EPFL - CMS ICS Automne - Série 9

Série 9

Les exercices précédés d'une astérisque sont optionnels (mais pas nécessairement difficiles).

Pour cette série et les prochains cours et séries, vous pouvez utiliser le notebook
complement_serie.ipynb mis a votre disposition sur Moodle pour visualiser le temps de
parcours de vos algorithmes en fonction de la taille de I’entrée.

* 1. Soit n € N et f, g des fonctions positives de n. Prouver les affirmations suivantes:

()
(b)

Si limy, 00 % = 400 alors f(n) = O(g(n))
Si limy, 00 f("g =0 alors f(n) = O(g(n)).

g(n)

Remarque: la résolution de cet exercice est optionnelle mais il faut connaitre le
résultat, qui sera utile a I’exercice suivant.

Solution.

(a)

(b)

Silim,, oo 9 — 1o alors pour toute constante M > 0 il existe un rang
f(n)

N > 0 (fonction de M) tel que pour tout n > N,

M>M.

f(n)
Fixons n’importe quelle telle constante M. Par exemple, choisissons M = 1,
et soit NV le rang correspondant tel que pour tout n > N,

o)y,

f(n)

Alors pour tout n > N, on a f(n) < g(n), donc f(n) < 1-g(n) et donc
f(n) = 0O(g(n)).

On peut utiliser le fait que lim,, . % = 0 implique que lim,,_, % = 400
et appliquer le point (a).

f(n)

Alternativement, si lim,,_, = 0, alors pour toute constante C' > 0 il existe

(
g(n)
un rang N > 0 (fonction de C') tel que pour tout n > N,

M<C.

g(n)

Fixons n’importe quelle telle constante C'. Par exemple, choisissons C' = 1, et
soit N le rang correspondant tel que pour tout n > NN,

f(n)

m<1.

On a donc que pour tout n > N, f(n) <1-g(n) et donc f(n) = O(g(n)).

EPFL - CMS ICS Automne - Série 9

2. Ordonner (sans justification) les fonctions suivantes par ordre de croissance, en
groupant ensemble les fonctions qui ont le méme ordre de croissance. Vous pouvez
vérifier vos réponses en dessinant le graphes de ces fonctions a 'aide du module
matplotlib comme a la Série 8.

nlog,(n), (104‘52(”))2, n, nQ, 2", 1000n107 \/ﬁ> (logQ(nQ)), \/ﬁlogz(n), logy(n).

Solution Voici les fonctions données ordonnées par ordre de croissance, ol on a
groupé avec des accolades les fonctions qui ont le méme ordre de croissance:

{logy(n), (logy(n?))}, (logy(n))*, v/n, Vnlogy(n), n, nlogy(n), n®, 1000n'°, 2.

Quelques explications:

log,(n?) = 2log,(n) par une propriété vue au cours, et donc logy(n?) =
O(log,(n)).
logy(n) = O((logy(n))?) (vu au cours)

(logy(n))? = O(y/n) (vu au cours)

La croissance de y/n est dominée par la croissance de /nlog,(n) puisque

Vnlogy(n)

lim —>—= = lim log,(n) = +o00

n—00 \/ﬁ n—00
Par l'exercice 1 on a que y/n = O(y/nlogy(n)).

La croissance de y/nlog,(n) est dominée par la croissance de n puisque

1 1
i Yloga(n) . logy(n) o
n— o0 n n—00 \/ﬁ

Par l'exercice 1, cela implique que v/nlogy(n) = O(n).

La croissance de n est dominée par la croissance de nlog,(n) puisque
nlog,(n
lim ﬂ = +00.
n—oo n

Par l'exercice 1, cela implique que n = O(nlog,(n)).

La croissance de nlog,(n) est dominée par la croissance de n? puisque
nlog,(n log,(n
lim #: lim ﬁzo_
n— o0 n n—oo n

Par Pexercice 1, cela implique que nlog,(n) = O(n?).
n? = O(1000n'°) (puissances rationnelles de n, vu au cours)

10001 = ©(n'?%) et n'® = O(2") (croissance polynomiale vs croissance expo-
nentielle).

EPFL - CMS ICS Automne - Série 9

3. Vous avez vu en cours un algorithme de recherche binaire itératif. Donnez un
algorithme de recherche binaire récursif recherche_binaire_rec qui:

e prend en entrée une liste de nombres L triée, un élément x a rechercher dans
la liste, et deux indices bas et haut (qui correspondent a la tranche de la liste
L dans lequel on recherche 1'élément x)

e retourne un indice i tel que bas < i < haut et L[i] = x si un tel indice existe,
None sinon.

Etant donné une liste L et un élément x, le premier appel a votre algorithme sera
recherche_binaire_rec(L, 9, len(L)-1, x).

La condition d’arrét doit étre formulée en fonction des valeurs de haut et bas.

Solution: L’algorithme suivant recherche récursivement un élément x dans une
liste triée L:

def recherche_binaire_rec(L, bas, haut, x):
Entree: nombre x, liste L triee, indices bas et haut
Sortie: i tq bas<=i<=haut et L[i]=x, s’il existe
None sinon

PR AN

milieu = (bas+haut)//2

if haut < bas:
return None
elif L[milieu] == x:
return milieu
elif L[milieu] > x:
return recherche_binaire_rec(L,bas,milieu-1,x)
else:
return recherche_binaire_rec(L,milieu+1,haut,x)

EPFL - CMS ICS Automne - Série 9

4. On se propose d’écrire un algorithme qui prend en entrée une liste de nombres L
triée et une valeur x, et retourne l'indice de la premiere occurrence de x dans la
liste. Si aucun élément de valeur x n’est dans la liste, I’algorithme doit retourner
None.

Par exemple, pour la liste [10, 20, 20, 20, 20, 30, 30] et la valeur 20 en entrée,
'algorithme doit retourner 'indice 1 (alors que recherche_binaire retournerait
'indice 3).

(a) Implémentez en Python 'algorithme suivant, qui résoud ce probleme:

— Appeler recherche_binaire(L, x)

— Si cet appel retourne un indice i, parcourir L en allant a gauche depuis i
jusqu’a trouver un élément différent de x (ou jusqu’a arriver au début de
la liste)

— Retourner I'indice i de la premiere occurrence de x dans L.

Quel est 'ordre de croissance du temps de parcours de cet algorithme au pire
des cas, en fonction de la taille n de la liste L?

(b) Donnez un autre algorithme qui résoud le méme probléme mais dont le temps
de parcours au pire des cas est de 'ordre de log,(n).

(c) Utilisez le notebook complement_serie.ipynb pour comparer le temps de par-
cours de vos deux algorithmes sur des listes de taille n, pour n de plus en plus
grand. Vous pouvez utiliser des listes qui contiennent une méme valeur répétée
n fois et rechercher la premiere occurrence de cette valeur (qui devrait étre a
l'indice 0).

Solution:

(a) Le code ci-dessous implémente I’algorithme donné:

def recherche_premier_lineaire(L, x):

i = recherche_binaire(L,x)
if i != None:
for j in range(i,o,-1):
if LLj-1] !'= x:
return j
return 0

L =1T[e, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5,6, 7]
print(recherche_premier_lineaire(L, 5))

Cet algorithme a un temps de parcours linéaire en n au pire des cas. En effet,
considérons une liste L contenant n fois la valeur x. L’appel a recherche_binaire
retourne un indice i qui est approximativement égal a n/2. Pour trouver la
premiere occurence de x, I’algorithme devra parcourir la moitié de la liste, en
un temps O(n).

EPFL - CMS ICS Automne - Série 9

(b)

Le code ci-dessous adapte 1’algorithme de recherche binaire vu en cours pour
rechercher la premiere occurence d’un élément x dans une liste triée L:

def recherche_premier (L, x):

n = len(L)
bas = 0
haut = n-1

while haut >= bas:
milieu = (bas + haut)//2
if LImilieu] == x:
if milieu == @ or L[milieu - 1] != x:
return milieu
else:
haut = milieu - 1
elif L[milieu] > x:
haut = milieu - 1
else:
bas = milieu + 1

return None

L =10, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7]
print(recherche_premier (L, 5))

La seule différence avec la recherche binaire est que quand on trouve 1’élément
X a un certain indice de la liste, au lieu de retourner cet indice il faut aller a
gauche, sauf si on a trouvé le premier tel indice: c’est le cas si I'indice précédent
(milieu - 1) contient un élément différent de x, ou si on est au tout début de
la liste (milieu est égal a 0).

Tout comme la recherche binaire, cet algorithme “coupe” la liste en deux a
chaque itération et a donc un temps de parcours qui est ©(logy(n)).

On étudie le pire cas possible qui se produit lorsque I'instance du probleme est
composée d'une liste de n éléments tous identiques. Dans notre cas, L=nx[1],
ou n est la taille de la liste qu’on fera tendre vers 'infini. Pour chaque valeur
de N, on stocke le résultat de la recherche dans une liste r et vérifie que la
somme de tous ses éléments est nulle ce qui démontre par 'exemple la validité
de l'algorithme.

Le temps de parcours des deux algorithmes est reporté sur la Figure 1. On
vérifie que les temps de parcours de ceux-ci prennent effectivement la forme
attendue. De plus, I'algorithme logarithmique est beaucoup plus rapide que
celui linéaire pour des instances de grande taille.

EPFL - CMS ICS Automne - Série 9

0.04

Temps de calcul [s]

0.01 4

A linear A

" 14
.f 4 logarithmic

Temps de calcul [s]

— log fit

T T T T T J T T T T T
0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Taille liste le6 Taille liste le8

Figure 1: Temps de parcours de 'algorithme linéaire (gauche) et de 1’algorithme logarithmique

(droite). Sur ce dernier, la fonction y = Alogx a éré reportée, ou A est une constante de
normalisation.

5. Vous avez vu au cours et a la série 7 que le n-eme nombre de Fibonacci f, peut étre
calculé récursivement ou itérativement avec les deux algorithmes ci-dessous:

def

def

(a)

fib_rec(n):
if n ==
return 0
if n == 1:
return 1
return fib_rec(n-1) + fib_rec(n-2)

fib_iter(n):
if n == 0 or n == 1:
return n
fib_old = 0
fib_new = 1
for i in range(2, n+1):
fib_old, fib_new = fib_new, fib_old + fib_new
return fib_new

Exprimez (avec une breve justification) 'ordre du temps de parcours de fib_iter
en notation ©(-) en fonction de n.

Cet algorithme itératif est bien plus efficace que 1’algorithme récursif fib_rec (pour
vous en convaincre, appelez fib_iter(n) et fib_rec(n) pour des valeurs de n de
plus en plus grandes).

Mais pour arriver au calcul de f,, fib_iter calcule toutes les valeurs de f; pour
1 < n. Donc si on appelle la fonction fib_iter plusieurs fois avec diverses valeurs
de n, on recalcule plusieurs fois les mémes valeurs. Par exemple, si on appelle

fib_iter(10) et qu’on appelle plus tard fib_iter(15), la valeur de fio sera recal-
culée pendant le deuxieme appel.

EPFL - CMS ICS Automne - Série 9

Pour éviter ces calculs non nécessaires, on peut sauvegarder les valeurs de f,, déja
calculées de telle sorte qu’on puisse les lire au lieu de les recalculer au cours de
calculs ultérieurs.

(b)
(c)

Quel serait un bon choix de structure de données pour sauvegarder ces valeurs
fn?
Modifiez I'algorithme fib_rec de la maniere suivante:
— S’il calcule une valeur f,, il la stocke dans une structure de données définie
globalement (& I'extérieur de la fonction)
— Avant de calculer une valeur f,,, il doit vérifier si cette valeur a déja été
calculée auparavant.

N’oubliez pas de tester votre algorithme, par exemple en comparant sa sortie a
celle de fib_iter pour des entrées de votre choix. A la différence de fib_rec,
vous pourrez appeler votre algorithme avec de grandes valeurs de n.

Solution:

(a)
(b)

(c)

Toutes les instructions s’exécutent en un temps constant et la boucle for itere
n — 1 fois. fib_iter a donc un temps de parcours qui est ©(n).

Une solution naturelle serait d’utiliser un dictionnaire, ou les clés sont les entiers
naturels et la valeur corespondant a la clé n est le nombre de Fibonacci f,.

On pourrait aussi utiliser une liste ou le n-eme nombre de Fibonacci f, est
stocké a l'indice n.

L’algorithme suivant calcule le n-eme nombre de Fibonacci et utilise un dictio-
nnaire global pour stocker les valeurs déja calculées.

fib_dict = {}

def fib_rec(n):
Entree: n entier naturel
Sortie: nieme nombre de Fibonacci
if n ==
return 0
if n == 1:
return 1
if n in fib_dict:
return fib_dict[n]

fib_dict[n] = fib_rec(n-1) + fib_rec(n-2)
return fib_dict[n]

EPFL - CMS ICS Automne - Série 9

* 6. Les tours de Hanoi

On dispose de trois colonne A (la colonne source), B (la colonne intermédiaire) et C
(la colonne destination). Sur la colonne A sont empilés n disques percés de diametres
différents, ordonnés du plus grand tout en bas au plus petit tout en haut. Les disques
sont numérotés de 1 (le plus petit) & n (le plus grand). Le but est de bouger tous
les disques de la colonne A a la colonne C, en respectant les regles du jeu suivantes:
e On peut bouger un seul disque a la fois
e On ne peut bouger qu'un disque qui est tout en haut de sa pile

e On ne peut pas placer un disque au-dessus d'un disque plus petit.

La figure 2 montre la position initiale et la position finale des disques pour n = 3.

|] : | |

(a) Position initiale (b) Position finale

Figure 2: Tours de Hanoi

(a) Résolvez le probleme & la main pour n = 1,2, 3, ¢’est-a-dire donnez la liste des
mouvements qu’il faut faire pour déplacer tous les disques de la colonne A a la
colonne C en respectant les régles du jeu'.

(b) Ecrivez un algorithme hanoi qui prend en entrée un entier n > 1 et trois strings
contenant les noms des colonnes source, intermédiaire et destination. Votre
algorithme doit imprimer la liste de mouvements qu’il faut faire pour déplacer
tous les disques de la colonne source a la colonne destination en respectant les
regles du jeu. Par exemple, hanoi(2, ’A’, ’B’, ’C’) devrait afficher

Déplacer le disque 1 de A a B
Déplacer le disque 2 de A a C
Déplacer le disque 1 de B a C

Indice: 2

(c) Soit D,, le nombre de déplacements simulés par votre algorithme pour une
entrée de n disques. Exprimer D,, sous forme d’une récurrence en exprimant
D,, en fonction de D,_; pour n > 2 et en donnant la valeur du cas de base D;.

(d) Prouver que D, = 2" — 1.

Cet algorithme est un exemple d’algorithme exponentiel: son temps de parcours
(qui est proportionnel au nombre de déplacements effectués) est une fonction expo-
nentielle du nombre de disques n.

'Pour mieux comprendre le probléeme vous pouvez aussi jouer aux tours de Hanoi en ligne.
2Pour déplacer une tour de taille n, il faut mettre de coté la tour des n— 1 plus petits disques, déplacer
le disque n, et ramener la tour de taille n — 1 sur le plus grand disque.

http://championmath.free.fr/tourhanoi.htm

EPFL - CMS ICS Automne - Série 9

Solution:

(a) Pour n=1:
— Déplacer le disque 1 de A a C.
Pour n = 2:

— Déplacer le disque 1 de A a B
— Déplacer le disque 2 de A a C
— Déplacer le disque 1 de B a C.

Pour n = 3:

— Déplacer le disque 1 de A a C

— Déplacer le disque 2 de A a B

— Déplacer le disque 1 de C a B

— Déplacer le disque 3 de A a C

— Déplacer le disque 1 de B a A

— Déplacer le disque 2 de B a C

— Déplacer le disque 1 de A a C.
On commence a voir un motif qui apparait: pour déplacer n disques d’une
colonne source a une colonne destination, il faut déplacer la tour des n — 1 plus
petits disques sur la colonne intermédiaire, déplacer le disque n de la colonne

source a la colonne destination, et ramener la tour de taille n — 1 sur la colonne
destination.

(b) L’algorithme suivant affiche la liste des mouvements a faire pour une entrée de
taille n:

def hanoi(n, source, intermediaire, destination):
if n == 1:
print(f"Deplacer le disque {n} de {source} a {destination}")
else:
hanoi(n-1, source, destination, intermediaire)
print(f"Deplacer le disque {n} de {source} a {destination}")
hanoi(n-1, intermediaire, source, destination)

(c) On définit D,, comme le nombre de déplacements effectués pour déplacer une
tour de n disques d’une colonne a une autre.
Pour le cas de base (colonne de 1 disque), il suffit d’un seul déplacement, donc
D1 =1.
Pour déplacer une tour de n > 1 disques, on déplace deux fois une tour de n—1
disques et on déplace le disque de taille n une fois. On a donc D,, =2D,,_1+1.

Le nombre de déplacements D,, satisfait donc la récurrence

2D, 1 +1, > 1,
D, = vhh

1, n=1.
(d) On prouve par récurrence sur n que D,, = 2" — 1.

— Pas de base:
D,=1=2'—1.

EPFL - CMS ICS Automne - Série 9

— Pas de récurrence: Pour n > 1, supposons que D,, = 2™ — 1. Alors
Dpy1=2D, +1=22"-1)+1=2"" 241 =2"" 1.

On a donc prouvé que D,, = 2" — 1. Le nombre de déplacements effectués par
I’algorithme hanoi sur n disques est exponentiel en n.

