EEEEN BN +1/1/60+

EPFL

Enseignants: G. Maatouk, C.D. Petrescu
Informatique et Calcul Scientifique (ICS) - CMS
11 janvier 2023

Durée : 105 minutes

Dalton Joe

SCIPER: 987654

Attendez le début de ’épreuve avant de tourner la page. Ce document est imprimé recto-verso,
il contient 10 questions sur 12 pages, les derniéres pouvant étre vides. Ne pas dégrafer.

e Posez votre carte d’étudiant.e sur la table.

e Le seul matériel autorisé est :

— Un formulaire personnel consistant d’'une feuille A4 recto verso manuscrite,

— Le polycopié officiel de la premiére partie du cours. Ce document peut étre annoté (avec des
notes concernant la premiére partie du cours "Programmation Python") mais pas complété
avec des feuilles supplémentaires ou d’autres éléments ajoutés d’une fagon quelconque au sup-
port imprimé.

e [’utilisation d’une calculatrice et de tout outil électronique est interdite pendant 1’épreuve.
e Pour les questions a4 choix unique, on comptera:
les points indiqués si la réponse est correcte,

0 point si il n’y a aucune ou plus d’une réponse inscrite,

0 point si la réponse est incorrecte.
e Les algorithmes demandés sont & écrire sous forme de fonctions Python.
e Utilisez un stylo & encre noire ou bleu foncé et effacez proprement avec du correcteur blanc

si nécessaire.

e Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).

e Les brouillons ne sont pas & rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes | Observe this guidelines | Beachten Sie bitte die unten stehenden Richtlinien

choisir une réponse | select an answer | ne PAS choisir une réponse | NOT select an answer Corriger une réponse | Correct an answer
Antwort auswahlen NICHT Antwort auswahlen Antwort korrigieren

X ¥V & [] []

ce qu'il ne faut PAS faire | what should NOT be done | was man NICHT tun sollte

% O Q0

HENENNEEEEN
LT - . +1/2/59+

Premiére partie, questions a choix unique

Pour chaque énoncé proposé, une ou plusieurs questions sont posées. Pour chaque question, marquer la
case correspondante & la réponse correcte sans faire de ratures. Il n’y a qu'une seule réponse correcte par
question.

Enoncé

On donne la fonction suivante:

def f(n):
somme = @
i =n
while i > 1:
i //= 2
for j in range(n):
somme += 1
return somme

Question 1 (2 points)
Laquelle des affirmations suivantes est vraie?

Question 2 (2 points)
Pour la valeur n en entrée, soit T'(n) le temps de parcours de la fonction f. Laquelles des affirmations
suivantes est vraie?

EEEn N B +1/3/58+
®

Enoncé

On reproduit ci-dessous ’algorithme BFS_arbre vu en cours, et on donne un graphe G.

from collections import deque

def BFS_arbre(G,s):

n = len(G)

a_parcourir = deque([s])

vu = [@ for u in range(n)] o
vuls] =1

T = {u:[] for u in range(n)}

while a_parcourir: o e e
sommet = a_parcourir.popleft()

for u in G[sommet]:
if not vulu]:

a_parcourir.append(u) o e

vulul =1
TLsommet].append(u)
TLul.append(sommet)

return T e

On donne quatre arbres couvrants de G: Ty, Ty, T3 et Ty.

FEEY

T1 T2 T3 T4

Question 3 (2 points)
Lequel des quatre arbres ne peut pas avoir été produit par BFS_arbre(G, 0)?

[
[13
[z
7

+1/4/57+ .

Question 4 (2 points)
On reproduit ci-dessous les algorithmes tri_par_selection et tri_par_insertion, ou on a rajouté des
instructions print(L) pour illuster le comportement des algorithmes.

def tri_par_selection(L):

n = len(L)
for i in range(n):
m = L[i] def tri_par_insertion(L):
m_index = i n = len(L)
for j in range(i+1,n): for i in range(n):
if LLJ] < m: j =1
m = L[j] while j > @ and L[j] < L[j-1]
m_index = j LCjl, LCj-11 = Lij-171, LLj]
L[i], L[m_index] = L[m_index], L[i] j -=1
print(L) print (L)

Pour quelle liste L les appels tri_par_insertion(L) et tri_par_selection(L) produisent-ils le méme af-
fichage?

[]L
[]L
D Aucune des listes proposées ne conduit au méme affichage pour les deux appels

[JL =12, 1, 4, 3, 6, 5

(1, 5, 4, 3, 2, 6]
[6, 5, 4, 3, 2, 1]

Question 5 (2 points)
On reproduit ci-dessous les algorithmes tri_par_fusion et fusion donnés en cours, ot on a rajouté
Iinstruction print(L) aprés I'appel a la fonction fusion dans la fonction tri_par_fusion.

def fusion(L, bas, milieu, haut):
L1 = L[bas:milieu+1]
L2 = L[milieu+1:haut+1]
def tri_par_fusion(L, bas, haut): L1.append(float(*inf’))
if haut - bas > 0: L2.§ppendffloat(’1nf’))
milieu = (bas + haut)//2 L1_%ndex =9
. . A L2_index = 0
tri_par_fusion(L, bas, milieu) ..
. . A for i in range(bas, haut+1):
tri_par_fusion(L, milieu+1, haut)

if L1[L1_index] <= L2[L2_index]:
fusion(L, bas, milieu, haut) L[i] = L1[L1_index]
print (L) L1_index += 1
else:
L[i] = L2[L2_index]
L2_index += 1

Qu’affichent les deux instructions suivantes?
L=106,5, 4,3, 2, 1]
tri_par_fusion(L, @, len(L)-1)

[]rts, 4,5, 3,1, 21 []rs, 6, 4,2, 3, 1]
(4, 5, 6, 1, 2, 3] (4, 5,6, 1, 2, 3]
[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]

[]re, 4, 5, 3, 2, 11 []rs5, 6, 4, 3, 2, 1]
[4, 5,6, 3, 2, 1] [4, 5,6, 3, 2, 1]
[4, 5,6, 3, 1, 2] [4, 5,6, 2, 3, 1]
[4, 5,6, 1, 2, 3] (4, 5,6, 1, 2, 3]
[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]

+1/5/56+

Enoncé

On reproduit ci-dessous l'algorithme de recherche binaire vu en cours, ot on a rajouté I'instruction
print(milieu, end=’ ’) dans la boucle while pour illuster le comportement de I’algorithme.

def recherche_binaire(L, x):

n = len(L)
bas = @
haut = n-1

while haut >= bas:
milieu = (bas + haut)//2
print(milieu, end=’ ')
if L[milieu] == x:
return milieu
elif LLmilieu] > x:
haut = milieu - 1
else:
bas = milieu + 1

On définit la liste L = [10, 12, 14, 16, 18, 20, 22, 24].

Question 6 (2 points)

Quelle paire d’appels produit le méme affichage?
|:| recherche_binaire(L, 11) et recherche_binaire(L, 13)
|:| recherche_binaire(L, 13) et recherche_binaire(L, 15)
|:| recherche_binaire(L, 15) et recherche_binaire(L, 16)
D recherche_binaire(L, 12) et recherche_binaire(L, 13)

Question 7 (1 point)
Quel affichage est produit par 'appel recherche_binaire(L, 13) ?

[]31
[]3121
[]321
[]312

+1/6/55+

Deuxiéme partie, questions de type ouvert

Répondre dans 'espace dédié. Laisser libres les cases & cocher: elles sont réservées au correcteur.

Question 8: Cette question est notée sur 5 points.

[Js [Js [s [Ja [Js
[l [l [l [l [[

On donne ci-dessous deux variantes de I'algorithme DF'S vu en cours, qui différent uniquement par la position
de l'instruction print(s).

def DFS_pre(G, s): def DFS_post(G, s):
print(s) vuls] =1
vuls] =1 for u in G[s]:
for u in G[s]: if not vulul:
if not vulul: DFS_post (G, u)
DFS_pre(G, u) print(s)

On donne le graphe G ci-dessous:

(a) Donnez une représentation par listes d’adjacence du graphe G, sous forme d’une ligne de code Python
commengant par “G = 7 .

EEEEEEEEEEE |
PS LT T +1/7/54+

(b) Qu’affichent les instructions suivantes (ou la premiére ligne doit étre remplacée par la ligne de code
que vous avez fournie au point (a))?

G = # representation par listes d’adjacence de G
vu = [@ for u in G]
DFS_pre (G, @)

(c) Qu’affichent les instructions suivantes (ou la premiére ligne doit étre remplacée par la ligne de code
que vous avez fournie au point (a))?

G = # representation par listes d’adjacence de G
vu [0 for u in G]
DFS_post (G, @)

HENEEEEEEEN
[N +1/8/53+

Question 9: Cette question est notée sur 6 points.

[JsLJs [Js [o[Jo []s
Lo O Ol Ok Ol [l [

Ecrivez un algorithme list_intersection qui prend en entrée deux listes triées de nombres L1 et L2, et
retourne une liste L contenant les éléments présents dans les deux listes L1 et L2. La liste L peut contenir
des éléments répétés.

Par exemple:

e list_intersection([1, 2, 2], [2, 2, 31) doit retourner [2] (ou [2, 2]...)
e list_intersection([1, 21, [3, 4, 51) doit retourner [] .

Soit n la somme des tailles des deux listes L1 et L2: votre algorithme doit avoir un temps de parcours linéaire
en n. Justifiez briévement ce temps de parcours.

Votre code ne peut pas utiliser des objets de type set, ni de listes en compréhension.

Bonus (1 point): toujours sans utiliser d’objets de type set, faites en sorte que la liste L ne contienne aucune
répétition. Par exemple, list_intersection([1, 2, 21, [2, 2, 3]) doit retourner [2].

Remarque: un algorithme correct mais moins efficace que ce qui est demandé obtiendra 2 points.

+1/9/52+

[W N . +1/10/51+

Question 10: Cette question est notée sur 6 points.

[l L ls Ll L]s [s
[l [Lkl el [k

Ecrivez un algorithme récursif rec_reverse qui prend en entrée une chaine de caractéres s et retourne la
chaine de caractéres s a ’envers, c’est-a-dire la chaine de caractéres constituée des mémes caractéres que s
mais dans ’ordre inverse de leur apparition dans s.

Par exemple, I’appel rec_reverse(”abc") doit retourner la chaine de caractéres "cba"”, rec_reverse("a")
) doit retourner la chaine vide.

nn

doit retourner "a" et rec_reverse(

Votre algorithme ne doit contenir aucune boucle. Il ne doit pas utiliser de slicing de pas négatif (du genre
s[::-11), ni la fonction reversed() (qui n’a pas été vue en cours), ni la méthode de liste reverse().

+1/11/50+

+1/12/49+

|
N BN BN

