EPFL - CMS ICS Automne - Série 7

Série 7

Sauf si spécifié autrement, tous les algorithmes demandés sont a écrire sous forme d’une
fonction Python.
Les exercices précédés d'une astérisque sont optionnels (mais pas nécessairement difficiles).

1. On donne I'algorithme suivant:

def f(a, b):

’y

Input: a, b entiers, a > b > 0

PR AN

r = a
while r >

= b:
r -==>b

return r

(a) Donner la valeur de f(3,2), f(20,16), f(29,5).
(b) Que calcule cet algorithme?

*(c) Prouver sa correctitude.

Solution.

(a) (3,2) = 1, f(20,16) = 4, £(20,5) = ©.
(b) Cet algorithme calcule le reste de la division entiere de a par b.

*(c) Pour prouver la correctitude de 'algorithme, il faut d’abord prouver que la
boucle while termine. On considere la variable r (la valeur de r est une fonction
du nombre d’itérations de la boucle). Avant le début de la boucle while, r
= a et donc r > b par la spécification du probleme. A chaque itération de la
boucle, r décroit de b. Au bout d’un certain nombre d’itérations, r atteindra
donc une valeur strictement inférieure a b et la boucle while terminera. A ce
moment, on aura que r < b, mais aussi que r > 0: sinon la boucle aurait du
s’arréter plus tot (si r était strictement négatif, on aurait que la valeur de r
a l'itération précédente était strictement inférieure a b, mais alors la boucle
aurait di déja s’arréter a 'itération précédente).

Pendant l'itération de la boucle while, on maintient I'invariant suivant:
a - r est un multiple de b.

En effet, avant le début de la boucle, a - r = 0 et est donc un multiple de b.
De plus, a chaque itération de la boucle, r est décrémenté de b et donc a - r
est incrémenté de b, il reste donc multiple de b.

Lorsque la boucle while termine, on a donc que a - r est un multiple de b et
que 0 < r < b, donc que r est le reste de la division entiere de a par b.



EPFL - CMS ICS Automne - Série 7

2.

(a) Ecrivez un algorithme countdown récursif (sans boucle) qui prend un entier

positif n en entrée et affiche les nombres de n a @ par ordre décroissant. Par
exemple, countdown(4) doit afficher

S = N W b

N’oubliez pas de tester votre algorithme pour quelques petites valeurs de n.

Que se passe-t-il si vous appelez votre algorithme avec 'argument n = -1 7

(b) Ecrivez un algorithme itératif qui produit le méme affichage.

Solution.

(a) L’algorithme suivant produit l'affichage désiré:

def countdown(n):

’

Entree: entier n >= 0
Affiche le compte a rebours n, n-1,

if n >= 0:
print(n)
countdown(n-1)

Remarquez que le cas de base est implicitement défini avec 'instruction if),
puisque countdown(-1) va simplement retourner sans rien exécuter. En par-
ticulier, I’algorithme ne risque pas de rentrer dans une boucle infinie d’appels
récursifs, méme si on 'appelle avec un entier négatif en entrée. Un algorithme
équivalent qui explicite le cas de base est le suivant:

def countdown(n):
Entree: entier n >= 0
Affiche le compte a rebours n, n-1, ..., 0
if n < 0:
return
print(n)
countdown(n-1)

(b) L’algorithme itératif suivant produit le méme affichage:

def countdown_iter(n):
Entree: entier n >= 0
Affiche le compte a rebours n, n-1, ..., 0
for i in range(n,-1,-1):
print (i)



EPFL - CMS ICS Automne - Série 7

3. Ecrivez un algorithme récursif (sans boucle) qui prend en entrée une liste L non vide
de nombres et retourne le maximum de L.

N’oubliez pas de tester votre algorithme sur quelques exemples de L.

Que se passe-t-il si vous appelez votre algorithme avec une liste vide?

Solution. L’algorithme suivant trouve récursivement le maximum d’une liste:

def max_rec(L):

EEE AN

entree: L liste de nombres non vide
sortie: max de L

’

if len(L) == 1:
return L[0Q]

s = max_rec(L[1:1)

if L[] > s:
return L[OQ]

return s

Le cas de base correspond a une liste de taille 1, dans quel cas 'unique élément
de la liste est le maximum. Pour une liste L de taille supérieure a 1, on calcule
récursivement le maximum de la sous-liste L[1:] et on le compare au premier
élément de L pour trouver le maximum de L.

Si on appelle max_rec avec une liste vide L en entrée, le cas de base ne s’appliquera
pas et 'appel max_rec(L[1:]) se fera avec encore une liste vide en argument, en-
trainant ainsi une boucle infinie d’appels a la fonction. L’interpréteur Python in-
terrompt cette boucle et génere une exception de type RecursionError apres un
certain nombre d’appels récursifs (vous pouvez accéder a ce nombre avec la fonc-
tion getrecursionlimit() et le modifier avec la fonction setrecursionlimit() du
module sys).

4. Ecrivez une version récursive (sans boucle while) de l'algorithme d’Euclide vu en
cours.

Solution. L’algorithme suivant calcule récursivement le plus petit diviseur com-
mun de deux nombres naturels a et b:

def pgcd_rec(a, b):
Entree: a, b entiers strictement positifs
Sortie: plus grand diviseur commun de a et b

IAR I}

if b ==
return a

return pgcd_rec(b, a % b)



EPFL - CMS ICS Automne - Série 7

5. Vous avez vu au cours des algorithmes récursifs pour calculer la factorielle d’'un nom-
bre n et le n-ieme nombre de Fibonacci. Dans cet exercice, vous allez implémenter
des versions itératives (avec une boucle) de ces algorithmes.

Ecrivez un algorithme fact_iter qui prend en entrée un entier n > @ et calcule
itérativement (avec une boucle, sans appels récursifs) la factorielle de n.

Prouvez la correctitude de cet algorithme.

Ecrivez un algorithme fib_iter qui prend en entrée un entier n > @ et calcule
itérativement (avec une boucle, sans appels récursifs) le n-ieme nombre de
Fibonacci. Regardez en bas de page pour un indice!.

Prouvez la correctitude de cet algorithme.

Solution.

(a)

*(b)

L’algorithme ci-dessous calcule, pour un entier positif n en entrée, la factorielle
de n. Remarquez que l'itération i calcule la factorielle de 1i.

def fact_iter(n):
calcule la factorielle de n
suppose n entier >= 0

[N

fact = 1
for i in range(1, n+1):
fact *= i

return fact

La remarque du point précédent est exactement 'invariant qui est maintenu a
travers les itérations de la boucle for:

Invariant de boucle: Au début de l'itération i, la valeur de fact est la
factorielle de i-1.

— Initialisation: avant l'itération i = 1, fact contient la valeur 1 qui est
bien la factorielle de 0.

— Maintenance: on suppose qu’au début de l'itération i, fact contient la
valeur (i — 1)! (la factorielle de i-1). A litération i, la valeur de fact
est multipliée par i, ce qui nous donne bien que fact contient la valeur
i-(i—1)! =il au début de l'itération i+1.

— Terminaison: A la sortie de la boucle, c¢’est-a-dire avant I'itération n+1,
qui n’aura pas lieu, fact contient donc la valeur n! .

Remarquez aussi que pour n = @, aucune itération de la boucle n’est exécutée
et I'algorithme retourne simplement la factorielle de @.

L’algorithme ci-dessous calcule, pour un entier positif n en entrée, le n-ieme
nombre de Fibonacci f,. Remarquez que l'itération i calcule le nombre f;. Les
variables fib_old et fib_new servent a stocker les deux derniers nombres de
Fibonacci (fn-2 et fo-1 respectivement) dont on aura besoin pour calculer f,.

LA travers les itérations de la boucle, vous devez vous rappeler de deux valeurs: les deux derniers
nombres de Fibonacci calculés.



EPFL - CMS ICS Automne - Série 7

def fib_iter(n):

[N

calcule le n-ieme nombre de Fibonacci
suppose n entier >= 0

[N

fib_old = @
fib_new = 1
for i in range(2,n+1):
fib_old, fib_new = fib_new, fib_old + fib_new
if n ==
return fib_old
return fib_new

N =15
print(fib_iter (N))

Remarquez d’abord que pour n = @ ou n = 1, I'algorithme retourne la valeur
fo = 0 et f; = 1 sans rentrer dans la boucle for. Il s’agit des conditions
initiales.

La boucle maintient I'invariant suivant:

Invariant de boucle: Au début de l'itération i, fib_old contient la valeur
fi-> et fib_new contient la valeur f;_;.

— Initialisation: avant l'itération i = 2, fib_old contient la valeur 0 = f,
et fib_new contient la valeur 1 = f;.

— Maintenance: on suppose qu’au début de l'itération i, fib_old contient
la valeur f;-, et fib_new contient la valeur fi-; . A l'itération i, on affecte
simultanément a fib_old ’ancienne valeur de fib_new, c’est-a-dire fi_;; et
a fib_new la somme des anciennes valeurs de fib_old et fib_new, c¢’est-a-
dire fi-, + fi-1 = fi. Donc au début de l'itération i+1, fib_old contient
la valeur fi-; et fib_new contient la valeur fj.

— Terminaison: A la sortie de la boucle, c¢’est-a-dire avant I'itération n+1,
qui n’aura pas lieu, fib_old contient donc la valeur f,-; et fib_new contient
la valeur f,. Comme l’algorithme retourne fib_new a la sortie de la boucle,
il retourne bien le n-ieme nombre de Fibonacci.

6. Pour une chaine de caractéres s, on définit une sous-chaine de s (dans le cadre
de cet exercice) comme un sous-ensemble des caracteres de s, apparaissant dans le
méme ordre que dans s. Par exemple, si s = "abac”, alors "b"”, "aa"”, "bc"” et la
chaine vide sont des sous-chaines de s, mais "ca” et "cc” ne le sont pas.

On veut écrire un algorithme récursif sous_chaines qui prend en entrée une chaine
de caracteres s et produit une liste contenant toutes les sous-chaines contenues dans
s (en permettant les répétitions, et dans un ordre quelconque).

Par exemple, sous_chaines("abc") doit retourner (a 'ordre pres)

I:”’

’C’, ’b)’ ’bc?, ’a)’ 7ac7, ’ab’, )abc’:l

et sous_chaines("aa") doit retourner (a l'ordre pres)

[”’

7a7’ ,a” 7aa7].



EPFL - CMS ICS Automne - Série 7

(a)

(b)
()

Pour une chaine de caracteres non vide s, supposez que vous avez a disposition
la liste L des sous-chaines de s[1:]. A partir de cette liste L, comment forme-
t-on la liste des sous-chaines de s?

n n

(Par exemple, pour la chaine s = "abc”, on a s[1:] = "bc" et la liste de
sous-chaines de s[1:J est L = [’’, ’c’, ’b’, ’bc’].)
Déduisez-en le ou les appels récursifs de 'algorithme.

A quelle chaine de caracteres en entrée correspond le cas de base? Que faut-il
sortir dans ce cas?

Donnez l'algorithme sous_chaines.

Solution.

(a)

Pour une chaine de caracteres non vide s, on suppose qu’on a a disposition la
liste L des sous-chaines de s[1:]. Chaque sous-chaine de s peut soit inclure le
caractere s[@], soit I'exclure. Les sous-chaines de s excluant le caractere s[0]
sont simplement les éléments de L; et les sous-chaines incluant le caractere s[0]
sont formées en prenant la concaténation de s[@] et d’un élément de L.

Par exemple, pour la chaine s = "abc"”, la liste de sous-chaines de "bc" est
L=1[", ’c’, ’b’, ’bc’]. La liste de sous-chaines de "abc" contient les
éléments de L, ainsi que les sous-chaines ’a’, ’ac’, ’ab’, ’abc’ formées en

concaténant le caractere ’a’ a chacune des sous-chaines dans L.

Pour une chaine de caractéres non vide s, ’appel a sous_chaines(s) fera donc
un appel récursif a sous_chaines(s[1:]).

Le cas de base correspond a une chaine de caracteres vide, dans quel cas on
retourne une liste contenant uniquement la chaine de caracteres vide.

(Alternativement, on pourrait décider que le cas de base correspond a une
chaine de caracteres s de longueur 1: dans ce cas on retournerait la liste

[s, 7’1)

L’algorithme récursif sous_chaines est donné ci-dessous:

def sous_chaines(s):
Entree: chaine de caracteres s
Sortie: liste des sous_chaines de s
if len(s) == @: #cas de base
return [s]

L = sous_chaines(s[1:]) #appel recursif

LT = [s[@0] + x for x in L]
L.extend(L1)
return L



EPFL - CMS ICS Automne - Série 7

* 7. (a) On dispose d'un échiquier ou il manque un coin, comme dans la figure ci-
dessous, et de dominos pouvant chacun couvrir deux cases adjacentes d'un
échiquier. Peut-on couvrir cet échiquier avec ces dominos entierement et ex-
actement (sans aucun domino qui dépasse)?

Solution.

(a) C’est impossible. Un domino couvre deux cases et donc tout algorithme de
placement de dominos maintient l'invariant qu’apres chaque domino placé, le
nombre de cases occupées par des dominos est pair. Or ’échiquier a couvrir a
un nombre impair de cases.

(b) C’est aussi impossible. En se rendant compte que chaque domino doit couvrir
une case blanche et une case noire, on peut formuler un invariant pour tout
algorithme de placement de dominos: apres chaque domino placé, le nombre
de cases noires occupées est égal au nombre de cases blanches occupées. Or
I’échiquier a couvrir a plus de cases noires que de cases blanches.



