
y +1/1/60+ y

Enseignants: G. Maatouk, C.D. Petrescu
Informatique et Calcul Scientifique (ICS) - CMS
11 janvier 2023
Durée : 105 minutes

1
Dalton Joe

SCIPER : 987654

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé recto-verso,
il contient 10 questions sur 12 pages, les dernières pouvant être vides. Ne pas dégrafer.

• Posez votre carte d’étudiant.e sur la table.
• Le seul matériel autorisé est :

– Un formulaire personnel consistant d’une feuille A4 recto verso manuscrite,

– Le polycopié officiel de la première partie du cours. Ce document peut être annoté (avec des
notes concernant la première partie du cours "Programmation Python") mais pas complété
avec des feuilles supplémentaires ou d’autres éléments ajoutés d’une façon quelconque au sup-
port imprimé.

• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant l’épreuve.
• Pour les questions à choix unique, on comptera :

les points indiqués si la réponse est correcte,
0 point si il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Les algorithmes demandés sont à écrire sous forme de fonctions Python.
• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc

si nécessaire.
• Répondez dans l’espace prévu (aucune feuille supplémentaire ne sera fournie).
• Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

y y



y +1/2/59+ y
Première partie, questions à choix unique

Pour chaque énoncé proposé, une ou plusieurs questions sont posées. Pour chaque question, marquer la
case correspondante à la réponse correcte sans faire de ratures. Il n’y a qu’une seule réponse correcte par
question.

Enoncé

On donne la fonction suivante:

def f(n):

somme = 0

i = n

while i > 1:

i // = 2

for j in range(n):
somme += 1

return somme

Question 1 (2 points)
Laquelle des affirmations suivantes est vraie?

f(8) = f(9)

f(4) = 4 · f(2)

f(4) = 2 · f(2)

f(8) = f(7)

Question 2 (2 points)
Pour la valeur n en entrée, soit T (n) le temps de parcours de la fonction f . Laquelles des affirmations
suivantes est vraie?

T (n) = Θ(log2(n))

T (n) = Ω(n log2(n)) mais T (n) n’est pas Θ(n log2(n))

T (n) = Θ(n+ log2(n))

T (n) = Θ(n log2(n))

y y



y +1/3/58+ y
Enoncé

On reproduit ci-dessous l’algorithme BFS_arbre vu en cours, et on donne un graphe G.

from collections import deque

def BFS_arbre(G,s):

n = len(G)

a_parcourir = deque([s])

vu = [0 for u in range(n)]
vu[s] = 1

T = {u:[] for u in range(n)}
while a_parcourir:

sommet = a_parcourir.popleft ()

for u in G[sommet]:

if not vu[u]:

a_parcourir.append(u)

vu[u] = 1

T[sommet].append(u)

T[u].append(sommet)

return T

0

1 2 3

4 5

6

G

On donne quatre arbres couvrants de G: T1, T2, T3 et T4.

0

1 2 3

4 5

6

T1

0

1 2 3

4 5

6

T2

0

1 2 3

4 5

6

T3

0

1 2 3

4 5

6

T4

Question 3 (2 points)
Lequel des quatre arbres ne peut pas avoir été produit par BFS_arbre(G, 0)?

T2

T3

T4

T1

y y



y +1/4/57+ y
Question 4 (2 points)
On reproduit ci-dessous les algorithmes tri_par_selection et tri_par_insertion, où on a rajouté des
instructions print(L) pour illuster le comportement des algorithmes.

Pour quelle liste L les appels tri_par_insertion(L) et tri_par_selection(L) produisent-ils le même af-
fichage?

L = [1, 5, 4, 3, 2, 6]

L = [6, 5, 4, 3, 2, 1]

Aucune des listes proposées ne conduit au même affichage pour les deux appels

L = [2, 1, 4, 3, 6, 5]

Question 5 (2 points)
On reproduit ci-dessous les algorithmes tri_par_fusion et fusion donnés en cours, où on a rajouté
l’instruction print(L) après l’appel à la fonction fusion dans la fonction tri_par_fusion.

Qu’affichent les deux instructions suivantes?
L = [6, 5, 4, 3, 2, 1]

tri_par_fusion(L, 0, len(L)-1)

[6, 4, 5, 3, 1, 2]

[4, 5, 6, 1, 2, 3]

[1, 2, 3, 4, 5, 6]

[6, 4, 5, 3, 2, 1]

[4, 5, 6, 3, 2, 1]

[4, 5, 6, 3, 1, 2]

[4, 5, 6, 1, 2, 3]

[1, 2, 3, 4, 5, 6]

[5, 6, 4, 2, 3, 1]

[4, 5, 6, 1, 2, 3]

[1, 2, 3, 4, 5, 6]

[5, 6, 4, 3, 2, 1]

[4, 5, 6, 3, 2, 1]

[4, 5, 6, 2, 3, 1]

[4, 5, 6, 1, 2, 3]

[1, 2, 3, 4, 5, 6]

y y



y +1/5/56+ y
Enoncé

On reproduit ci-dessous l’algorithme de recherche binaire vu en cours, où on a rajouté l’instruction
print(milieu, end=’ ’) dans la boucle while pour illuster le comportement de l’algorithme.

On définit la liste L = [10, 12, 14, 16, 18, 20, 22, 24].

Question 6 (2 points)
Quelle paire d’appels produit le même affichage?

recherche_binaire(L, 11) et recherche_binaire(L, 13)

recherche_binaire(L, 13) et recherche_binaire(L, 15)

recherche_binaire(L, 15) et recherche_binaire(L, 16)

recherche_binaire(L, 12) et recherche_binaire(L, 13)

Question 7 (1 point)
Quel affichage est produit par l’appel recherche_binaire(L, 13) ?

3 1

3 1 2 1

3 2 1

3 1 2

y y



y +1/6/55+ y
Deuxième partie, questions de type ouvert

Répondre dans l’espace dédié. Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 8: Cette question est notée sur 5 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

On donne ci-dessous deux variantes de l’algorithme DFS vu en cours, qui diffèrent uniquement par la position
de l’instruction print(s).

def DFS_pre(G, s):

print(s)
vu[s] = 1

for u in G[s]:

if not vu[u]:

DFS_pre(G, u)

def DFS_post(G, s):

vu[s] = 1

for u in G[s]:

if not vu[u]:

DFS_post(G, u)

print(s)

On donne le graphe G ci-dessous:

0

1 2

3 4 5 6

(a) Donnez une représentation par listes d’adjacence du graphe G, sous forme d’une ligne de code Python
commençant par “G = ” .

y y



y +1/7/54+ y
(b) Qu’affichent les instructions suivantes (où la première ligne doit être remplacée par la ligne de code

que vous avez fournie au point (a) )?

G = # representation par listes d’adjacence de G

vu = [0 for u in G]

DFS_pre(G, 0)

(c) Qu’affichent les instructions suivantes (où la première ligne doit être remplacée par la ligne de code
que vous avez fournie au point (a) )?

G = # representation par listes d’adjacence de G

vu = [0 for u in G]

DFS_post(G, 0)

y y



y +1/8/53+ y
Question 9: Cette question est notée sur 6 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5

6

Ecrivez un algorithme list_intersection qui prend en entrée deux listes triées de nombres L1 et L2, et
retourne une liste L contenant les éléments présents dans les deux listes L1 et L2. La liste L peut contenir
des éléments répétés.
Par exemple:

• list_intersection([1, 2, 2], [2, 2, 3]) doit retourner [2] (ou [2, 2]...)

• list_intersection([1, 2], [3, 4, 5]) doit retourner [] .

Soit n la somme des tailles des deux listes L1 et L2: votre algorithme doit avoir un temps de parcours linéaire
en n. Justifiez brièvement ce temps de parcours.

Votre code ne peut pas utiliser des objets de type set, ni de listes en compréhension.

Bonus (1 point): toujours sans utiliser d’objets de type set, faites en sorte que la liste L ne contienne aucune
répétition. Par exemple, list_intersection([1, 2, 2], [2, 2, 3]) doit retourner [2].

Remarque: un algorithme correct mais moins efficace que ce qui est demandé obtiendra 2 points.

y y



y +1/9/52+ y

y y



y +1/10/51+ y
Question 10: Cette question est notée sur 6 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5

6

Ecrivez un algorithme récursif rec_reverse qui prend en entrée une chaîne de caractères s et retourne la
chaîne de caractères s à l’envers, c’est-à-dire la chaîne de caractères constituée des mêmes caractères que s

mais dans l’ordre inverse de leur apparition dans s.

Par exemple, l’appel rec_reverse("abc") doit retourner la chaîne de caractères "cba", rec_reverse("a")
doit retourner "a" et rec_reverse("") doit retourner la chaîne vide.

Votre algorithme ne doit contenir aucune boucle. Il ne doit pas utiliser de slicing de pas négatif (du genre
s[::-1]), ni la fonction reversed() (qui n’a pas été vue en cours), ni la méthode de liste reverse().

y y



y +1/11/50+ y

y y



y +1/12/49+ y

y y


