EPFL - CMS ICS Automne - Série 11

Série 11

Sauf si spécifié autrement, tous les algorithmes demandés sont a écrire sous forme d’une
fonction Python.

1. (a) Pour chacun des graphes ci-dessous, donnez sa représentation par matrice
d’adjacence et par listes d’adjacence.

O—® (9—o) O—2 (9—0)
O G DJ—(——
Gl GQ

(b) Le graphe non dirigé G5 est représenté par la matrice d’adjacence

0 0 0

—_ = = O =
—_ O = =

_ o O =
_ O = =

1
0
1
0 0

Dessinez (G5 et donnez sa représentation par listes d’adjacence.

(c) Le dictionnaire suivant représente le graphe dirigé G4 par listes d’adjacence.
D = {e:[1, 31, 1:[4], 2:[4,5]1, 3:[1]1, 4:[3]1, 5:[1}.
Dessinez (G4 et donnez sa représentation par matrice d’adjacence.

Solution:

(a) La matrice d’adjacence de Gj:

01100000
1 00 0 0 O0O0 O
1 001 00 0O
001 01 1 00
000 1 0110
0001 1 011
000 0 1 1 01
000 0O0T1T1T@O0

Un dictionnaire de listes d’adjacence de G1:
G1 ={e:[1,2], 1:[e], 2:[e,3], 3:[2,4,5], 4:[3,5,6]1, 5:[3,4,6,71,
6:04,5,71, 7:05,61}.

EPFL - CMS ICS Automne - Série 11

Cette représentation n’est pas unique car I’ordre des voisins d'un sommet donné
peut étre quelconque. Par exemple, dans cet exemple on a défini G_.1[3] = [2,
4, 5], mais on aurait aussi bien pu définir G_1[3] = [4, 2, 5] ou bien G_1[3] =
[5, 2, 4] oun’importe quelle autre permutation des trois voisins du sommet 3.

La matrice d’adjacence de Gb:

O OO O O o oo
SO OO+, O oo
SO OO OO -
SO OO O OO
[l el o Nall o)
__0 o~ O0oOo
S OO, OO oo
S OO OO o oo

Un dictionnaire de listes d’adjacence de G:
G2 ={e:[2]1, 1:[2]1, 2:0[31, 3:[1,4,5], 4:[6]1, 5:[1, 6:[5], 7:[51}.

Le graphe Gj:
(O—1)
(2)
(—)

Un dictionnaire de listes d’adjacence de G3:
G3 ={0:[1,4]1, 1:[0,2,3,4], 2:[1,3], 3:[1,2,4], 4:[0,1,3]}.

Le graphe Gjy:
0'6 (2)

La matrice d’adjacence de Gy:

o OO O oo
SO = OO -
S OO O oo
SO =R OO O
OO O - = O
OO O = OO

EPFL - CMS ICS Automne - Série 11

2. (a) Le Jupyter notebook BFS. ipynb contient ’algorithme de parcours en largeur vu
en cours, avec une instruction print qui affiche, en plus du sommet parcouru,
la liste des sommets stockés a chaque étape dans a_parcourir. Il contient
également les représentations par listes d’adjacence de deux graphes G et H que
vous pouvez utiliser pour mieux comprendre le fonctionnement de ’agorithme
BFS.

Exécutez BFS(G,s) et BFS(H,s) avec divers choix du sommet de départ s.
Changez l'ordre ou les sommets voisins sont stockés dans les listes d’adjacence
données et observez s’il y a une différence dans 'ordre des sommets affichés.

(b) Soient Gy et G5 les graphes donnés a l'exercice la, et soient G_1 et G_2 les
représentations par listes d’adjacence que vous avez données de ces graphes.

Faites a la main un parcours en largeur (BFS) du graphe G a partir du sommet
2, c’est-a-~dire écrivez les sommets dans ’ordre ou vous les visitez.

Vérifiez votre réponse en exécutant BFS(G_1,2) dans le Jupyter notebook.

(¢) Méme question pour un parcours en largeur de Gy a partir du sommet 0.

Solution:

(b) On représente G par le dictionnaire de listes d’adjacence G_1 ={0:[1,2],
1:[01, 2:[0,31, 3:[2,4,51, 4:[3,5,61, 5:[3,4,6,71, 6:[4,5,71, 7:[5,61}.
Un parcours en largeur a partir du sommet 2 de (; ainsi représenté visite les
sommets dans l'ordre suivant:

2-0-3-1-4-5-6-7

Ce qu’on peut vérifier avec un appel a BFS(G_1,2) dans le Jupyter notebook.
(¢) On représente Gy par le dictionnaire de listes d’adjacence

G2 ={0:[2], 1:[2], 2:[31, 3:0[1,4,5], 4:[61, 5:[1, 6:[51, 7:[51}.

Un parcours de Go en largeur a partir de 0 visite les sommets dans 1'ordre

suivant:

0-2-3-1—-4-5-6
Ce qu’on peut vérifier avec un appel a BFS(G_2,0) dans le Jupyter notebook.

3. (a) Soit G = (V, E) un graphe non dirigé a n sommets et m arétes.
Pourv € V.={0,1,...,n—1}, on définit le degré de v comme étant le nombre
d’arétes incidentes a v, c¢’est-a-dire le nombre de voisins de v.
Par exemple, pour le graphe G; donné a l'exercice la, la liste suivante contient
les degrés des sommets (L[u] contient le degré du sommet u):

L=10[2,1, 2,3, 3, 4, 3, 2].

(i) On suppose que G est représenté par une matrice d’adjacence. Donnez
un algorithme qui prend en entrée la matrice d’adjacence de GG et retourne
une liste L de taille n, telle que LLv] contient le degré du sommet v. Testez
votre algorithme avec le graphe G; donné a 'exercice 1la.

Quel est le temps de parcours de votre algorithme en fonction de n et m?

EPFL - CMS ICS Automne - Série 11

(ii) On suppose maintenant que G est représenté par des listes d’adjacence.
Donnez un algorithme qui prend en entrée un dictionnaire de listes d’adjacence
de G et retourne la liste L décrite au point (i). Testez votre algorithme
avec le graphe G donné a I’exercice 1la.

Quel est le temps de parcours de votre algorithme en fonction de n et m?

(b) On considére maintenant un graphe dirigé G = (V, E) a n sommets et m

aretes.
Pour v € V ={0,1,...,n — 1}, on définit
— le degré sortant de v comme le nombre d’arétes sortant de v, ¢’est-a-dire
le nombre d’arétes (v, u) pour u un quelconque autre sommet de G
— le degré entrant de v comme le nombre d’arétes entrant dans v, c’est-
a~dire le nombre d’arétes (u,v) pour u un quelconque autre sommet de

G.

Par exemple, pour le graphe G5 donné a l'exercice 1a, la liste suivante contient
les degrés sortants de tous les sommets:

Lout =1[1, 1, 1, 3,1, 0, 1, 1]
Et la liste suivante contient les degrés entrants de tous les sommets:
L.in=1p[0, 1, 2, 1, 1, 3, 1, 0].

(i) On suppose que G est représenté par une matrice d’adjacence. Donnez un
algorithme qui prend en entrée la matrice d’adjacence de G et retourne
deux listes L_out et L_in de taille n, telles que L_out[v] contient le degré
sortant et L_in[v] le degré entrant du sommet v. Testez votre algorithme
avec le graphe Gy donné a 'exercice la.

Quel est 'ordre du temps de parcours de votre algorithme en fonction de
n et m?

(ii) On suppose maintenant que G est représenté par des listes d’adjacence.
Donnez un algorithme qui prend en entrée un dictionnaire de listes d’adjacence
de G et retourne les deux listes décrites au point (i). Testez votre algo-
rithme avec le graphe G5 donné a ’exercice 1la.

Votre algorithme doit avoir temps de parcours ©(n + m).

Remarque 1: Les listes L_out et L_in sont calculées indépendamment 1'une
de 'autre.

Remarque 2: A part pour le calcul de L_in au point (b-ii), un algorithme naif
fera l'affaire pour toutes les listes demandées.

Solution:

(a) (i) L’algorithme ci-dessous calcule, & partir de la matrice d’adjacence de G, le

degré de chaque sommet: pour calculer le degré du sommet u, ’algorithme
parcourt la ligne u de la matrice d’adjacence et compte le nombre de 1 dans
cette ligne (en calculant la somme de tous les éléments de la ligne).

On a inclus dans le code I’appel a degre_matrice avec la matrice d’adjacence

de Gl.

EPFL - CMS

(b)

ICS Automne - Série 11

Les deux boucle imbriquées donnent un temps de parcours de O(n?).

def degre_matrice(G):
Entree: G matrice d’adjacence d’un graphe
Sortie: Liste L des degres des sommets du graphe

[ES]

n
L

len(G)
[]

for u in range(n):
deg = 0
for v in range(n):
deg += G[Lul[v]
L.append(deg)
return L

G = [[¢0,1,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]1,[1,0,0,1,0,0,0,0],
[0,0,1,0,1,1,0,0],[0,0,0,1,0,1,1,0],[0,0,0,1,1,0,1,1],
[¢0,0,0,0,1,1,0,1],[0,0,0,0,0,1,1,01]
print(degre_matrice(G))

L’algorithme ci-dessous parcourt les éléments du dictionnaire de listes
d’adjacence, cad les sommets du graphe: pour chaque sommet, le degré
est égal a la longueur de la liste d’adjacence correspondante.

On a inclus dans le code I'appel a degre_liste avec le dictionnaire de listes
d’adjacence de Gf.

Cet algorithme a temps de parcours ©(n) puisque I'appel & la méthode len
se fait en temps constant, et puisqu’on parcourt un dictionnaire de taille n
en temps linéaire en n (I’acces a chaque élément du dictionnaire se faisant
en temps constant).

def degre_liste(G):

’

Entree: G dict de listes d’adjacence d’un graphe
Sortie: Liste L des degres des sommets du graphe

LA

L = []

for u in G:
L.append(len(G[ul))

return L

G ={o:[1,2], 1:[e], 2:[e,3], 3:[2,4,5],4:[3,5,6], 5:[3,4,6,7],
6:04,5,71, 7:[5,61}
print(degre_liste(G))

(i) L’algorithme ci-dessous calcule le degré sortant pour chaque sommet
u (c’est le nombre de 1 dans la ligne u de la matrice d’adjacence) et
le degré entrant pour chaque sommet u (c’est le nombre de 1 dans la
colonne u de la matrice d’adjacence).

EPFL - CMS

def degre_in_out_matrice(G):

PR ES]

ICS Automne - Série 11

Entree: G matrice d’adjacence d’un graphe dirige
Sortie: Listes Lin, Lout des degres entrant/sortant

des sommets du graphe

LA

n = len(G)
Lin = []
Lout = []

for u in range(n):
deg = 0
for v in range(n):
deg += G[Lullv]
Lout.append(deg)

for u in range(n):
deg = 0
for v in range(n):
deg += G[v][ul
Lin.append(deg)

return Lin, Lout

[[6:0:1:0y®y0,0y0]:[®7071:0:0:®:®y®17[0,®)®717076:0:017
te,1,0,0,1,1,0,01,[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0],

(0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0]]
print (degre_in_out_matrice(G))

Les deux boucles for imbriquées donnent un temps de parcours de
©(n?) pour le calcul de chacune des deux listes, et on a donc un temps
de parcours total de ©(n?).
On aurait pu écrire le code de maniere plus concise comme ci-dessous
(avec toujours un temps de parcours de O(n?)):

EPFL - CMS

ICS Automne - Série 11

def degre_in_out_matrice(G):
Entree: G matrice d’adjacence d’un graphe dirige
Sortie: Listes Lin, Lout des degres entrant/sortant
des sommets du graphe

LA

n = len(G)
Lin = []
Lout = []

for u in range(n):

deg_in = 0

deg_out = 0

for v in range(n):
deg_out += G[Lul[v]
deg_in += G[v][u]

Lin.append(deg_in)

Lout.append(deg_out)

return Lin, Lout

G = [[¢0,0,1,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],
[0,1,0,0,1,1,0,0],[0,0,0,0,0,0,1,0]1,[0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0]]

print(degre_in_out_matrice(G))

(ii) L’algorithme ci-dessous calcule le degré sortant pour chaque u de maniere

similaire au calcul du degré de chaque sommet pour un graphe non dirigé.

Le degré entrant d'un sommet u est le nombre de fois ou u apparait
dans les listes d’adjacences du dictionnaire. Pour calculer le degré en-
trant de n’importe quel sommet, il suffit donc de parcourir toutes les listes
d’adjacence et de compter le nombre de fois que u apparait. Le parcours
de toutes les listes d’adjacence prend un temps O(n+m): il faut parcourir
tous les n éléments du dictionnaire, et il faut parcourir toutes les listes, qui
ont une taille combinée de m éléments. Le calcul du degré entrant d’un
seul sommet prend donc temps ©(n + m); §'il fallait répéter ce calcul n
fois, on aurait un temps de parcours total de ©(n* + mn).

L’astuce est de calculer tous les degrés entrants avec un seul parcours:
on maintient la liste Lin, et on parcourt chaque élément de chaque liste
d’adjacence, en augmentant a chaque fois 'index correspondant de Lin.

EPFL - CMS ICS Automne - Série 11

4. (a)

(b)

def degre_in_out_liste(G):
Entree: G dict de listes d’adjacence d’un graphe dirige
Sortie: Listes Lin, Lout des degres entrant/sortant
des sommets du graphe
Lout = []
for u in G:
Lout.append(len(GLul))

n = len(G)
Lin = [0 for u in range(n)]
for u in G:
for v in G[ul:
Lin[v] += 1

return Lin, Lout

G ={o:[2]1, 1:[2], 2:[31, 3:[1,4,51,4:[61, 5:[1, 6:[51, 7:[51}
print(degre_in_out_liste(G))

Soit G = (V, E) un graphe dirigé & n sommets et m arétes. Prouver que
0<m<n(n-1).

Soit G = (V, E) un graphe non dirigé a n sommets et m arétes. Prouver que

n(n—l).

0<m<
=m= 5

Solution:

(a)

Pour chaque paire ordonnée de sommets u,v € V, 'aréte correspondante
(u,v) peut appartenir & E ou pas. Or le nombre de paires ordonnées parmi n
éléments est n(n — 1): pour former une paire ordonnée, on a n choix pour le
premier élément et n— 1 pour le second. m peut donc prendre n’importe quelle
valeur entre 0 et n(n—1). Par exemple, un graphe dirigé a deux sommets peut
avoir 0, 1 ou 2 arétes, et un graphe dirigé a 3 sommets peut avoir entre 0 et 6
arétes.

Pour chaque paire non ordonnée de sommets u,v € V, 'aréte correspon-
dante (u,v) = (v,u) peut appartenir & F ou pas. Or le nombre de paires non
ordonnées parmi n éléments est égal au nombre de paires ordonnées divisées
par 2: (u,v) et (v,u) correspondent a la méme aréte. m peut donc prendre
n’importe quelle valeur entre 0 et n(n — 1)/2. Par exemple, un graphe non
dirigé a deux sommets peut avoir zéro ou une aréte, et un graphe non dirigé a
3 sommets peut avoir entre 0 et 3 arétes.

EPFL - CMS ICS Automne - Série 11

5. Exercice de révision

Pour chacune des boucles ci-dessous, soit F'(n) le nombre de fois que 'instruction
print est exécutée.

(a) Pour n =5, que vaut F'(n) pour chacune des boucles? Vérifiez votre réponse
en exécutant la boucle avec n = 5.

(b) Donner, pour chacune des boucles, 'ordre de croissance de F(n) en notation

o).

#boucle 1
for i in range(n):
for j in range(n):
print(i, j)

#boucle 2
for i in range(n):
for j in range(i+1, n):
print(i, j)

#boucle 3
for i in range(n):
for j in range(i, i+2):
print(i, j)

#boucle 4
for i in range(n):
for j in range(i+1, n):
for k in range(j+1, n):
print(i, j, k)

#boucle 5
for i in range(n):
for j in range(i+1, n):
for k in range(j, j+1):
print(i, j, k)

Solution:

(a)

La boucle 1 exécute l'instruction print 5 x 5 = 25 fois.
— La boucle 2 exécute l'instruction print 44+ 3+ 2+ 1 = 10 fois.

Dans la boucle 3, la boucle intérieure itere 2 fois quelle que soit la valeur
de 7. La boucle 3 exécute donc 'instruction print 5 x 2 = 10 fois.

Dans la boucle 4, pour i=0, les deux boucles intérieures sont équivalentes

N

a

for j in range(1, n):
for k in range(j+1, n):
print(o, j, k)

elles exécutent l'instruction print 3+ 2+ 1 = 6 fois. De méme pour i=1,
les deux boucles intérieures exécutent 'instruction print 2 + 1 = 3 fois;
pour i=2, les deux boucles intérieures exécutent l'instruction print une

EPFL - CMS

ICS Automne - Série 11

seule fois (pour j = 3 et k = 4); et pour i=3 et i=4 les boucle intérieures
n’iterent pas du tout. On a donc un total de 6 + 3 + 1 = 10 exécutions du
print.

Dans la boucle 5, la boucle qui itere sur k itere une seule fois quelle que
soit la valeur de j. On a donc un total de 10 exécutions comme pour la
boucle 2.

Les boucles 1 et 2 ont temps de parcours ©(n?).

Dans la boucle 3, la boucle intérieure itere deux fois quelle que soit la
valeur de i, elle s’exécute donc en temps constant. La boucle 3 a donc
temps de parcours O(n).

La boucle 4 a temps de parcours O(n?)

Dans la boucle 5, la boucle qui itere sur k itere une seule fois quelle que
soit la valeur de j, elle s’exécute donc en temps constant. La boucle 5 a
donc temps de parcours O(n?).

