75,-1.25],[-1,-1],c=’black’)
plt.plot(x,dc,c=’black?’)
plt.plot([0.25,0.75,0.75,0.25,0.256,0.75]1,[-1,-1,0,0,1,1],c=’black’)

[|
[| +1/12/49+ ®
e

Aide-mémoire (librairies Python)

NumPy
import numpy as np

np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)

np.zeros(shape, dtype=float)

np.ones(shape, dtype=None)

np.empty(shape, dtype=float)

np.array(object, dtype=None)

np.empty_like(a)

np.zeros_like(a)

np.ones_like(a)

ndarray.ndim

ndarray.shape

ndarray.dtype

np.eye(N)

np.reshape(a, newshape)

np.dot(a, b)
a.T
a.transpose()

np.linalg.det(a)

np.linalg.inv(a)

np.linalg.eig(a)

np.random.rand(N)

np.meshgrid(x,y,indexing="ij’)

np.gradient(f)

np.loadtxt(fname, comments="#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt="%.18e’, delimiter="", newline="'\n’, header="", footer="", com-
ments="#")

SciPy

from scipy import constants
from scipy import optimize
from scipy import misc

constants.c

constants.m_e

constants.g

constants.physical constants[“speed of light in vacuum”]
constants.physical constants[“electron mass”]

constants.physical constants[“standard acceleration of gravity”]
optimize.curve_fit(f, xdata, ydata)

optimize.bisect(f, a, b, xtol=2e-12, maxiter=100, full output=False)
optimize.newton(func, x0, fprime=None, tol=1.48e-08, maxiter=50, fprime2=None, full_output=False)
optimize.fsolve(func, x0, xtol=1.49012e-08)

misc.derivative(func, x0, dx=1.0, n=1, order=3)

+1/13/48+

Matplotlib

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y)

plt.errorbar(x, y, yerr=None, xerr=None)
plt.scatter(x, y)

fig.suptitle(str)

ax = plt.subplot(m,n,a)

ax = plt.subplot() (ou ax = fig.gca())
ax = plt.subplot(projection="3d’) (ou ax = fig.gca(projection="3d’))
ax.plot(x, y)

ax.barh(y, width)
ax.contour(x,y,z,levels)
ax.plot_surface(x,y,z)
ax.quiver(x,y,u,v)

ax.streamplot(x, y, u, v, linewidth=1, density = 2, arrowstyle = '->’, arrowsize = 1.5)
ax.set title(str)

ax.set yticks(labels)

ax.set xlabel(xlabel)
ax.set_ylabel(ylabel)

ax.set zlabel(zlabel)

ax.imshow(x)

plt.clabel(cs)

plt.axis('equal’)

plt.axis('scaled’)

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.legend()

plt.title(label)

plt.savefig(fname)

plt.imshow(x)

plt.show()

mpimg.imread(fname)
mpimg.imsave(fname)

