
EPFL - CMS ICS Automne - Série 11

Série 11

Sauf si spécifié autrement, tous les algorithmes demandés sont à écrire sous forme d’une
fonction Python.

1. (a) Pour chacun des graphes ci-dessous, donnez sa représentation par matrice
d’adjacence et par listes d’adjacence.

0

1

2

3

4

5

6

7

G1

0

1

2

3

4

5

6

7

G2

(b) Le graphe non dirigé G3 est représenté par la matrice d’adjacence

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

Dessinez G3 et donnez sa représentation par listes d’adjacence.

(c) Le dictionnaire suivant représente le graphe dirigé G4 par listes d’adjacence.

D = {0:[1, 3], 1:[4], 2:[4,5], 3:[1], 4:[3], 5:[]}.
Dessinez G4 et donnez sa représentation par matrice d’adjacence.

Solution:

(a) La matrice d’adjacence de G1:

0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0

Un dictionnaire de listes d’adjacence de G1:

G 1 ={0:[1,2], 1:[0], 2:[0,3], 3:[2,4,5], 4:[3,5,6], 5:[3,4,6,7],
6:[4,5,7], 7:[5,6]}.



EPFL - CMS ICS Automne - Série 11

Cette représentation n’est pas unique car l’ordre des voisins d’un sommet donné
peut être quelconque. Par exemple, dans cet exemple on a défini G 1[3] = [2,
4, 5], mais on aurait aussi bien pu définir G 1[3] = [4, 2, 5] ou bien G 1[3] =
[5, 2, 4] ou n’importe quelle autre permutation des trois voisins du sommet 3.

La matrice d’adjacence de G2:

0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

Un dictionnaire de listes d’adjacence de G2:

G 2 ={0:[2], 1:[2], 2:[3], 3:[1,4,5], 4:[6], 5:[], 6:[5], 7:[5]}.
(b) Le graphe G3:

0 1

2

34

Un dictionnaire de listes d’adjacence de G3:

G 3 ={0:[1,4], 1:[0,2,3,4], 2:[1,3], 3:[1,2,4], 4:[0,1,3]}.
(c) Le graphe G4:

0 1 2

43 5

La matrice d’adjacence de G4:

0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0



EPFL - CMS ICS Automne - Série 11

2. (a) Le Jupyter notebook BFS.ipynb contient l’algorithme de parcours en largeur vu
en cours, avec une instruction print qui affiche, en plus du sommet parcouru,
la liste des sommets stockés à chaque étape dans a parcourir. Il contient
également les représentations par listes d’adjacence de deux graphes G etH que
vous pouvez utiliser pour mieux comprendre le fonctionnement de l’agorithme
BFS.

Exécutez BFS(G,s) et BFS(H,s) avec divers choix du sommet de départ s.
Changez l’ordre où les sommets voisins sont stockés dans les listes d’adjacence
données et observez s’il y a une différence dans l’ordre des sommets affichés.

(b) Soient G1 et G2 les graphes donnés à l’exercice 1a, et soient G 1 et G 2 les
représentations par listes d’adjacence que vous avez données de ces graphes.

Faites à la main un parcours en largeur (BFS) du graphe G1 à partir du sommet
2, c’est-à-dire écrivez les sommets dans l’ordre où vous les visitez.

Vérifiez votre réponse en exécutant BFS(G 1,2) dans le Jupyter notebook.

(c) Même question pour un parcours en largeur de G2 à partir du sommet 0.

Solution:

(b) On représente G1 par le dictionnaire de listes d’adjacence G 1 ={0:[1,2],
1:[0], 2:[0,3], 3:[2,4,5], 4:[3,5,6], 5:[3,4,6,7], 6:[4,5,7], 7:[5,6]}.
Un parcours en largeur à partir du sommet 2 de G1 ainsi représenté visite les
sommets dans l’ordre suivant:

2− 0− 3− 1− 4− 5− 6− 7

Ce qu’on peut vérifier avec un appel à BFS(G 1,2) dans le Jupyter notebook.

(c) On représente G2 par le dictionnaire de listes d’adjacence

G 2 ={0:[2], 1:[2], 2:[3], 3:[1,4,5], 4:[6], 5:[], 6:[5], 7:[5]}.
Un parcours de G2 en largeur à partir de 0 visite les sommets dans l’ordre
suivant:

0− 2− 3− 1− 4− 5− 6

Ce qu’on peut vérifier avec un appel à BFS(G 2,0) dans le Jupyter notebook.

3. (a) Soit G = (V,E) un graphe non dirigé à n sommets et m arêtes.

Pour v ∈ V = {0, 1, . . . , n−1}, on définit le degré de v comme étant le nombre
d’arêtes incidentes à v, c’est-à-dire le nombre de voisins de v.

Par exemple, pour le graphe G1 donné à l’exercice 1a, la liste suivante contient
les degrés des sommets (L[u] contient le degré du sommet u):

L = [2, 1, 2, 3, 3, 4, 3, 2].

(i) On suppose que G est représenté par une matrice d’adjacence. Donnez
un algorithme qui prend en entrée la matrice d’adjacence de G et retourne
une liste L de taille n, telle que L[v] contient le degré du sommet v. Testez
votre algorithme avec le graphe G1 donné à l’exercice 1a.
Quel est le temps de parcours de votre algorithme en fonction de n et m?



EPFL - CMS ICS Automne - Série 11

(ii) On suppose maintenant que G est représenté par des listes d’adjacence.
Donnez un algorithme qui prend en entrée un dictionnaire de listes d’adjacence
de G et retourne la liste L décrite au point (i). Testez votre algorithme
avec le graphe G1 donné à l’exercice 1a.
Quel est le temps de parcours de votre algorithme en fonction de n et m?

(b) On considère maintenant un graphe dirigé G = (V,E) à n sommets et m
arêtes.

Pour v ∈ V = {0, 1, . . . , n− 1}, on définit

– le degré sortant de v comme le nombre d’arêtes sortant de v, c’est-à-dire
le nombre d’arêtes (v, u) pour u un quelconque autre sommet de G;

– le degré entrant de v comme le nombre d’arêtes entrant dans v, c’est-
à-dire le nombre d’arêtes (u, v) pour u un quelconque autre sommet de
G.

Par exemple, pour le graphe G2 donné à l’exercice 1a, la liste suivante contient
les degrés sortants de tous les sommets:

L out = [1, 1, 1, 3, 1, 0, 1, 1]

Et la liste suivante contient les degrés entrants de tous les sommets:

L in = [0, 1, 2, 1, 1, 3, 1, 0].

(i) On suppose que G est représenté par une matrice d’adjacence. Donnez un
algorithme qui prend en entrée la matrice d’adjacence de G et retourne
deux listes L out et L in de taille n, telles que L out[v] contient le degré
sortant et L in[v] le degré entrant du sommet v. Testez votre algorithme
avec le graphe G2 donné à l’exercice 1a.
Quel est l’ordre du temps de parcours de votre algorithme en fonction de
n et m?

(ii) On suppose maintenant que G est représenté par des listes d’adjacence.
Donnez un algorithme qui prend en entrée un dictionnaire de listes d’adjacence
de G et retourne les deux listes décrites au point (i). Testez votre algo-
rithme avec le graphe G2 donné à l’exercice 1a.
Votre algorithme doit avoir temps de parcours Θ(n+m).

Remarque 1: Les listes L out et L in sont calculées indépendamment l’une
de l’autre.

Remarque 2: A part pour le calcul de L in au point (b-ii), un algorithme näıf
fera l’affaire pour toutes les listes demandées.

Solution:

(a) (i) L’algorithme ci-dessous calcule, à partir de la matrice d’adjacence de G, le
degré de chaque sommet: pour calculer le degré du sommet u, l’algorithme
parcourt la ligne u de la matrice d’adjacence et compte le nombre de 1 dans
cette ligne (en calculant la somme de tous les éléments de la ligne).

On a inclus dans le code l’appel à degre matrice avec la matrice d’adjacence
de G1.



EPFL - CMS ICS Automne - Série 11

Les deux boucle imbriquées donnent un temps de parcours de Θ(n2).

def degre_matrice(G):
’’’
Entree: G matrice d’adjacence d’un graphe
Sortie: Liste L des degres des sommets du graphe
’’’
n = len(G)
L = []

for u in range(n):
deg = 0
for v in range(n):

deg += G[u][v]
L.append(deg)

return L

G = [[0,1,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[1,0,0,1,0,0,0,0],
[0,0,1,0,1,1,0,0],[0,0,0,1,0,1,1,0],[0,0,0,1,1,0,1,1],
[0,0,0,0,1,1,0,1],[0,0,0,0,0,1,1,0]]

print(degre_matrice(G))

(ii) L’algorithme ci-dessous parcourt les éléments du dictionnaire de listes
d’adjacence, càd les sommets du graphe: pour chaque sommet, le degré
est égal à la longueur de la liste d’adjacence correspondante.

On a inclus dans le code l’appel à degre liste avec le dictionnaire de listes
d’adjacence de G1.

Cet algorithme a temps de parcours Θ(n) puisque l’appel à la méthode len
se fait en temps constant, et puisqu’on parcourt un dictionnaire de taille n
en temps linéaire en n (l’accès à chaque élément du dictionnaire se faisant
en temps constant).

def degre_liste(G):
’’’
Entree: G dict de listes d’adjacence d’un graphe
Sortie: Liste L des degres des sommets du graphe
’’’
L = []
for u in G:

L.append(len(G[u]))
return L

G ={0:[1,2], 1:[0], 2:[0,3], 3:[2,4,5],4:[3,5,6], 5:[3,4,6,7],
6:[4,5,7], 7:[5 ,6]}

print(degre_liste(G))

(b) (i) L’algorithme ci-dessous calcule le degré sortant pour chaque sommet
u (c’est le nombre de 1 dans la ligne u de la matrice d’adjacence) et
le degré entrant pour chaque sommet u (c’est le nombre de 1 dans la
colonne u de la matrice d’adjacence).



EPFL - CMS ICS Automne - Série 11

def degre_in_out_matrice(G):
’’’
Entree: G matrice d’adjacence d’un graphe dirige
Sortie: Listes Lin , Lout des degres entrant/sortant
des sommets du graphe
’’’
n = len(G)
Lin = []
Lout = []

for u in range(n):
deg = 0
for v in range(n):

deg += G[u][v]
Lout.append(deg)

for u in range(n):
deg = 0
for v in range(n):

deg += G[v][u]
Lin.append(deg)

return Lin , Lout

G = [[0,0,1,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],
[0,1,0,0,1,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0]]

print(degre_in_out_matrice(G))

Les deux boucles for imbriquées donnent un temps de parcours de
Θ(n2) pour le calcul de chacune des deux listes, et on a donc un temps
de parcours total de Θ(n2).
On aurait pu écrire le code de manière plus concise comme ci-dessous
(avec toujours un temps de parcours de Θ(n2)):



EPFL - CMS ICS Automne - Série 11

def degre_in_out_matrice(G):
’’’
Entree: G matrice d’adjacence d’un graphe dirige
Sortie: Listes Lin , Lout des degres entrant/sortant
des sommets du graphe
’’’
n = len(G)
Lin = []
Lout = []

for u in range(n):
deg_in = 0
deg_out = 0
for v in range(n):

deg_out += G[u][v]
deg_in += G[v][u]

Lin.append(deg_in)
Lout.append(deg_out)

return Lin , Lout

G = [[0,0,1,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],
[0,1,0,0,1,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0]]

print(degre_in_out_matrice(G))

(ii) L’algorithme ci-dessous calcule le degré sortant pour chaque u de manière
similaire au calcul du degré de chaque sommet pour un graphe non dirigé.

Le degré entrant d’un sommet u est le nombre de fois où u apparâıt
dans les listes d’adjacences du dictionnaire. Pour calculer le degré en-
trant de n’importe quel sommet, il suffit donc de parcourir toutes les listes
d’adjacence et de compter le nombre de fois que u apparâıt. Le parcours
de toutes les listes d’adjacence prend un temps Θ(n+m): il faut parcourir
tous les n éléments du dictionnaire, et il faut parcourir toutes les listes, qui
ont une taille combinée de m éléments. Le calcul du degré entrant d’un
seul sommet prend donc temps Θ(n + m); s’il fallait répéter ce calcul n
fois, on aurait un temps de parcours total de Θ(n2 +mn).

L’astuce est de calculer tous les degrés entrants avec un seul parcours:
on maintient la liste Lin, et on parcourt chaque élément de chaque liste
d’adjacence, en augmentant à chaque fois l’index correspondant de Lin.



EPFL - CMS ICS Automne - Série 11

def degre_in_out_liste(G):
’’’
Entree: G dict de listes d’adjacence d’un graphe dirige
Sortie: Listes Lin , Lout des degres entrant/sortant
des sommets du graphe
’’’
Lout = []
for u in G:

Lout.append(len(G[u]))

n = len(G)
Lin = [0 for u in range(n)]
for u in G:

for v in G[u]:
Lin[v] += 1

return Lin , Lout

G ={0:[2], 1:[2], 2:[3], 3:[1 ,4 ,5] ,4:[6] , 5:[], 6:[5], 7:[5]}
print(degre_in_out_liste(G))

4. (a) Soit G = (V,E) un graphe dirigé à n sommets et m arêtes. Prouver que

0 ≤ m ≤ n(n− 1).

(b) Soit G = (V,E) un graphe non dirigé à n sommets et m arêtes. Prouver que

0 ≤ m ≤ n(n− 1)

2
.

Solution:

(a) Pour chaque paire ordonnée de sommets u, v ∈ V , l’arête correspondante
(u, v) peut appartenir à E ou pas. Or le nombre de paires ordonnées parmi n
éléments est n(n − 1): pour former une paire ordonnée, on a n choix pour le
premier élément et n−1 pour le second. m peut donc prendre n’importe quelle
valeur entre 0 et n(n−1). Par exemple, un graphe dirigé à deux sommets peut
avoir 0, 1 ou 2 arêtes, et un graphe dirigé à 3 sommets peut avoir entre 0 et 6
arêtes.

(b) Pour chaque paire non ordonnée de sommets u, v ∈ V , l’arête correspon-
dante (u, v) = (v, u) peut appartenir à E ou pas. Or le nombre de paires non
ordonnées parmi n éléments est égal au nombre de paires ordonnées divisées
par 2: (u, v) et (v, u) correspondent à la même arête. m peut donc prendre
n’importe quelle valeur entre 0 et n(n − 1)/2. Par exemple, un graphe non
dirigé à deux sommets peut avoir zéro ou une arête, et un graphe non dirigé à
3 sommets peut avoir entre 0 et 3 arêtes.



EPFL - CMS ICS Automne - Série 11

5. Exercice de révision

Pour chacune des boucles ci-dessous, soit F (n) le nombre de fois que l’instruction
print est exécutée.

(a) Pour n = 5, que vaut F (n) pour chacune des boucles? Vérifiez votre réponse
en exécutant la boucle avec n = 5.

(b) Donner, pour chacune des boucles, l’ordre de croissance de F (n) en notation
Θ(·).

#boucle 1
for i in range(n):

for j in range(n):
print(i, j)

#boucle 2
for i in range(n):

for j in range(i+1, n):
print(i, j)

#boucle 3
for i in range(n):

for j in range(i, i+2):
print(i, j)

#boucle 4
for i in range(n):

for j in range(i+1, n):
for k in range(j+1, n):

print(i, j, k)

#boucle 5
for i in range(n):

for j in range(i+1, n):
for k in range(j, j+1):

print(i, j, k)

Solution:

(a) – La boucle 1 exécute l’instruction print 5× 5 = 25 fois.

– La boucle 2 exécute l’instruction print 4 + 3 + 2 + 1 = 10 fois.

– Dans la boucle 3, la boucle intérieure itère 2 fois quelle que soit la valeur
de i. La boucle 3 exécute donc l’instruction print 5× 2 = 10 fois.

– Dans la boucle 4, pour i=0, les deux boucles intérieures sont équivalentes
à

for j in range(1, n):
for k in range(j+1, n):

print(0, j, k)

elles exécutent l’instruction print 3 + 2 + 1 = 6 fois. De même pour i=1,
les deux boucles intérieures exécutent l’instruction print 2 + 1 = 3 fois;
pour i=2, les deux boucles intérieures exécutent l’instruction print une



EPFL - CMS ICS Automne - Série 11

seule fois (pour j = 3 et k = 4); et pour i=3 et i=4 les boucle intérieures
n’itèrent pas du tout. On a donc un total de 6 + 3+ 1 = 10 exécutions du
print.

– Dans la boucle 5, la boucle qui itère sur k itère une seule fois quelle que
soit la valeur de j. On a donc un total de 10 exécutions comme pour la
boucle 2.

(b) – Les boucles 1 et 2 ont temps de parcours Θ(n2).

– Dans la boucle 3, la boucle intérieure itère deux fois quelle que soit la
valeur de i, elle s’exécute donc en temps constant. La boucle 3 a donc
temps de parcours Θ(n).

– La boucle 4 a temps de parcours Θ(n3)

– Dans la boucle 5, la boucle qui itère sur k itère une seule fois quelle que
soit la valeur de j, elle s’exécute donc en temps constant. La boucle 5 a
donc temps de parcours Θ(n2).


