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Corrigé 6

Exercice 1

(a) Pour compenser le champ uniforme, le champ du a la charge @ doit étre vers la
gauche, soit sur 'axe Ox , a gauche de O. Notons N ce point : xy < 0 et yy = 0.

Ey+ Eg(fy) =0

Selon €, = (1,0) :
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(b) Champ uniforme :
Ey = Eoyé, =1Vm~(1,0)

Champ de la charge @ :

Fo(F) Q . Q L 4Vm!t
F) = e, = e, = e,
Q Areqr? dega®(z? + y?) x? 4 y?

En P(0,2), -
- 4Vm~

1 (0,1) =1Vm *(0,1)

Champ résultant . . .
E(’Fp) = E() + EQ(FP> = 1Vm*1(1, 1) .
Le champ résultant fait un angle de m/4 par rapport a Ozx.

(c) Champ uniforme :
Qy(r) = —Epax =1V

En P(0,2),

(I)Q(Fp) - 0
Champ de la charge @ :

. Q Q 4V
Bo(7) = o = -
dmegr  dmegar/z +y2 /22 + 42

En P(0,2),

. 4V

(I)Q(Tp) = 7 =2V

Potentiel résultant
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Avec y = 0, le potentiel résultant vaut

4
¢ —1V:c+—v

®(x,0) = —FE — =
(z,0) 0¥ dmegalx| ||

)

A

1
Remarque : le potentiel possede un minimum en xy = —2, endroit ou le champ
électrique est nul.
Le potentiel résultant en 7 est
4V

dmeqarn/x? + y? V2 +y?

Le potentiel résultant est nul sur I’équipotentielle donnée par
4V
=0V

Ve

—1Vazx+

ou encore

Cela impose que x > 0.
De maniere équivalente,

Cela impose que = < 2.



Explicitement, I’équipotentielle est donc donnée par

42
[ y==44/—5 —a? 0<x<2.
x

Pour tracer cette équipotentielle, on peut s’aider des éléments suivants.

e Comme toute la situation, I' est symétrique par rapport a 'axe Ox .

e [ passe par le point (2,0). Comme le champ E y est horizontal, elle y admet
une tangente verticale.

e Pour z — 07, y> — oo. I' admet une asymptote verticale d’équation x = 0.

e Un point intermédiaire I peut par exemple étre choisi avec z; = 1. Alors
y? = 15 et I(1, V15). La pente m de la tangente est donnée par le nombre
dérivé m =y en I. Par dérivée implicite,

22 (2 + y?) = 42 = 20(2® + y?) + 2% (22 + 2yy) = 0

16 17
sz +22(z+y))=0=>16+1+VIbm=0=>m=——.
T

V15

KA
I

(f) Loin de @, les équipotentielles sont des plans normaux a EO .
A proximité de @), les équipotentielles sont des sphere concentriques.
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Exercice 2

(a) Nous savons que le champ électrique produit par la charge ponctuelle ) est radial

et dirigé vers () < 0 :

- 1
B =

Expression de E au point P :

Q.

—€

;
dregr?

ol r est la distance de la charge au point P.

(b) Intéressons-nous a la trajectoire de ’électron au voisinage de la charge :



Au plus pres de la charge, la vitesse
de I'électron est normale au rayon vec-
teur :
U_é 1 F() .

L’électron étant négatif, il est repoussé
par la charge ). Comme effet de la
force de Coulomb, la vitesse tend a
s’aligner sur le champ électrique (on
peut montrer que la trajectoire est une
hyperbole).

Il est possible d’appliquer le théoreme de ’énergie cinétique entre le point au plus
pres de () et un point atteint ultérieurement :

r

Pour le point initial a la distance ry de

(@ et un autre point a la distance r, le

théoreme de 1’énergie cinétique s’écrit
Loy 1,

émv —émvo = qU,y»

La vitesse de I’électron augmente donc au fur et a mesure qu’il s’éloigne de Q).

Exercice 3

(a)
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Intensité du champ produit par ¢ en B:

7 Q
|| Eq, (B)I] = Treed lem.
e Point A
Intensité du champ produit par ¢; en A:
1B (Dl = 23 = 41Ea(B)l] = dem.

Intensité du champ produit par g en A:

B Q 1 -

E, (A)|=——=—=—-||E,(B)||=0.5cm.

1Ea (Al = s = 5 1B
Intensité du champ produit par g3 en A:

. 4Q 4

B (Al = ———=— = zl[E@(B)|[ = 0.8cm.

Areo(VBd)? 5



e Point B (n’est pas demandé)
Intensité du champ produit par ¢; en B:

. B 4Q . B
||E<11(B)|I—47“0(\/%)2 = 2||Eq,(B)|| = 2cm.

Intensité du champ produit par ¢; en B: ||E,,(B)|| = 1cm.
Intensité du champ produit par g3 en B:

|E, (B)|| = 47%0?3561)2 — 2||E,,(B)|| = 2cm.
(b)
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Exercice 4

Tout d’abord, on note que le systeme ne forme qu’un seul conducteur. Par conséquent, le
potentiel électrique de la boule R est égal au potentiel électrique de la boule r, et ce méme
si les charges Qg et (), qui se trouvent a la surface des deux boules sont différentes :

(2 R
@ (2,
CNA

b = P, = & = constante (équipotentielle) .

7



En choisissant un potentiel nul a 'infini, on a

1 Qn_ 10

" 4rey R dmey 1

Le champ électrique a la surface de la boule de rayon R s’écrit

1 Qp  Prp @

:47T60R2_R R’

Er

alors que celui au voisinage de la petite boule est

E,

1 Q % @
Adwegr2 1 r

Comme R > r, on en déduit que

E.> Eg.

On vérifie donc bien que plus la courbure du conducteur est forte (en d’autres termes,
plus le rayon de courbure est petit), plus le champ électrique est intense.

Exercice 5

Il convient de considérer les propriétés du champ électrique dans et au voisinage d’un
conducteur en électrostatique.

(a)

(b)

()

()

(e)
()
(2)

Faux.

La surface d’un conducteur est une équipotentielle et plus la courbure est forte,
plus le champ électrique est intense et la densité superficielle de charge importante.
Vrai.

Sinon les charges libres (électrons de conduction) subiraient une force et seraient
accélérées.

Faux.

La surface d’un conducteur est une équipotentielle et plus la courbure est forte,
plus le champ électrique est intense (effet de pointe).

Vrai.

La surface d'un conducteur est une équipotentielle : les lignes de champ (& I'extérieur)
lui sont perpendiculaires.

Faux.

Sinon le champ aurait plus d'une direction a I’endroit du croisement.

Vrai.

La surface d’'un conducteur est une équipotentielle.

Vrai.

La surface d’'un conducteur est une équipotentielle : la tension entre deux de ses
points est nulle.



Exercice 6

On procede en deux étapes : on détermine tout d’abord la vitesse a ’entrée du condensa-
teur avant de s’intéresser a ’angle de déflexion. Il est clair que plus la norme de la vitesse
Up des électrons a l'entrée du condensateur est grande, plus I'angle de déflexion ¢ sera
faible.

Comme la force de gravitation agissant sur un électron est tres petite en regard de la force
électrique, nous allons la négliger.

Phase d’accélération entre la cathode et ’anode

L’anode est une électrode positive attirant les anions (particules négatives). De la ca-
thode a I'anode, les électrons suivent un chemin entre les extrémités duquel la tension est
négative et vaut —U,.... Le théoreme de I'énergie cinétique permet ainsi d’écrire :

1
_mvg —-0= (_6)(_Uacc.) = e Upyc.

2
2€U3CC.
= v =/ ———.
m

Les électrons arrivent donc avec une vitesse horizontale 7y a 'entrée du condensateur.
Phase de déflexion entre les deux plaques du condensateur

L
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Le champ électrique régnant entre les plaques est uniforme. Il est vertical, dirigé vers le
haut (de la plaque positive a la plaque négative) et son intensité vaut

U

E =1 = Cste )

d
La force que subit un électron est F' = (—e)E. Cette force est donc verticale et dirigée
vers le bas et ne va pas modifier la vitesse horizontale. La deuxieme loi de Newton permet
alors d’écrire

o € =
a=——=F.
m

L’accélération d'un électron est constante et sa vitesse a donc pour expression

9



L’origine du temps a été placée a l'instant ou 1’électron entre dans le condensateur. La
composante v, de la vitesse de ce dernier ne varie pas et est égale a vy. Pour connaitre la
vitesse selon €, il est nécessaire de déterminer le temps mis par la particule pour traverser
le condensateur de longueur L, c’est-a-dire le temps durant lequel la force électrique due
a la présence des plaques va défléchir la trajectoire du faisceau électronique en modifiant
la composante v,. Ce temps est donné par

L
tl =
Vo
de sorte que la vitesse de 1’électron a la sortie du condensateur vaut

o= (o)) o= ()« ()

L’angle de déflexion est finalement donné par sa tangente :

o Uy(tl) o at1 o L
tan(p - Uw(h) B Vo B 2Uacc.d U
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