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Exercice 1

(a) Pour compenser le champ uniforme, le champ dû à la charge Q doit être vers la
gauche, soit sur l’axe Ox , à gauche de O . Notons N ce point : xN < 0 et yN = 0.

E⃗0 + E⃗Q(r⃗N) = 0⃗

Selon e⃗x = (1, 0) :

E0 −
Q

4πε0a2x2
N

= 0 ⇔ E0 =
Q

4πε0a2
1

x2
N

⇔ 1Vm−1 = 4Vm−1 1

x2
N

⇔ xN = −2 .

(b) Champ uniforme :

E⃗0 = E0e⃗x = 1Vm−1(1, 0)

Champ de la charge Q :

E⃗Q(r⃗) =
Q

4πε0r2
e⃗r =

Q

4πε0a2(x2 + y2)
e⃗r =

4Vm−1

x2 + y2
e⃗r

En P (0, 2) ,

E⃗Q(r⃗P ) =
4Vm−1

4
(0, 1) = 1Vm−1(0, 1)

Champ résultant
E⃗(r⃗P ) = E⃗0 + E⃗Q(r⃗P ) = 1Vm−1(1, 1) .

Le champ résultant fait un angle de π/4 par rapport à Ox .

(c) Champ uniforme :
Φ0(r⃗) = −E0ax = 1V x

En P (0, 2) ,
Φ0(r⃗P ) = 0

Champ de la charge Q :

ΦQ(r⃗) =
Q

4πε0r
=

Q

4πε0a
√

x2 + y2
=

4V√
x2 + y2

En P (0, 2) ,

ΦQ(r⃗P ) =
4V

2
= 2V

Potentiel résultant
Φ(r⃗P ) = Φ0(r⃗P ) + Φ2(r⃗P ) = 2V
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(d) Avec y = 0 , le potentiel résultant vaut

Φ(x, 0) = −E0ax+
Q

4πε0a|x|
= −1Vx+

4V

|x|

x
1

Φ

1

Φ0(x, 0)

ΦQ(x, 0)

Φ(x, 0)

Remarque : le potentiel possède un minimum en xN = −2 , endroit où le champ
électrique est nul.

(e) Le potentiel résultant en r⃗ est

Φ(r⃗) = Φ0(r⃗) + Φ2(r⃗) = −E0ax+
Q

4πε0a
√

x2 + y2
= −1Vx+

4V√
x2 + y2

Le potentiel résultant est nul sur l’équipotentielle donnée par

−1Vx+
4V√
x2 + y2

= 0V

ou encore

x =
4√

x2 + y2
.

Cela impose que x > 0 .

De manière équivalente,

x2(x2 + y2) = 42 ⇔ y2 =
42

x2
− x2 ≥ 0 .

Cela impose que x ≤ 2 .
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Explicitement, l’équipotentielle est donc donnée par

Γ : y = ±
√

42

x2
− x2 0 < x ≤ 2 .

Pour tracer cette équipotentielle, on peut s’aider des éléments suivants.
� Comme toute la situation, Γ est symétrique par rapport à l’axe Ox .
� Γ passe par le point (2, 0) . Comme le champ E⃗ y est horizontal, elle y admet
une tangente verticale.

� Pour x → 0+ , y2 → ∞ . Γ admet une asymptote verticale d’équation x = 0 .
� Un point intermédiaire I peut par exemple être choisi avec xI = 1 . Alors
y2I = 15 et I(1,

√
15) . La pente m de la tangente est donnée par le nombre

dérivé m = y′ en I . Par dérivée implicite,

x2(x2 + y2) = 42 ⇒ 2x(x2 + y2) + x2(2x+ 2yy′) = 0

⇒ x
16

x2
+ x2(x+ yy′) = 0 ⇒ 16 + 1 +

√
15m = 0 ⇒ m = − 17√

15
.

x
1

y

1

Q

√
15 I

(2, 0)

Φ = 0

(f) Loin de Q , les équipotentielles sont des plans normaux à E⃗0 .

A proximité de Q , les équipotentielles sont des sphère concentriques.
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Exercice 2

(a) Nous savons que le champ électrique produit par la charge ponctuelle Q est radial
et dirigé vers Q < 0 :

Q < 0

Γ

P
E⃗

e⃗r

Expression de E⃗ au point P :

E⃗ =
1

4πϵ0

Q

r2
e⃗r ,

où r est la distance de la charge au point P .

(b) Intéressons-nous à la trajectoire de l’électron au voisinage de la charge :
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Q < 0

Γ

q < 0

F⃗0

v⃗0

Au plus près de la charge, la vitesse
de l’électron est normale au rayon vec-
teur :

v⃗0 ⊥ r⃗0 .

L’électron étant négatif, il est repoussé
par la charge Q . Comme effet de la
force de Coulomb, la vitesse tend à
s’aligner sur le champ électrique (on
peut montrer que la trajectoire est une
hyperbole).

Il est possible d’appliquer le théorème de l’énergie cinétique entre le point au plus
près de Q et un point atteint ultérieurement :

Q < 0

Γ

q < 0

F⃗0

v⃗0

q
F⃗

v⃗
Pour le point initial à la distance r0 de
Q et un autre point à la distance r , le
théorème de l’énergie cinétique s’écrit

1

2
mv2 − 1

2
mv20 = qUr0r

=
qQ

4πϵ0

(
1

r0
− 1

r

)

⇒ v2 = v20 +
qQ

2mπϵ0

(
1

r0
− 1

r

)
> v20

La vitesse de l’électron augmente donc au fur et à mesure qu’il s’éloigne de Q.

Exercice 3

(a)
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q1 q2 q3

A

B

d

d

E⃗q2(A)

E⃗q1(A)

E⃗q3(A)

E⃗(A)

E⃗q2(B)

E⃗q1(B)E⃗q3(B)

E⃗(B)

Intensité du champ produit par q2 en B :

||E⃗q2(B)|| = Q

4πϵ0d2
= 1 cm .

• Point A

Intensité du champ produit par q1 en A :

||E⃗q1(A)|| =
4Q

4πϵ0d2
= 4||E⃗q2(B)|| = 4 cm .

Intensité du champ produit par q2 en A :

||E⃗q2(A)|| =
Q

4πϵ0(
√
2d)2

=
1

2
||E⃗q2(B)|| = 0.5 cm .

Intensité du champ produit par q3 en A :

||E⃗q3(A)|| =
4Q

4πϵ0(
√
5d)2

=
4

5
||E⃗q2(B)|| = 0.8 cm .
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• Point B (n’est pas demandé)

Intensité du champ produit par q1 en B :

||E⃗q1(B)|| = 4Q

4πϵ0(
√
2d)2

= 2||E⃗q2(B)|| = 2 cm .

Intensité du champ produit par q2 en B : ||E⃗q2(B)|| = 1 cm .

Intensité du champ produit par q3 en B :

||E⃗q3(B)|| = 4Q

4πϵ0(
√
2d)2

= 2||E⃗q2(B)|| = 2 cm .

(b)

Exercice 4

Tout d’abord, on note que le système ne forme qu’un seul conducteur. Par conséquent, le
potentiel électrique de la boule R est égal au potentiel électrique de la boule r, et ce même
si les charges QR et Qr qui se trouvent à la surface des deux boules sont différentes :

QR

R Qr
r

ΦR = Φr = Φ = constante (équipotentielle) .
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En choisissant un potentiel nul à l’infini, on a

Φ =
1

4πϵ0

QR

R
=

1

4πϵ0

Qr

r
.

Le champ électrique à la surface de la boule de rayon R s’écrit

ER =
1

4πϵ0

QR

R2
=

ΦR

R
=

Φ

R
,

alors que celui au voisinage de la petite boule est

Er =
1

4πϵ0

Qr

r2
=

Φr

r
=

Φ

r
,

Comme R ≫ r, on en déduit que
Er ≫ ER .

On vérifie donc bien que plus la courbure du conducteur est forte (en d’autres termes,
plus le rayon de courbure est petit), plus le champ électrique est intense.

Exercice 5

Il convient de considérer les propriétés du champ électrique dans et au voisinage d’un
conducteur en électrostatique.

(a) Faux.

La surface d’un conducteur est une équipotentielle et plus la courbure est forte,
plus le champ électrique est intense et la densité superficielle de charge importante.

(b) Vrai.

Sinon les charges libres (électrons de conduction) subiraient une force et seraient
accélérées.

(c) Faux.

La surface d’un conducteur est une équipotentielle et plus la courbure est forte,
plus le champ électrique est intense (effet de pointe).

(d) Vrai.

La surface d’un conducteur est une équipotentielle : les lignes de champ (à l’extérieur)
lui sont perpendiculaires.

(e) Faux.

Sinon le champ aurait plus d’une direction à l’endroit du croisement.

(f) Vrai.

La surface d’un conducteur est une équipotentielle.

(g) Vrai.

La surface d’un conducteur est une équipotentielle : la tension entre deux de ses
points est nulle.
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Exercice 6

On procède en deux étapes : on détermine tout d’abord la vitesse à l’entrée du condensa-
teur avant de s’intéresser à l’angle de déflexion. Il est clair que plus la norme de la vitesse
v⃗0 des électrons à l’entrée du condensateur est grande, plus l’angle de déflexion φ sera
faible.
Comme la force de gravitation agissant sur un électron est très petite en regard de la force
électrique, nous allons la négliger.

Phase d’accélération entre la cathode et l’anode

L’anode est une électrode positive attirant les anions (particules négatives). De la ca-
thode à l’anode, les électrons suivent un chemin entre les extrémités duquel la tension est
négative et vaut −Uacc.. Le théorème de l’énergie cinétique permet ainsi d’écrire :

1

2
mv20 − 0 = (−e)(−Uacc.) = eUacc.

⇒ v0 =

√
2 eUacc.

m
.

Les électrons arrivent donc avec une vitesse horizontale v⃗0 à l’entrée du condensateur.
Phase de déflexion entre les deux plaques du condensateur

éc
ra
n

plaque

plaque

L

d

U

+−

anode
cathode

Uacc.

+−

e−

φ

E⃗

v⃗0

v⃗(t1)

Le champ électrique régnant entre les plaques est uniforme. Il est vertical, dirigé vers le
haut (de la plaque positive à la plaque négative) et son intensité vaut

E =
U

d
= Cste .

La force que subit un électron est F⃗ = (−e)E⃗. Cette force est donc verticale et dirigée
vers le bas et ne va pas modifier la vitesse horizontale. La deuxième loi de Newton permet
alors d’écrire

a⃗ = − e

m
E⃗ .

L’accélération d’un électron est constante et sa vitesse a donc pour expression

v⃗(t) = a⃗ t+ v⃗0 .
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L’origine du temps a été placée à l’instant où l’électron entre dans le condensateur. La
composante vx de la vitesse de ce dernier ne varie pas et est égale à v0. Pour connâıtre la
vitesse selon e⃗y, il est nécessaire de déterminer le temps mis par la particule pour traverser
le condensateur de longueur L, c’est-à-dire le temps durant lequel la force électrique due
à la présence des plaques va défléchir la trajectoire du faisceau électronique en modifiant
la composante vy. Ce temps est donné par

t1 =
L

v0
,

de sorte que la vitesse de l’électron à la sortie du condensateur vaut

v⃗(t1) ≡
(
vx(t1)
vy(t1)

)
= a⃗ t1 + v⃗0 =

(
0
a t1

)
+

(
v0
0

)
.

L’angle de déflexion est finalement donné par sa tangente :

tanφ =
vy(t1)

vx(t1)
=

a t1
v0

=
L

2Uacc. d
U .
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