
EPFL - CMS ICS Automne - Série 10

Série 10

Sauf si spécifié autrement, tous les algorithmes demandés sont à écrire sous forme d’une
fonction Python.
Les exercices précédés d’une astérisque sont optionnels (mais pas nécessairement difficiles).

1. (a) Simulez à la main le parcours de tri par selection sur la liste ci-dessous en
affichant le contenu de la liste à la fin de chaque itération de la boucle for
extérieure. Vérifiez votre réponse en appelant tri par selection sur la liste
en entrée dans un Jupyter Notebook (et en insérant une instruction print dans
le code).

[7, 2, 13, -5, -3, 17, 8, 24, -11, 1]

(b) Même question pour tri par insertion.

(c) Le fichier tri par fusion.ipynb contient le code de l’algorithme de tri par
fusion vu en cours, avec des instructions print ajoutées de façon à montrer
l’état de la liste à différents points de l’exécution. Réfléchissez à l’affichage
produit par l’exécution des instructions suivantes:

L = [4, 3, 2, 1]
tri par fusion(L, 0, len(L)-1)
et vérifiez votre réponse en exécutant le code. Testez votre compréhension de
l’algorithme de tri par fusion en exécutant le code donné pour divers choix de
la liste L.

2. Nous avons analysé en cours le temps de parcours de tri par insertion au pire
des cas, qui correspond au cas où la liste est triée par ordre décroissant. A quoi
correspond le meilleur des cas pour tri par insertion? Donner l’ordre du temps
de parcours en notation Θ(·) dans ce cas.

3. Le tri à bulles (bubble sort) fonctionne de la manière suivante: Il prend en entrée
une liste L de taille n. Il parcourt la liste n fois. A chaque parcours, dès qu’il
rencontre deux éléments adjacents de la liste qui sont dans le mauvais ordre, càd
L[i], L[i+1] tels que L[i] > L[i+1], il les échange.

On appelle cet algorithme tri à bulles car à chaque parcours de la liste, le plus grand
élément (restant) se déplace vers la fin de la liste comme une bulle qui remonte à la
surface de l’eau.

(a) Observez une simulation du tri à bulles sur l’un des sites proposés en cours,
par exemple https://visualgo.net/bn/sorting, pour comprendre exacte-
ment comment fonctionne l’algorithme.

(b) Donnez l’algorithme du tri à bulles en Python. N’oubliez pas de tester votre
code sur de petites listes.

*(c) Formulez et prouvez un invariant de boucle pour la boucle extérieure de l’algorithme.

(d) Quel est le temps de parcours du tri à bulles?

https://visualgo.net/bn/sorting


EPFL - CMS ICS Automne - Série 10

4. Etant donnés un nombre x et une liste L de n nombres tous distincts, on veut trouver
un algorithme pour déterminer s’il existe deux éléments de L dont la somme vaut
x. L’algorithme doit retourner des valeurs distinctes L[i] et L[j] telles que L[i] +
L[j] = x. S’il n’existe pas de tels éléments, il retourne None.

Par exemple, pour l’entrée 10, [1, 2, 3, 5, 7, 8], l’algorithme peut retourner
(2, 8) ou (3, 7), mais pas (5, 5).

(a) Donnez un algorithme näıf de temps de parcours quadratique qui résoud ce
problème.

(b) Donnez un algorithme qui résoud ce problème en temps Θ(n log2(n)). Vous
pouvez faire appel à des algorithmes vus en cours.

Indice: 1

(c) On suppose maintenant que la liste L est déjà triée. Donner un algorithme qui
résoud ce problème en temps linéaire en n.

Indice: 2

* 5. Pour n ≥ 1, on vous donne

• un tableau de dimensions 2n × 2n avec une case manquante (qui peut être
n’importe quelle case)

• et un nombre suffisant de trominos: ce sont des pièces qui couvrent trois cases
d’un tableau formant un angle droit.

Un tableau 8× 8 avec la case manquante indiquée en noir; un tromino

Donnez un algorithme (en français) qui permet de paver le tableau complètement
et exactement avec des trominos (les trominos ne se chevauchent pas, ne dépassent
pas, la case manquante n’est pas couverte, et aucune autre case ne reste découverte).

Indice: 3

1Commencez par trier la liste. Puis répétez une certaine opération n fois.
2Mettez un doigt au début de la liste et un doigt à la fin...
3Divisez pour régner.


