EPFL - CMS ICS Automne - Série 8

Série &8

Les exercices précédés d'une astérisque sont optionnels (mais pas nécessairement difficiles).
Vous pouvez utiliser le notebook cours8_complement.ipynb mis a votre disposition sur
Moodle pour visualiser le temps de parcours de vos algorithmes en fonction de la taille
de I'entrée.

1. Ordonnez sans justification les fonctions suivantes par ordre de croissance, c’est-a-
dire pour deux fonctions données f et g, faites apparaitre f avant g si f = O(g).
Groupez ensemble les fonctions qui ont le méme ordre de croissance (c’est-a-dire
groupez ensemble f et g si f = O(g)).

n + 50, ny/n, 2n, 100, 10n™, n? n® +n? n? n'' |sin(n)| + 1, n'°.

Pour vous aider dans cette tache, vous trouverez ci-dessous le code Python qui a été
utilisé en cours pour illuster la vitesse de croissance de diverses fonctions (le code
donné produit le graphe des fonctions f(n) = n et g(n) = n? pour n allant de 1 &
100). Il utilise le module matplotlib, qui donne acces & un ensemble de fonctions
de visualisation en Python. Le sous-module pyplot est une collection de fonctions
qui permettent de visualiser des graphes de fonctions mathématiques dans un style
similaire au langage de programmation MATLAB.

Adaptez ce code pour vérifier votre réponse en dessinant le graphes des fonctions
que vous avez ordonnées, groupées par deux ou par trois, et observant leur crois-
sance relative. N’oubliez pas de modifier la plage des valeurs de n au besoin.

import matplotlib.pyplot as plt

=[]

L]

L]

i in range(1,101):
n.append (i)
f.append(i)
g.append(i**2)

- 0Q —H S
o
S o0

plt.plot(n, f, label
plt.plot(n, g, label
plt.legend()
plt.show()

Remarque: matplotlib est installé sur Noto. Si vous travaillez sur votre machine
et n’avez pas matplotlib installé, vous pouvez l'installer en exécutant pip install
matplotlib dans une ligne de commande ou directement dans un Jupyter note-
book. Vous pouvez aussi utiliser un outil de plotting en ligne comme Wolfram Alfa,
Geogebra, Desmos, ou une multitude d’autres.

https://www.wolframalpha.com/examples/mathematics/plotting-and-graphics/
https://www.geogebra.org/graphing
https://www.desmos.com/calculator

EPFL - CMS ICS Automne - Série 8

2. Pour n € N, prouvez les affirmations suivantes en exhibant une constante C' (ou des
constantes C et Cy) et un rang N appropriés:

(a
(b

)
)

()
3. (a)

(b)

2n + 100 = O(n)
an + b= 0O(n) pour a,b des réels strictement positifs

100ny/n = O(n?).

Soit n € N, et f,g,h des fonctions positives de n telles que f = O(g) et
g = O(h). Prouvez que f = O(h).

Soient T"(n) et T"(n) les temps de parcours respectifs des algorithmes max_somme
et max_somme_lineaire tels qu’ils ont été définis au cours. Déduisez du point
(a) que T"(n) = O(T"(n)).

Donnez un algorithme carre qui prend un entier positif n en entrée et affiche
un carré de coté n. Par exemple, 'appel carre(5) doit afficher:

* K K K K
* X X X X
* K X X X
* X X X X
ESEE SR S

L’espacage entre les astérisques n’est pas important.

Combien d’astérisques est-ce que votre code affiche, pour I'entrée n?

Donnez, en notation ©(-), 'ordre de croissance du temps de parcours de votre
algorithme en fonction de n.

Remarque: si votre algorithme contient des instructions de la forme

print(”*" x i), sachez qu’une telle instruction ne prend pas temps constant!
En effet la création et le stockage en mémoire d’une chaine de caractere de
taille n prendra un temps (et un espace en mémoire) au moins linéaire en n.
Un algorithme contenant deux boucles for imbriquées prendra le méme temps
de parcours mais ce temps de parcours sera plus facile a analyser.

Donnez un algorithme triangle qui prend un entier positif n en entrée et af-
fiche un triangle de coté n de la forme ci-dessous (dans ce cas, ce triangle a été
affiché par triangle(5)):

*
3

* K X X K

*
*
*
k ok ok ok

Puis répondez aux mémes questions (b) et (c¢) pour I'algorithme triangle.

5. Soit L une liste de n > 3 nombres. On s’intéresse a la plus grande somme de trois
éléments distincts de la liste, c’est-a-dire au maximum de la valeur de

L[il + L[j] + L[k], pour i, j, k des indices de L distincts deux a deux.

EPFL - CMS ICS Automne - Série 8

(a)
(b)

Modifiez chacun des algorithmes max_somme et max_somme_lineaire vus en
cours pour calculer le maximum demandé.

Utilisez le module time comme vu en cours pour mesurer le temps de parcours
de chacun de vos algorithmes sur une liste de nombre aléatoires dont vous ferez
varier la taille. Est-ce que c’est soutenable de donner une liste de taille 1000 a
ces deux algorithmes? Une liste de taille 10,0007

Donnez, en notation O(-), 'ordre de croissance du temps de parcours de chacun
des deux algorithmes en fonction de la taille de I'entrée.
Indication: vous pouvez utiliser les identités

n

" n(n+1) s nn+1)(2n+1)
k=——7—cet k* = .
; 2 ¢ ; 6

Prouvez ’équivalence des deux définitions de f = Q(g) données au transparent
31 du cours.

Prouvez I’équivalence des deux définitions de f = O(g) données au transparent
32 du cours.

7. Exercice de révision'

On considere le probleme de la multiplication de deux matrices numériques de di-
mensions n X n, pour n > 2.

Pour rappel, soient A et B des matrices de dimensions n X n, et C' = AB la matrice
produit de A et B. On dénote par a;; I’élément de la ieme ligne et jeme colonne de
A (et de méme pour B et C'). Alors

n
Cij = E aikbkj.
k=1

C’est-a-dire que ¢;; est obtenu en calculant le produit scalaire de la ieéme ligne de A

et la
donc

jeme colonne de B. Pour calculer I'entrée ¢;; de la matrice produit C, il faut
calculer une somme ou chaque terme est le produit d’une entrée de A et d’une

entrée de B.

Par exemple, si

alors

1 2 3 2 -1 =2
A=|4 -1 2| eB=|0 3 2 |,
5 —2 1 1 4 3

5 17 11

c1=1242.04+3-1=5,¢c1o=1-—142-3+3-4=17, et C= |10 1 -4

11 -7 —11

LCet exercice constitue un bon entrainement pour comprendre les notions de ce cours mais n’est pas
nécessaire a la compréhension des prochains cours. Vous pouvez donc le garder pour vos révisions si vous
trouvez la série trop longue.

EPFL - CMS ICS Automne - Série 8

(a)

Ecrivez un algorithme qui prend en entrée deux matrices numériques A et B
de dimensions n X n et retourne la matrice C' = A - B. On représentera une
matrice de dimensions n x n en Python par une liste de taille n dont chaque
élément est une liste de taille n. Par exemple, la matrice

A:

~ =
oo Ut DN
© o w

sera représentée par A = [[1, 2, 31, [4, 5, 61, [7, 8, 9]11.
N’oubliez pas de tester votre code sur plusieurs instances de petite taille.

Quelle est la taille de I'entrée en fonction de n? Quel est le temps de parcours
de votre algorithme en fonction de n?

Donnez une borne inférieure (triviale) sur le temps de parcours de n’importe
quel algorithme qui résoud le probleme de la multiplication de deux matrices
de dimensions n x n.

