
EPFL - CMS ICS Automne - Série 9

Série 9

Les exercices précédés d’une astérisque sont optionnels (mais pas nécessairement difficiles).

Pour cette série et les prochains cours et séries, vous pouvez utiliser le notebook
complement serie.ipynb mis à votre disposition sur Moodle pour visualiser le temps de
parcours de vos algorithmes en fonction de la taille de l’entrée.

* 1. Soit n ∈ N et f, g des fonctions positives de n. Prouver les affirmations suivantes:

(a) Si limn→∞
g(n)
f(n)

= +∞ alors f(n) = O(g(n))

(b) Si limn→∞
f(n)
g(n)

= 0 alors f(n) = O(g(n)).

Remarque: la résolution de cet exercice est optionnelle mais il faut connâıtre le
résultat, qui sera utile à l’exercice suivant.

Solution.

(a) Si limn→∞
g(n)
f(n)

= +∞ alors pour toute constante M > 0 il existe un rang

N > 0 (fonction de M) tel que pour tout n > N ,

g(n)

f(n)
> M.

Fixons n’importe quelle telle constante M . Par exemple, choisissons M = 1,
et soit N le rang correspondant tel que pour tout n > N ,

g(n)

f(n)
> 1.

Alors pour tout n > N , on a f(n) < g(n), donc f(n) ≤ 1 · g(n) et donc
f(n) = O(g(n)).

(b) On peut utiliser le fait que limn→∞
f(n)
g(n)

= 0 implique que limn→∞
g(n)
f(n)

= +∞
et appliquer le point (a).

Alternativement, si limn→∞
f(n)
g(n)

= 0, alors pour toute constante C > 0 il existe

un rang N > 0 (fonction de C) tel que pour tout n > N ,

f(n)

g(n)
< C.

Fixons n’importe quelle telle constante C. Par exemple, choisissons C = 1, et
soit N le rang correspondant tel que pour tout n > N ,

f(n)

g(n)
< 1.

On a donc que pour tout n > N , f(n) ≤ 1 · g(n) et donc f(n) = O(g(n)).



EPFL - CMS ICS Automne - Série 9

2. Ordonner (sans justification) les fonctions suivantes par ordre de croissance, en
groupant ensemble les fonctions qui ont le même ordre de croissance. Vous pouvez
vérifier vos réponses en dessinant le graphes de ces fonctions à l’aide du module
matplotlib comme à la Série 8.

n log2(n), (log2(n))
2, n, n2, 2n, 1000n10,

√
n, (log2(n

2)),
√
n log2(n), log2(n).

Solution Voici les fonctions données ordonnées par ordre de croissance, où on a
groupé avec des accolades les fonctions qui ont le même ordre de croissance:

{log2(n), (log2(n2))}, (log2(n))2,
√
n,

√
n log2(n), n, n log2(n), n

2, 1000n10, 2n.

Quelques explications:

• log2(n
2) = 2 log2(n) par une propriété vue au cours, et donc log2(n

2) =
Θ(log2(n)).

• log2(n) = O((log2(n))
2) (vu au cours)

• (log2(n))
2 = O(

√
n) (vu au cours)

• La croissance de
√
n est dominée par la croissance de

√
n log2(n) puisque

lim
n→∞

√
n log2(n)√

n
= lim

n→∞
log2(n) = +∞

Par l’exercice 1 on a que
√
n = O(

√
n log2(n)).

• La croissance de
√
n log2(n) est dominée par la croissance de n puisque

lim
n→∞

√
n log2(n)

n
= lim

n→∞

log2(n)√
n

= 0.

Par l’exercice 1, cela implique que
√
n log2(n) = O(n).

• La croissance de n est dominée par la croissance de n log2(n) puisque

lim
n→∞

n log2(n)

n
= +∞.

Par l’exercice 1, cela implique que n = O(n log2(n)).

• La croissance de n log2(n) est dominée par la croissance de n2 puisque

lim
n→∞

n log2(n)

n2
= lim

n→∞

log2(n)

n
= 0.

Par l’exercice 1, cela implique que n log2(n) = O(n2).

• n2 = O(1000n10) (puissances rationnelles de n, vu au cours)

• 1000n10 = Θ(n10) et n10 = O(2n) (croissance polynomiale vs croissance expo-
nentielle).



EPFL - CMS ICS Automne - Série 9

3. Vous avez vu en cours un algorithme de recherche binaire itératif. Donnez un
algorithme de recherche binaire récursif recherche binaire rec qui:

• prend en entrée une liste de nombres L triée, un élément x à rechercher dans
la liste, et deux indices bas et haut (qui correspondent à la tranche de la liste
L dans lequel on recherche l’élément x)

• retourne un indice i tel que bas ≤ i ≤ haut et L[i] = x si un tel indice existe,
None sinon.

Etant donné une liste L et un élément x, le premier appel à votre algorithme sera
recherche binaire rec(L, 0, len(L)-1, x).

La condition d’arrêt doit être formulée en fonction des valeurs de haut et bas.

Solution: L’algorithme suivant recherche récursivement un élément x dans une
liste triée L:

def recherche_binaire_rec(L, bas , haut , x):
’’’
Entree: nombre x, liste L triee , indices bas et haut
Sortie: i tq bas <=i<=haut et L[i]=x, s’il existe

None sinon
’’’
milieu = (bas+haut)//2

if haut < bas:
return None

elif L[milieu] == x:
return milieu

elif L[milieu] > x:
return recherche_binaire_rec(L,bas ,milieu-1,x)

else:
return recherche_binaire_rec(L,milieu+1,haut ,x)



EPFL - CMS ICS Automne - Série 9

4. On se propose d’écrire un algorithme qui prend en entrée une liste de nombres L
triée et une valeur x, et retourne l’indice de la première occurrence de x dans la
liste. Si aucun élément de valeur x n’est dans la liste, l’algorithme doit retourner
None.

Par exemple, pour la liste [10, 20, 20, 20, 20, 30, 30] et la valeur 20 en entrée,
l’algorithme doit retourner l’indice 1 (alors que recherche binaire retournerait
l’indice 3).

(a) Implémentez en Python l’algorithme suivant, qui résoud ce problème:

– Appeler recherche binaire(L, x)

– Si cet appel retourne un indice i, parcourir L en allant à gauche depuis i
jusqu’à trouver un élément différent de x (ou jusqu’à arriver au début de
la liste)

– Retourner l’indice i de la première occurrence de x dans L.

Quel est l’ordre de croissance du temps de parcours de cet algorithme au pire
des cas, en fonction de la taille n de la liste L?

(b) Donnez un autre algorithme qui résoud le même problème mais dont le temps
de parcours au pire des cas est de l’ordre de log2(n).

(c) Utilisez le notebook complement serie.ipynb pour comparer le temps de par-
cours de vos deux algorithmes sur des listes de taille n, pour n de plus en plus
grand. Vous pouvez utiliser des listes qui contiennent une même valeur répétée
n fois et rechercher la première occurrence de cette valeur (qui devrait être à
l’indice 0).

Solution:

(a) Le code ci-dessous implémente l’algorithme donné:

def recherche_premier_lineaire(L, x):
i = recherche_binaire(L,x)

if i != None:
for j in range(i,0,-1):

if L[j-1] != x:
return j

return 0

L = [0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7]
print(recherche_premier_lineaire(L, 5))

Cet algorithme a un temps de parcours linéaire en n au pire des cas. En effet,
considérons une liste L contenant n fois la valeur x. L’appel à recherche binaire
retourne un indice i qui est approximativement égal à n/2. Pour trouver la
première occurence de x, l’algorithme devra parcourir la moitié de la liste, en
un temps Θ(n).



EPFL - CMS ICS Automne - Série 9

(b) Le code ci-dessous adapte l’algorithme de recherche binaire vu en cours pour
rechercher la première occurence d’un élément x dans une liste triée L:

def recherche_premier(L, x):
n = len(L)
bas = 0
haut = n-1

while haut >= bas:
milieu = (bas + haut)//2
if L[milieu] == x:

if milieu == 0 or L[milieu - 1] != x:
return milieu

else:
haut = milieu - 1

elif L[milieu] > x:
haut = milieu - 1

else:
bas = milieu + 1

return None

L = [0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7]
print(recherche_premier(L, 5))

La seule différence avec la recherche binaire est que quand on trouve l’élément
x à un certain indice de la liste, au lieu de retourner cet indice il faut aller à
gauche, sauf si on a trouvé le premier tel indice: c’est le cas si l’indice précédent
(milieu - 1) contient un élément différent de x, ou si on est au tout début de
la liste (milieu est égal à 0).

Tout comme la recherche binaire, cet algorithme “coupe” la liste en deux à
chaque itération et a donc un temps de parcours qui est Θ(log2(n)).

(c) On étudie le pire cas possible qui se produit lorsque l’instance du problème est
composée d’une liste de n éléments tous identiques. Dans notre cas, L=n*[1],
où n est la taille de la liste qu’on fera tendre vers l’infini. Pour chaque valeur
de N, on stocke le résultat de la recherche dans une liste r et vérifie que la
somme de tous ses éléments est nulle ce qui démontre par l’exemple la validité
de l’algorithme.
Le temps de parcours des deux algorithmes est reporté sur la Figure 1. On
vérifie que les temps de parcours de ceux-ci prennent effectivement la forme
attendue. De plus, l’algorithme logarithmique est beaucoup plus rapide que
celui linéaire pour des instances de grande taille.



EPFL - CMS ICS Automne - Série 9

Figure 1: Temps de parcours de l’algorithme linéaire (gauche) et de l’algorithme logarithmique
(droite). Sur ce dernier, la fonction y = A log x a éré reportée, où A est une constante de
normalisation.

5. Vous avez vu au cours et à la série 7 que le n-ème nombre de Fibonacci fn peut être
calculé récursivement ou itérativement avec les deux algorithmes ci-dessous:

def fib_rec(n):
if n == 0:

return 0
if n == 1:

return 1
return fib_rec(n-1) + fib_rec(n-2)

def fib_iter(n):
if n == 0 or n == 1:

return n
fib_old = 0
fib_new = 1
for i in range(2, n+1):

fib_old , fib_new = fib_new , fib_old + fib_new
return fib_new

(a) Exprimez (avec une brève justification) l’ordre du temps de parcours de fib iter
en notation Θ(·) en fonction de n.

Cet algorithme itératif est bien plus efficace que l’algorithme récursif fib rec (pour
vous en convaincre, appelez fib iter(n) et fib rec(n) pour des valeurs de n de
plus en plus grandes).

Mais pour arriver au calcul de fn, fib iter calcule toutes les valeurs de fi pour
i ≤ n. Donc si on appelle la fonction fib iter plusieurs fois avec diverses valeurs
de n, on recalcule plusieurs fois les mêmes valeurs. Par exemple, si on appelle
fib iter(10) et qu’on appelle plus tard fib iter(15), la valeur de f10 sera recal-
culée pendant le deuxième appel.



EPFL - CMS ICS Automne - Série 9

Pour éviter ces calculs non nécessaires, on peut sauvegarder les valeurs de fn déjà
calculées de telle sorte qu’on puisse les lire au lieu de les recalculer au cours de
calculs ultérieurs.

(b) Quel serait un bon choix de structure de données pour sauvegarder ces valeurs
fn?

(c) Modifiez l’algorithme fib rec de la manière suivante:

– S’il calcule une valeur fn, il la stocke dans une structure de données définie
globalement (à l’extérieur de la fonction)

– Avant de calculer une valeur fn, il doit vérifier si cette valeur a déjà été
calculée auparavant.

N’oubliez pas de tester votre algorithme, par exemple en comparant sa sortie à
celle de fib iter pour des entrées de votre choix. A la différence de fib rec,
vous pourrez appeler votre algorithme avec de grandes valeurs de n.

Solution:

(a) Toutes les instructions s’exécutent en un temps constant et la boucle for itère
n− 1 fois. fib iter a donc un temps de parcours qui est Θ(n).

(b) Une solution naturelle serait d’utiliser un dictionnaire, où les clés sont les entiers
naturels et la valeur corespondant à la clé n est le nombre de Fibonacci fn.

On pourrait aussi utiliser une liste où le n-ème nombre de Fibonacci fn est
stocké à l’indice n.

(c) L’algorithme suivant calcule le n-ème nombre de Fibonacci et utilise un dictio-
nnaire global pour stocker les valeurs déjà calculées.

fib_dict = {}

def fib_rec(n):
’’’
Entree: n entier naturel
Sortie: nieme nombre de Fibonacci
’’’
if n == 0:

return 0
if n == 1:

return 1
if n in fib_dict:

return fib_dict[n]

fib_dict[n] = fib_rec(n-1) + fib_rec(n-2)
return fib_dict[n]



EPFL - CMS ICS Automne - Série 9

* 6. Les tours de Hanoi

On dispose de trois colonne A (la colonne source), B (la colonne intermédiaire) et C
(la colonne destination). Sur la colonne A sont empilés n disques percés de diamètres
différents, ordonnés du plus grand tout en bas au plus petit tout en haut. Les disques
sont numérotés de 1 (le plus petit) à n (le plus grand). Le but est de bouger tous
les disques de la colonne A à la colonne C, en respectant les règles du jeu suivantes:

• On peut bouger un seul disque à la fois

• On ne peut bouger qu’un disque qui est tout en haut de sa pile

• On ne peut pas placer un disque au-dessus d’un disque plus petit.

La figure 2 montre la position initiale et la position finale des disques pour n = 3.

(a) Position initiale (b) Position finale

Figure 2: Tours de Hanoi

(a) Résolvez le problème à la main pour n = 1, 2, 3, c’est-à-dire donnez la liste des
mouvements qu’il faut faire pour déplacer tous les disques de la colonne A à la
colonne C en respectant les règles du jeu1.

(b) Ecrivez un algorithme hanoi qui prend en entrée un entier n ≥ 1 et trois strings
contenant les noms des colonnes source, intermédiaire et destination. Votre
algorithme doit imprimer la liste de mouvements qu’il faut faire pour déplacer
tous les disques de la colonne source à la colonne destination en respectant les
règles du jeu. Par exemple, hanoi(2, ’A’, ’B’, ’C’) devrait afficher

Déplacer le disque 1 de A à B
Déplacer le disque 2 de A à C
Déplacer le disque 1 de B à C

Indice: 2

(c) Soit Dn le nombre de déplacements simulés par votre algorithme pour une
entrée de n disques. Exprimer Dn sous forme d’une récurrence en exprimant
Dn en fonction de Dn−1 pour n ≥ 2 et en donnant la valeur du cas de base D1.

(d) Prouver que Dn = 2n − 1.

Cet algorithme est un exemple d’algorithme exponentiel: son temps de parcours
(qui est proportionnel au nombre de déplacements effectués) est une fonction expo-
nentielle du nombre de disques n.

1Pour mieux comprendre le problème vous pouvez aussi jouer aux tours de Hanoi en ligne.
2Pour déplacer une tour de taille n, il faut mettre de côté la tour des n−1 plus petits disques, déplacer

le disque n, et ramener la tour de taille n− 1 sur le plus grand disque.

http://championmath.free.fr/tourhanoi.htm


EPFL - CMS ICS Automne - Série 9

Solution:

(a) Pour n = 1:

– Déplacer le disque 1 de A à C.

Pour n = 2:

– Déplacer le disque 1 de A à B

– Déplacer le disque 2 de A à C

– Déplacer le disque 1 de B à C.

Pour n = 3:

– Déplacer le disque 1 de A à C

– Déplacer le disque 2 de A à B

– Déplacer le disque 1 de C à B

– Déplacer le disque 3 de A à C

– Déplacer le disque 1 de B à A

– Déplacer le disque 2 de B à C

– Déplacer le disque 1 de A à C.

On commence à voir un motif qui apparâıt: pour déplacer n disques d’une
colonne source à une colonne destination, il faut déplacer la tour des n−1 plus
petits disques sur la colonne intermédiaire, déplacer le disque n de la colonne
source à la colonne destination, et ramener la tour de taille n−1 sur la colonne
destination.

(b) L’algorithme suivant affiche la liste des mouvements à faire pour une entrée de
taille n:

def hanoi(n, source , intermediaire , destination):
if n == 1:

print(f"Deplacer le disque {n} de {source} a {destination}")
else:

hanoi(n-1, source , destination , intermediaire)
print(f"Deplacer le disque {n} de {source} a {destination}")
hanoi(n-1, intermediaire , source , destination)

(c) On définit Dn comme le nombre de déplacements effectués pour déplacer une
tour de n disques d’une colonne à une autre.

Pour le cas de base (colonne de 1 disque), il suffit d’un seul déplacement, donc
D1 = 1.

Pour déplacer une tour de n > 1 disques, on déplace deux fois une tour de n−1
disques et on déplace le disque de taille n une fois. On a donc Dn = 2Dn−1+1.

Le nombre de déplacements Dn satisfait donc la récurrence

Dn =

{
2Dn−1 + 1, n > 1,

1, n = 1.

(d) On prouve par récurrence sur n que Dn = 2n − 1.

– Pas de base:
D1 = 1 = 21 − 1.



EPFL - CMS ICS Automne - Série 9

– Pas de récurrence: Pour n ≥ 1, supposons que Dn = 2n − 1. Alors

Dn+1 = 2Dn + 1 = 2(2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1.

On a donc prouvé que Dn = 2n − 1. Le nombre de déplacements effectués par
l’algorithme hanoi sur n disques est exponentiel en n.


