
EPFL - CMS ICS Automne - Série 7

Série 7

Sauf si spécifié autrement, tous les algorithmes demandés sont à écrire sous forme d’une
fonction Python.
Les exercices précédés d’une astérisque sont optionnels (mais pas nécessairement difficiles).

1. On donne l’algorithme suivant:

def f(a, b):
’’’
Input: a, b entiers , a >= b > 0
’’’
r = a
while r >= b:

r -= b

return r

(a) Donner la valeur de f(3,2), f(20,16), f(20,5).

(b) Que calcule cet algorithme?

*(c) Prouver sa correctitude.

Solution.

(a) f(3,2) = 1, f(20,16) = 4, f(20,5) = 0.

(b) Cet algorithme calcule le reste de la division entière de a par b.

*(c) Pour prouver la correctitude de l’algorithme, il faut d’abord prouver que la
bouclewhile termine. On considère la variable r (la valeur de r est une fonction
du nombre d’itérations de la boucle). Avant le début de la boucle while, r
= a et donc r ≥ b par la spécification du problème. A chaque itération de la
boucle, r décrôıt de b. Au bout d’un certain nombre d’itérations, r atteindra
donc une valeur strictement inférieure à b et la boucle while terminera. A ce
moment, on aura que r < b, mais aussi que r ≥ 0: sinon la boucle aurait dû
s’arrêter plus tôt (si r était strictement négatif, on aurait que la valeur de r
à l’itération précédente était strictement inférieure à b, mais alors la boucle
aurait dû déjà s’arrêter à l’itération précédente).

Pendant l’itération de la boucle while, on maintient l’invariant suivant:

a - r est un multiple de b.

En effet, avant le début de la boucle, a - r = 0 et est donc un multiple de b.
De plus, à chaque itération de la boucle, r est décrémenté de b et donc a - r
est incrémenté de b, il reste donc multiple de b.

Lorsque la boucle while termine, on a donc que a - r est un multiple de b et
que 0 ≤ r < b, donc que r est le reste de la division entière de a par b.



EPFL - CMS ICS Automne - Série 7

2. (a) Ecrivez un algorithme countdown récursif (sans boucle) qui prend un entier
positif n en entrée et affiche les nombres de n à 0 par ordre décroissant. Par
exemple, countdown(4) doit afficher
4
3
2
1
0

N’oubliez pas de tester votre algorithme pour quelques petites valeurs de n.

Que se passe-t-il si vous appelez votre algorithme avec l’argument n = -1 ?

(b) Ecrivez un algorithme itératif qui produit le même affichage.

Solution.

(a) L’algorithme suivant produit l’affichage désiré:

def countdown(n):
’’’
Entree: entier n >= 0
Affiche le compte a rebours n, n-1, ..., 0
’’’
if n >= 0:

print(n)
countdown(n-1)

Remarquez que le cas de base est implicitement défini avec l’instruction if,
puisque countdown(-1) va simplement retourner sans rien exécuter. En par-
ticulier, l’algorithme ne risque pas de rentrer dans une boucle infinie d’appels
récursifs, même si on l’appelle avec un entier négatif en entrée. Un algorithme
équivalent qui explicite le cas de base est le suivant:

def countdown(n):
’’’
Entree: entier n >= 0
Affiche le compte a rebours n, n-1, ..., 0
’’’
if n < 0:

return
print(n)
countdown(n-1)

(b) L’algorithme itératif suivant produit le même affichage:

def countdown_iter(n):
’’’
Entree: entier n >= 0
Affiche le compte a rebours n, n-1, ..., 0
’’’
for i in range(n,-1,-1):

print(i)



EPFL - CMS ICS Automne - Série 7

3. Ecrivez un algorithme récursif (sans boucle) qui prend en entrée une liste L non vide
de nombres et retourne le maximum de L.

N’oubliez pas de tester votre algorithme sur quelques exemples de L.

Que se passe-t-il si vous appelez votre algorithme avec une liste vide?

Solution. L’algorithme suivant trouve récursivement le maximum d’une liste:

def max_rec(L):
’’’
entree: L liste de nombres non vide
sortie: max de L
’’’
if len(L) == 1:

return L[0]
s = max_rec(L[1:])
if L[0] > s:

return L[0]
return s

Le cas de base correspond à une liste de taille 1, dans quel cas l’unique élément
de la liste est le maximum. Pour une liste L de taille supérieure à 1, on calcule
récursivement le maximum de la sous-liste L[1:] et on le compare au premier
élément de L pour trouver le maximum de L.

Si on appelle max rec avec une liste vide L en entrée, le cas de base ne s’appliquera
pas et l’appel max rec(L[1:]) se fera avec encore une liste vide en argument, en-
trâınant ainsi une boucle infinie d’appels à la fonction. L’interpréteur Python in-
terrompt cette boucle et génère une exception de type RecursionError après un
certain nombre d’appels récursifs (vous pouvez accéder à ce nombre avec la fonc-
tion getrecursionlimit() et le modifier avec la fonction setrecursionlimit() du
module sys).

4. Ecrivez une version récursive (sans boucle while) de l’algorithme d’Euclide vu en
cours.

Solution. L’algorithme suivant calcule récursivement le plus petit diviseur com-
mun de deux nombres naturels a et b:

def pgcd_rec(a, b):
’’’
Entree: a, b entiers strictement positifs
Sortie: plus grand diviseur commun de a et b
’’’
if b == 0:

return a

return pgcd_rec(b, a % b)



EPFL - CMS ICS Automne - Série 7

5. Vous avez vu au cours des algorithmes récursifs pour calculer la factorielle d’un nom-
bre n et le n-ième nombre de Fibonacci. Dans cet exercice, vous allez implémenter
des versions itératives (avec une boucle) de ces algorithmes.

(a) Ecrivez un algorithme fact iter qui prend en entrée un entier n ≥ 0 et calcule
itérativement (avec une boucle, sans appels récursifs) la factorielle de n.

*(b) Prouvez la correctitude de cet algorithme.

(c) Ecrivez un algorithme fib iter qui prend en entrée un entier n ≥ 0 et calcule
itérativement (avec une boucle, sans appels récursifs) le n-ième nombre de
Fibonacci. Regardez en bas de page pour un indice1.

*(d) Prouvez la correctitude de cet algorithme.

Solution.

(a) L’algorithme ci-dessous calcule, pour un entier positif n en entrée, la factorielle
de n. Remarquez que l’itération i calcule la factorielle de i.

def fact_iter(n):
’’’
calcule la factorielle de n
suppose n entier >= 0
’’’
fact = 1
for i in range(1, n+1):

fact *= i
return fact

*(b) La remarque du point précédent est exactement l’invariant qui est maintenu à
travers les itérations de la boucle for:

Invariant de boucle: Au début de l’itération i, la valeur de fact est la
factorielle de i-1.

– Initialisation: avant l’itération i = 1, fact contient la valeur 1 qui est
bien la factorielle de 0.

– Maintenance: on suppose qu’au début de l’itération i, fact contient la
valeur (i − 1)! (la factorielle de i-1). A l’itération i, la valeur de fact
est multipliée par i, ce qui nous donne bien que fact contient la valeur
i · (i− 1)! = i! au début de l’itération i+1.

– Terminaison: A la sortie de la boucle, c’est-à-dire avant l’itération n+1,
qui n’aura pas lieu, fact contient donc la valeur n! .

Remarquez aussi que pour n = 0, aucune itération de la boucle n’est exécutée
et l’algorithme retourne simplement la factorielle de 0.

(c) L’algorithme ci-dessous calcule, pour un entier positif n en entrée, le n-ième
nombre de Fibonacci fn. Remarquez que l’itération i calcule le nombre fi. Les
variables fib old et fib new servent à stocker les deux derniers nombres de
Fibonacci (fn-2 et fn-1 respectivement) dont on aura besoin pour calculer fn.

1A travers les itérations de la boucle, vous devez vous rappeler de deux valeurs: les deux derniers
nombres de Fibonacci calculés.



EPFL - CMS ICS Automne - Série 7

def fib_iter(n):
’’’
calcule le n-ieme nombre de Fibonacci
suppose n entier >= 0
’’’
fib_old = 0
fib_new = 1
for i in range(2,n+1):

fib_old , fib_new = fib_new , fib_old + fib_new
if n == 0:

return fib_old
return fib_new

N = 15
print(fib_iter(N))

*(d) Remarquez d’abord que pour n = 0 ou n = 1 , l’algorithme retourne la valeur
f0 = 0 et f1 = 1 sans rentrer dans la boucle for. Il s’agit des conditions
initiales.

La boucle maintient l’invariant suivant:

Invariant de boucle: Au début de l’itération i, fib old contient la valeur
fi-2 et fib new contient la valeur fi-1.

– Initialisation: avant l’itération i = 2, fib old contient la valeur 0 = f0
et fib new contient la valeur 1 = f1.

– Maintenance: on suppose qu’au début de l’itération i, fib old contient
la valeur fi-2 et fib new contient la valeur fi-1 . A l’itération i, on affecte
simultanément à fib old l’ancienne valeur de fib new, c’est-à-dire fi-1; et
à fib new la somme des anciennes valeurs de fib old et fib new, c’est-à-
dire fi-2 + fi-1 = fi. Donc au début de l’itération i+1, fib old contient
la valeur fi-1 et fib new contient la valeur fi.

– Terminaison: A la sortie de la boucle, c’est-à-dire avant l’itération n+1,
qui n’aura pas lieu, fib old contient donc la valeur fn-1 et fib new contient
la valeur fn. Comme l’algorithme retourne fib new à la sortie de la boucle,
il retourne bien le n-ième nombre de Fibonacci.

6. Pour une châıne de caractères s, on définit une sous-châıne de s (dans le cadre
de cet exercice) comme un sous-ensemble des caractères de s, apparaissant dans le
même ordre que dans s. Par exemple, si s = "abac", alors "b", "aa", "bc" et la
châıne vide sont des sous-châınes de s, mais "ca" et "cc" ne le sont pas.

On veut écrire un algorithme récursif sous chaı̂nes qui prend en entrée une châıne
de caractères s et produit une liste contenant toutes les sous-châınes contenues dans
s (en permettant les répétitions, et dans un ordre quelconque).

Par exemple, sous chaı̂nes("abc") doit retourner (à l’ordre près)
[’’, ’c’, ’b’, ’bc’, ’a’, ’ac’, ’ab’, ’abc’]
et sous chaı̂nes("aa") doit retourner (à l’ordre près)
[’’, ’a’, ’a’, ’aa’].



EPFL - CMS ICS Automne - Série 7

(a) Pour une châıne de caractères non vide s, supposez que vous avez à disposition
la liste L des sous-châınes de s[1:]. A partir de cette liste L, comment forme-
t-on la liste des sous-châınes de s?

(Par exemple, pour la châıne s = "abc", on a s[1:] = "bc" et la liste de
sous-châınes de s[1:] est L = [’’, ’c’, ’b’, ’bc’].)

Déduisez-en le ou les appels récursifs de l’algorithme.

(b) A quelle châıne de caractères en entrée correspond le cas de base? Que faut-il
sortir dans ce cas?

(c) Donnez l’algorithme sous chaines.

Solution.

(a) Pour une châıne de caractères non vide s, on suppose qu’on a à disposition la
liste L des sous-châınes de s[1:]. Chaque sous-châıne de s peut soit inclure le
caractère s[0], soit l’exclure. Les sous-châınes de s excluant le caractère s[0]
sont simplement les éléments de L; et les sous-châınes incluant le caractère s[0]
sont formées en prenant la concaténation de s[0] et d’un élément de L.

Par exemple, pour la châıne s = "abc", la liste de sous-châınes de "bc" est
L = [’’, ’c’, ’b’, ’bc’]. La liste de sous-châınes de "abc" contient les
éléments de L, ainsi que les sous-châınes ’a’, ’ac’, ’ab’, ’abc’ formées en
concaténant le caractère ’a’ à chacune des sous-châınes dans L.

Pour une châıne de caractères non vide s, l’appel à sous chaines(s) fera donc
un appel récursif à sous chaines(s[1:]).

(b) Le cas de base correspond à une châıne de caractères vide, dans quel cas on
retourne une liste contenant uniquement la châıne de caractères vide.

(Alternativement, on pourrait décider que le cas de base correspond à une
chaine de caractères s de longueur 1: dans ce cas on retournerait la liste
[s, ’’].)

(c) L’algorithme récursif sous chaines est donné ci-dessous:

def sous_chaines(s):
’’’
Entree: chaine de caracteres s
Sortie: liste des sous_chaines de s
’’’
if len(s) == 0: #cas de base

return [s]

L = sous_chaines(s[1:]) #appel recursif

L1 = [s[0] + x for x in L]
L.extend(L1)
return L



EPFL - CMS ICS Automne - Série 7

* 7. (a) On dispose d’un échiquier où il manque un coin, comme dans la figure ci-
dessous, et de dominos pouvant chacun couvrir deux cases adjacentes d’un
échiquier. Peut-on couvrir cet échiquier avec ces dominos entièrement et ex-
actement (sans aucun domino qui dépasse)?

(b) Même question pour l’échiquier ci-dessous, avec deux coins manquants.

Solution.

(a) C’est impossible. Un domino couvre deux cases et donc tout algorithme de
placement de dominos maintient l’invariant qu’après chaque domino placé, le
nombre de cases occupées par des dominos est pair. Or l’échiquier à couvrir a
un nombre impair de cases.

(b) C’est aussi impossible. En se rendant compte que chaque domino doit couvrir
une case blanche et une case noire, on peut formuler un invariant pour tout
algorithme de placement de dominos: après chaque domino placé, le nombre
de cases noires occupées est égal au nombre de cases blanches occupées. Or
l’échiquier à couvrir a plus de cases noires que de cases blanches.


