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Exercice 1

Nous allons mettre à profit la loi de Gauss∮
surface fermée Σ

E⃗ ·
−→
dΣ =

1

ϵ0
Qintérieur de Σ ,

en choisissant la surface fermée la plus appropriée à notre problème.

Comme l’objet chargé est une boule uniformément chargée, le champ E⃗ possède une
symétrie radiale et nous allons considérer des surfaces sphériques en guise de surfaces de
Gauss Σ. Ainsi, les lignes de champ seront toujours parallèles aux vecteurs “élément de

surface”
−→
dΣ, ce qui facilitera grandement le calcul du flux

∮
surface fermée Σ

E⃗ ·
−→
dΣ .

Comme la charge enfermée à l’intérieur de Σ sera différente selon la valeur du rayon r de
Σ, il est nécessaire de distinguer au moins deux cas : r > R et r < R.

A l’extérieur de la boule, le champ électrique est dû à la totalité de la charge Q. On
écrit la loi de Gauss en choisissant une sphère de rayon r, avec r > R, en guise de surface
fermée, et une charge intérieure Qintérieur de Σ = Q :∮

sphère de rayon r

E⃗ ·
−→
dΣ =

1

ϵ0
Q .

Par symétrie (invariance de rotation), le champ électrique E⃗ est radial. Il est donc en tout

point de la surface de Gauss parallèle au vecteur “élément de surface”
−→
dΣ :∮

sphère de rayon r

E dΣ =
1

ϵ0
Q .

Par symétrie, la norme du champ E⃗, E, ne dépend que de la distance r au centre de
la boule. Cette norme est constante sur la surface de Gauss. On peut ainsi mettre E en
évidence et le sortir de l’intégrale :

E

∮
sphère de rayon r

dΣ =
1

ϵ0
Q .

Comme

∮
sphère de rayon r

dΣ = 4πr2, il vient finalement

E(r) =
Q

4πϵ0

1

r2
, avec r > R .

Remarquons que l’on retrouve une expression identique à celle du champ électrique produit
par une charge ponctuelle Q.
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A l’intérieur de la boule, la densité de charge s’écrit

ρ =
Q

V
=

Q
4
3
πR3

.

On utilise à nouveau la loi de Gauss sur une sphère de rayon r (r < R), mais pour une
charge “incomplète”

q =
4

3
πr3ρ =

4

3
πr3

Q
4
3
πR3

=
r3

R3
Q .

Il vient alors : ∮
sphère de rayon r

E⃗ ·
−→
dΣ =

1

ϵ0
q∮

sphère de rayon r

E dΣ =
1

ϵ0
q

E

∮
sphère de rayon r

dΣ =
1

ϵ0
q

E 4πr2 =
1

ϵ0

r3

R3
Q .

⇒ E(r) =
Q

4πϵ0R3
r, avec r < R .

Cette expression est différente de celle du champ électrique produit par une charge ponc-
tuelle Q. Ici, l’intensité de E⃗ augmente linéairement avec la distance r.

Représentation graphique de l’intensité du champ électrique :

r

E(r)

0

∼ r ∼ 1

r2

R
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Remarque
Pour une boule métallique de rayon R portant une charge Q, le champ électrique se
comporterait de la manière suivante :

r

E(r)

0

E(r) = 0V

∼ 1

r2

R

En effet, en électrostatique le champ électrique à l’intérieur d’un conducteur doit être
nul (sinon les charges mobiles se déplaceraient). La loi de Gauss nous indique alors
que la charge doit être intégralement répartie à la surface du conducteur. Le champ à
l’extérieur d’une boule métallique est donc identique à celui trouvé pour une boule pleine
non métallique lorsque r > R.

Exercice 2

Nous allons considérer la définition de la capacité d’un condensateur, en caractérisant en
particulier le potentiel électrique en un point à l’intérieur du condensateur portant une
charge Q.

La capacité d’un condensateur est le rapport entre sa charge et la tension entre ses arma-
tures :

CU = Q .

En électrostatique, la charge du condensateur est celle portée par l’armature positive.
Si l’armature intérieure, de rayon R , porte la charge positive Q > 0, la tension du conden-
sateur est celle entre l’armature positive et l’armature négative, de rayon R′, R′ > R :

Q > 0

−Q < 0

O
P

E⃗

e⃗r

U = URR′ = Φ(R)− Φ(R′) .

Par la loi de Gauss, le champ électrique en un point
P situé entre les armatures à une distance r du
centre vaut

E⃗ = E(r)e⃗r =
Q

4πε0

1

r2
e⃗r .

Le potentiel en P est

Φ(r) =
Q

4πε0

1

r
+ cte.

La tension du condensateur vaut donc

URR′ = Φ(R)− Φ(R′) =
Q

4πε0

(
1

R
− 1

R′

)
.
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On en déduit la capacité du condensateur sphérique :

1

C
=

1

4πε0

(
1

R
− 1

R′

)
⇒ C =

4πε0RR′

R′ −R
.

Exercice 3

Nous allons mettre à profit la loi de Gauss∮
surface fermée Σ

E⃗ ·
−→
dΣ =

1

ϵ0
Qintérieur de Σ ,

en choisissant la surface fermée la plus appropriée à notre problème.

Par symétrie, le champ électrique doit être axial et ne dépendre que de la distance à l’axe
du conducteur cylindrique :

E⃗ = E(r) e⃗r .

Considérons la surface fermée Σ formée d’un cylindre de même axe que le conducteur
cylindrique, de rayon r et de hauteur L et fermé en haut et en bas par deux disques :

L

r

R

e⃗r

Σ

Le flux du champ électrique à travers la surface Σ choisie est ainsi

ΨΣ =

∫
Σ

E⃗ ·
−→
dΣ = E 2πrL .

Selon la loi de Gauss,

ΨΣ =
Qint

ϵ0
=

σ 2πRL

ϵ0
,

d’où

E⃗ = E(r) e⃗r =
1

2πrL

σ 2πRL

ϵ0
e⃗r =

σ

ϵ0

R

r
e⃗r , avec r > R .

A l’intérieur du conducteur, le champ est nul (pas de déplacement de charges (pas de
courant).

Remarque
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La tension entre un point A (rA > R) et un point B (rB > R) s’écrit

UAB =

∫ rB

rA

E⃗ · d⃗r =
∫ rB

rA

E(r) dr =
σR

ϵ0

∫ rB

rA

dr

r

=
σR

ϵ0
ln r

∣∣∣rB
rA

=
σR

ϵ0
ln

rB
rA

= Φ(rA)− Φ(rB) ,

où

Φ(r) = −σR

ϵ0
ln

r

R
, r > R .

Le potentiel nul est choisi à la surface du conducteur cylindrique.

Exercice 4

La capacité d’un condensateur est le rapport entre sa charge et la tension entre ses arma-
tures :

C =
Q

U
.

Nous allons donc nous intéresser à la tension existant entre les deux armatures d’un
condensateur cylindrique portant une charge Q.

L’expression du champ électrique à l’intérieur du condensateur, donnée dans l’énoncé,
peut être obtenue en mettant à profit la loi de Gauss∮

surface fermée Σ

E⃗ ·
−→
dΣ =

1

ϵ0
Qintérieur de Σ .

Nous allons choisir la surface fermée la plus appropriée à notre problème. Par symétrie, le
champ électrique doit être axial et ne dépendre que de la distance à l’axe du condensateur :

E⃗ = E(r) e⃗r .

Considérons la surface fermée Σ formée d’un cylindre de même axe, de rayon r et de
longueur L et fermé en haut et en bas par deux disques :

R Q

e⃗r

R′

−Q

L

r

Σ

Le flux du champ électrique à travers la surface Σ choisie est ainsi

ΨΣ =

∫
Σ

E⃗ ·
−→
dΣ = E 2πrL .
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Selon la loi de Gauss,

ΨΣ =
Qint

ϵ0
=

Q

ϵ0
,

d’où

E⃗ = E(r) e⃗r =
1

2πrL

Q

ϵ0
e⃗r =

Q

2πLϵ0

1

r
e⃗r , avec R′ > r > R .

Nous allons déterminer la tension entre les armatures en suivant un chemin axial Γ (dont
la direction est donnée par e⃗r) :

URR′ =

∫
Γ

E⃗ · d⃗r =
∫
Γ

Q

2πLϵ0

1

r
e⃗r · d⃗r =

Q

2πLϵ0

∫ R′

R

1

r
dr

= =
Q

2πLϵ0
ln r|R

′

R =
Q

2πLϵ0
ln

R′

R
.

Ainsi, la capacité C du condensateur a pour expression :

C =
Q

URR′
=

2πLϵ0

ln R′

R

.

Remarque : connaissant l’expression du potentiel, Φ(r) = − Q

2πLϵ0
ln

r

cte
, nous pouvons

également écrire

URR′ = Φ(R)− Φ(R′) =
Q

2πLϵ0
ln

R′

R
.

Exercice 5

(a)

Céq

A B

C1 et C2 sont branchés en série :

1

Céq

=
1

C1

+
1

C2

=
1

C
+

1

2C
=

3

2C
⇒ Céq =

2

3
C .

La charge portée par le condensateur équivalent est

Q = CéqUAB =
2

3
CUAB .

Cette charge se trouve sur chacun des condensateurs :

C1 C2

A B
Q −Q −QQ

(b)

C ′
éq

A B

C1 et C2 sont branchés en parallèle :

C ′
éq = C1 + C2 = 3C .
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La charge portée par le condensateur équivalent est la somme des charges des deux
condensateurs :

Q′ = 2Q = C ′
éqU

′
AB ⇒ U ′

AB =
2Q

C ′
éq

=
2 · 2CUAB

3 · 3C
=

4

9
UAB .
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