EPFL - CMS ICS Automne - Série 12

Série 12

Sauf si spécifié autrement, tous les algorithmes demandés sont a écrire sous forme d’une
fonction Python.
Les exercices précédés d'une astérisque sont optionnels (mais pas nécessairement difficiles).

Le Jupyter notebook graphes.ipynb contient le code des algorithmes vus en cours.
Chaque fois que vous simulez le parcours d’un algorithme a la main, vous pouvez vérifiez
votre réponses en appelant 1’algorithme correspondant avec ’entrée correspondante dans

le notebook.

1. On donne la représentation par listes d’adjacence d'un graphe G; comme suit:

G,1:{®:[1y2’3)475]y 1:[6)2’3)4y5]’ 2:[071’3’4’5]’ 3:[6’1’2’4’5]’
4:10,1,2,3,51, 5:00,1,2,3,41}.

(a)
(b)

()

()

Dessinez ce graphe.

Donnez I'ordre dans lequel BFS et DFS parcourent respectivement ce graphe en
partant du sommet 0.

Dessinez I'arbre couvrant retourné par BFS_arbre, et I’arbre couvrant créé par
DFS_arbre, en partant du sommet 0. Pour DFS_arbre, n’oubliez pas d’initialiser
la liste vu et ’arbre T avant 'appel a la fonction.

Pour un graphe G a n sommets et m arétes représenté par ses listes d’adjacence,
quel est le temps de parcours de BFS_arbre?

Modifiez ’algorithme BFS_chemins donné en cours pour retourner aussi une
liste d telle que, pour (G,s) en entrée, d[u] contient la distance entre s et u si
u est atteignable depuis s, et d[u] = float("inf") si u n’est pas atteignable
depuis s.

On donne le graphe G (défini a la question 1) et le sommet 0 en entrée a
BFS_chemins. Quelle est la sortie de votre algorithme (c’est-a-dire la valeur des
deux listes chemin et d)?

Meéme question avec le graphe dirigé (G5 ci-dessous et le sommet 0 en entrée.

Figure 1: Le graphe Gs



EPFL - CMS ICS Automne - Série 12

3. Modifiez I'algorithme BFS donné en cours pour prendre en entrée un graphe représenté
par sa matrice d’adjacence, et un sommet du graphe. L’algorithme doit parcourir les
sommets du graphe en largeur et afficher les sommets dans 'ordre ou il les parcourt.
Quel est 'ordre du temps de parcours de votre algorithme en fonction du nombre n
de sommets et du nombre m d’arétes du graphe?

N’oubliez pas de tester votre algorithme sur de petits graphes. Vous pouvez utiliser
les graphes donnés a l'exercice 1 de la Série 11 avec leurs matrices d’adjacence.

4. Donnez un algorithme qui prend en entrée un graphe G non dirigé contenant au
moins un sommet, et détermine si le graphe est connexe. Votre algorithme peut
appeler (ou modifier) les algorithmes vus en cours.

Indication: On pourra utiliser sans preuve le résultat suivant: si un graphe est non
connexe, alors pour tout sommet s il existe un sommet u non atteignable depuis s.

* 5. Implémentez une version itérative de DFS. L’algorithme doit utiliser une pile (sim-
plement une liste Python) pour maintenir la liste de sommets & parcourir, et marquer
les sommets comme vus de maniere appropriée pour éviter d’afficher plusieurs fois
le méme sommet.



