EPFL - CMS ICS Automne - Série 10

Série 10

Sauf si spécifié autrement, tous les algorithmes demandés sont a écrire sous forme d’une
fonction Python.
Les exercices précédés d'une astérisque sont optionnels (mais pas nécessairement difficiles).

1. (a) Simulez a la main le parcours de tri_par_selection sur la liste ci-dessous en
affichant le contenu de la liste a la fin de chaque itération de la boucle for
extérieure. Vérifiez votre réponse en appelant tri_par_selection sur la liste
en entrée dans un Jupyter Notebook (et en insérant une instruction print dans
le code).

[7, 2, 13, -5, -3, 17, 8, 24, -11, 1]
(b) Méme question pour tri_par_insertion.

(c) Le fichier tri_par_fusion.ipynb contient le code de l'algorithme de tri par
fusion vu en cours, avec des instructions print ajoutées de fagcon a montrer
I’état de la liste a différents points de I'exécution. Réfléchissez a 'affichage
produit par I'exécution des instructions suivantes:

L=1[4, 3, 2, 1]

tri_par_fusion(L, @, len(L)-1)

et vérifiez votre réponse en exécutant le code. Testez votre compréhension de
I’algorithme de tri par fusion en exécutant le code donné pour divers choix de
la liste L.

2. Nous avons analysé en cours le temps de parcours de tri_par_insertion au pire
des cas, qui correspond au cas ou la liste est triée par ordre décroissant. A quoi
correspond le meilleur des cas pour tri_par_insertion? Donner 'ordre du temps
de parcours en notation O(-) dans ce cas.

3. Le tri a bulles (bubble sort) fonctionne de la maniére suivante: Il prend en entrée
une liste L de taille n. Il parcourt la liste n fois. A chaque parcours, des qu’il
rencontre deux éléments adjacents de la liste qui sont dans le mauvais ordre, cad
LLil, LLi+1] tels que LLi] > L[i+11, il les échange.

On appelle cet algorithme tri a bulles car a chaque parcours de la liste, le plus grand
élément (restant) se déplace vers la fin de la liste comme une bulle qui remonte a la
surface de I'eau.

(a) Observez une simulation du tri a bulles sur I'un des sites proposés en cours,
par exemple https://visualgo.net/bn/sorting, pour comprendre exacte-
ment comment fonctionne 'algorithme.

(b) Donnez 'algorithme du tri & bulles en Python. N’oubliez pas de tester votre
code sur de petites listes.

*(c) Formulez et prouvez un invariant de boucle pour la boucle extérieure de ’algorithme.

(d) Quel est le temps de parcours du tri a bulles?


https://visualgo.net/bn/sorting

EPFL - CMS ICS Automne - Série 10

4. Etant donnés un nombre z et une liste L de n nombres tous distincts, on veut trouver
un algorithme pour déterminer s’il existe deux éléments de L dont la somme vaut
x. L’algorithme doit retourner des valeurs distinctes L[i] et L[j] telles que L[i] +
L[j] = x. S’il n’existe pas de tels éléments, il retourne None.

Par exemple, pour l'entrée 10, [1, 2, 3, 5, 7, 81, 'algorithme peut retourner

(2, 8) ou (3, 7), mais pas (5, 5).

(a) Donnez un algorithme naif de temps de parcours quadratique qui résoud ce
probleme.

(b) Donnez un algorithme qui résoud ce probleme en temps ©(nlogy(n)). Vous

pouvez faire appel a des algorithmes vus en cours.

Indice: !

(¢) On suppose maintenant que la liste L est déja triée. Donner un algorithme qui

résoud ce probleme en temps linéaire en n.

Indice: 2

* 5. Pour n > 1, on vous donne

e un tableau de dimensions 2" x 2" avec une case manquante (qui peut étre
n’importe quelle case)

e et un nombre suffisant de trominos: ce sont des pieces qui couvrent trois cases
d’un tableau formant un angle droit.

=

Un tableau 8 x 8 avec la case manquante indiquée en noir; un tromino

Donnez un algorithme (en francais) qui permet de paver le tableau completement
et exactement avec des trominos (les trominos ne se chevauchent pas, ne dépassent
pas, la case manquante n’est pas couverte, et aucune autre case ne reste découverte).

Indice: *

!Commencez par trier la liste. Puis répétez une certaine opération n fois.
2Mettez un doigt au début de la liste et un doigt & la fin...
3Divisez pour régner.



