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Corrigé 5

Exercice 1

Nous allons exploiter la définition de la tension entre deux points, ainsi que celle du
potentiel en un point.

Tout d’abord, il est possible d’indiquer le sens du champ électrique :

La tension entre A et B étant positive, en allant
de A a B, on “descend” le champ électrique F.

Esquissons maintenant les équipotentielles passant par les points donnés :

Les points A et H se trouvent sur une meéme
équipotentielle (normale aux lignes de champ).
De méme pour

e Bet I,
e D, FEetl,
e CetG.

La différence de potentiel entre B et D est environ
Upp = 2V. Donc par rapport a D,

Py=4V,05=2V, dp =0V, & = -2V.
Exercice 2

Il convient, comme d’habitude, de commencer par faire un dessin. Ensuite, nous allons
exploiter la définition de la tension.
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=

Par définition, la tension Uyp entre un point A et un point B est donnée par
B —
Uap = / E-dr.
A
On cherche a déterminer la tension entre le point A et le point B :
B —
Uap = / E-dr.
A

Lorsque l'on se déplace de A a B en suivant le coté AB du triangle, le vecteur E est
constant, de méme que le vecteur dr :

Ainsi, la tension s’écrit

B

B B
Uiy = / E~dF:/ HEHcos(zoomr:HEHcos(z()O)/ dr

A A A
— ||| cos (20°) ||AB]| = 15 - cos (20°) - 0.1 = 1.41 V.
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Remarque :
On aboutit a la méme conclusion en considérant n’importe quel chemin entre les points
A et B. On peut par exemple choisir le chemin ADB suivant :

La tension est alors donnée par

B _ D B B o (P
Usp — / E-dF:/ E-df+/ E-dF:0+/ ||E||d7“=||E||/ dr
A A D b b

— |E|| ||AB]| cos (20°) = 15- 0.1 - cos (20°) = 1.41 V.

Sur le chemin AD, la tension est nulle car le vecteur E est perpendiculaire au vecteur dr.
On cherche maintenant a déterminer la tension entre le point B et le point C :

C—»
UBC:/ E-dr.
B

Lorsque l'on se déplace de B a C' en suivant le coté BC' du triangle, le vecteur E est
constant, de méme que le vecteur dr’ :

Ainsi, la tension s’écrit

C . C . . c
Use = / E-dF:/ HE||cos(1OOO)dr:||EHCOS(1OO°)/ dr

B B B

— |IE|| cos (100°) [| BC|| = 15 - cos (100°) - 0.1 & —0.26 V..

Finalement, nous allons déterminer la tension entre le point C' et le point A :
A —
Uca = / E-dr.
c
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Lorsque l'on se déplace de C' a A en suivant le coté C'A du triangle, le vecteur E est
constant, de méme que le vecteur dr’ :

1 C_E
QY ‘
N
A
B
Ainsi, la tension s’écrit
A A . A
Uca = / E-dF—/ HEHCOS(MOO)CZT—HEHCOS(MOO)/ dr
c c c

- —
= ||E]||cos (140°) ||CA|| = 15 - cos (140°) - 0.1 = —1.15 V.

Remarque :
Les valeurs que nous avons obtenues vérifient bien I'annulation de la tension le long d’un
chemin fermé :

A
UAA:/ E-dr=0V.

A
En effet,

Usa = Uap+Upc+Uca
n o - o - o =~
= HEHCOS(QO)H@HH\EHCOSUOO)HB?HJFHEHCOS(MO)HCAH

— ||E||||AB]| (cos (20°) + cos (100°) + cos (140°))
— || ]| |AB]| (2 cos (60°) cos (40°) + cos (140°))
= ||E|| ||zﬁ|| (2 cos (60°) cos (40°) — cos (400))

= ||E|| H@H cos (40°) (2cos (60°) — 1)
= IBNABY] cos (40°) (25 —1)

= 0V.

Exercice 3

Il convient de se remémorer les notions de force conservative, d’énergie potentielle et de
potentiel (par exemple en faisant ’analogie avec la force de gravitation).

Tout comme la force gravitationnelle, la force électrique est une force conservative en
électrostatique. Ainsi, le travail de la force électrique sur une particule de charge ¢, entre
deux points A et B, s’écrit

B

Wan(Fa) = g / B dif = Byos(A) — Ey(B) = qUns.,
A



ou la tension électrique Uqp ne dépend que des points A et B (et non pas du chemin suivi
par la particule). On introduit alors la notion de potentiel électrique :

Uap =®4 — Pp,

telle que

—

Wasg(Fa.) = Epot(A) — Epot(B) =q P4 — ¢ ®p.
Les potentiels aux points A et B, &4 et &, sont définis a une constante arbitraire pres,
mais la tension Uyp = &4 — &5 ne dépend pas du choix de cette constante.

La seule connaissance de la tension U,p entre deux points A et B ne permet donc pas de
connaitre les potentiels ® 4 et .

Exercice 4

Pour rappel, le potentiel électrique est un champ scalaire : a tout point de 'espace est
associé une valeur du potentiel électrique.

Nous allons considérer un condensateur plan. L’approche est identique pour toute autre
géométrie.

Les lignes du champ électrique E vont de I'arma-

A . L
l l ture positive vers I'armature négative.
/ l ﬁ\ Tous les points sur une méme armature sont au
Y Y Y R . ,
' dF‘ E méme potentiel (une armature représente un seul
‘ et méme conducteur). Prenons A sur I'armature
l B | positive et B sur 'armature négative, sur la méme

ligne de champ que A.
La tension entre A et B, donc également la différence de potentiel entre A et B, s’écrit

B
UAB:q)A_q)B:/ E-dr > 0.
A

Comme le champ E et le déplacement dr’ sont de méme sens, I'intégrale prend une valeur
positive. Autrement dit, en “descendant” le champ, le potentiel diminue. Ainsi, ®4 > &g
et c’est 'armature positive qui se trouve au potentiel le plus élevé.

Exercice 5

Nous allons construire les lignes du champ électrique produit par la charge et en déduire la
nature des équipotentielles a partir de la définition de la tension et du potentiel électriques.
Nous allons faire un dessin dans le cas d’une charge positive : ¢ > 0. La charge ¢ produit
un champ électrique E qui est radial et dirigé vers l'extérieur :



lignes de champ

Vue en deux dimensions (coupe transversale)

La tension mesurée entre deux points quelconques d’'une équipotentielle doit étre nulle :

B
UAB:/ E-di=d,—o5=0,
A

ou les points A et B appartiennent a la méme équipotentielle (®4 = ® ). Par conséquent,
les surfaces équipotentielles doivent étre des spheres centrées sur la charge ¢ (voir la
représentation en deux dimensions en page suivante).

® = constante

équipotentielles

lignes de champ

Vue en deux dimensions (coupe transversale)

On vérifie alors bien que la tension entre deux points d’une méme sphere est nulle (le
champ E étant alors toujours perpendiculaire a la surface, et par suite a tout vecteur
dr’ du chemin).

Le potentiel électrique a pour expression

d + constante.

O(7F) =
() dregr

Il prend effectivement des valeurs constantes sur des spheres centrées sur la charge ¢ :

®(7) = constante < 7 est constant .
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En électrostatique, les lignes de champs électriques sont toujours perpendiculaires aux
équipotentielles.

Exercice 6

(a) En un point P quelconque de I'espace (mis a part C; et Cs), le champ électrique
di aux charges q; et ¢o aux points C] et Cy est la somme des champs électriques
dus aux charges individuelles (principe de superposition).

Nous allons calculer les champs électriques El et Eg en quelques points et effectuer
leur somme graphiquement.

En un point P choisi par exemple a r; = 2.5cm de C et a ry = 4.3cm de Cy, nous
déterminons le champ di a ¢ :

e la direction est définie par P et (],
e le sens est “a 'opposé” de ¢; (car ¢; > 0),

e la norme vaut
q1

2

— ~921-107°NC!
Ameg Ty

Ey

et le champ du a ¢ :

e la direction est définie par P et Cy,
e le sens est “vers” ¢y (car ¢o < 0),

e la norme vaut

Ey = ’q—j‘ ~312-10°NCL
dmeg 15

Nous reportons ces vecteurs a une certaine échelle sur le dessin et effectuons 'ad-
dition graphiquement :

T
i By A :
E=E\+E;
L P ]
12
B qie o2 1
Cl C(2
B P* .
P**
| lem~6-107SNC™" |

Sur le dessin, nous avons également appliqué le principe de superposition a deux
autres points P* et P**.

(b) Remarquons tout d’abord que la situation est invariante par rotation d’axe C1C} .
Ensuite, en échangeant les charges, nous avons la méme situation qu’initialement,
a la différence pres que les champs sont inversés. Il existe donc une symétrie plane,
de plan médiateur du segment C;C5. Nous déterminons les champs dus a ¢; et a
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g2 sur le plan médiateur : ils sont symétriques par rapport a la direction C;C5 . Le
champ résultant est donc parallele a CC5 . De plus, a proximité d’une charge, le
champ du a cette charge est tres important (la distance a la charge étant petite)
et le champ da a 'autre charge est négligeable. Le champ résultant possede donc
a proximité des charges une symétrie centrale.

En reliant les deux comportements établis ci-dessus, nous pouvons tracer approxi-
mativement les lignes du champ (résultant) di aux deux charges :

Plus les lignes de champ s’écartent, plus 'intensité du champ électrique diminue.

(c) En électrostatique, les surfaces équipotentielles sont normales aux lignes de champ :



Il est judicieux de représenter des équipotentielles par incrémentation réguliere du
potentiel. En effet, on a alors que plus ces équipotentielles sont rapprochées, plus
le champ électrique est intense.

Exercice 7

Pour les deux cas, nous allons visualiser la situation sur un dessin et utiliser le théoreme
de I'énergie cinétique.

Pour le cas de I'électron, comment est la force entre les points de départ et d’arrivée?
Comment est le champ électrique ? Quel est le signe de la tension entre ces points ?
Notons A le point de départ et B le point d’arrivée :

i La force accélérant 1’électron est dirigée vers B.
-
A P B

Le champ électrique est opposé a F = qu , car
ge = —e < 0. Il est dirigé vers A.

La tension entre A et B est négative : de A vers B on “remonte” le champ E et

B

UAB:/ E-dr=-U,, avecUy=1V.
A

Le théoreme de I’énergie cinétique entre A et B permet alors de connaitre la vitesse de

I’électron en B par rapport a celle en A. En négligeant le poids de ’électron devant la

force électrique,

Ecin(B) _Ecin(A) - fo)iB
1

§mev§ —0 = q.Uyp.

La charge de I’électron étant négative,

1
§me?}§ —0= QeUAB = (-6)(—(]0) = €Uo >0



2el 2-1.602-10-°C-1V 5 1
= V.= = - =5.93-10 .
e =\ T, \/ 9.11-10-3' kg e
Pour le cas du proton, comment est la force entre les points de départ et d’arrivée?

Comment est le champ électrique ? Quel est le signe de la tension entre ces points?
Notons a nouveau A le point de départ et B le point d’arrivée :

La force accélérant le proton est dirigée vers B.

e E L
;1 == é Le champ électrique est de méme sens que F' = ¢, F', car
F gp=+e>0.

La tension entre A et B est positive : de A vers B on “descend” le champ E et

B
UAB:/ E-dr=+4U,, avecUy;=1V.
A

Le théoreme de I’énergie cinétique entre A et B permet alors de connaitre la vitesse du
proton en B par rapport a celle en A. En négligeant le poids du proton devant la force
électrique,
Ecin(B> - Ecin(A) = WffiB
1
Empvf, -0 = qUas.

La charge du proton étant positive,

1
—mpvi —0= QpUAB = €U0 >0

2

2l [2-1.602-10-9C-1V .

= v, = _ —1.38-10°ms .
o \/mp \/ 1.67- 102 kg e

Exercice 8

Nous allons appliquer la deuxieme loi de Newton a I’électron en tenant compte de 'ex-
pression de la force électrique.

(a) A Tl'intérieur d’un condensateur plan, le champ électrique peut étre supposé uniforme
(E = constante) et de direction perpendiculaire aux plaques. Ainsi, si les plaques sont
horizontales, une particule de charge ¢ va subir une force verticale constante Fy = qF.

Un électron de masse m et de charge ¢ ( ) & I’équilibre entre les deux plaques
va donc subir deux forces :

plaque supérieure

A -

Fy = (IE

5cm

mg

plaque inférieure
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La deuxieme équation de Newton s’écrit alors
mg+qb =0,
avec ¢ = —e. Par conséquent,

E=

m
_g.
e

Le champ électrique E est donc de méme sens que le champ de gravitation g, et la plaque
supérieure est chargée positivement, la plaque inférieure étant chargée négativement :
plaque supérieure
@ \

ﬁél. = (JE

5cm

i}
]

E

]
i}
i}

mg

S v

plaque inférieure

La tension entre les deux plaques est donnée par
U=|lEl|d,

ou d = Hcm est la distance entre les plaques. Ainsi, En utilisant I’expression du champ
électrique obtenue a I’étape précédente, il vient

mgd

U= ~279-10712V.

e
otl nous avons utilisé g = 9.81m/s*, m = 9.11- 1073 kg et ¢ = 1.602 - 10712 C.
Remarque

Il suffit donc d’une tres faible tension pour compenser le poids d’un électron et nous
pourrons négliger le poids des électrons dans la plupart des calculs.

(b) Une tension de 6 V est bien supérieure a la tension nécessaire pour compenser le poids
de I’électron. Nous allons donc ne considérer que la force électrique. La deuxieme équation
de Newton s’écrit alors

—eE =ma.

En projetant selon un repere vertical dirigé dans le sens opposé au champ électrique E et
en utilisant la relation U = ||E||d entre la tension et le champ électrique, il vient

el|E|l eU  1.602-1071-6 5 o
= — = ~211-10 .
m omd  9.11-10%1-0.05 e

a =

Exercice 9

(a) Nous allons faire un dessin de la situation et considérer les forces exercées sur 1’électron :
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- - Objet : I'électron
Force : électrique F= qu .

Remarque : le champ E est opposé a F.En effet,
= pour freiner ’électron, 'armature de gauche doit
F porter des charges positives et celle de droite des
charges négatives.

Rappel : dans un condensateur plan, le champ est
= = uniforme (sauf pres des bords).

Nous pouvons alors utiliser le théoreme de 1’énergie cinétique :

Notons A le point ou I’électron entre dans le
condensateur et B celui ou il atteint I'armature
de droite. Alors
I'lA e B
[ F Ecin<B> - Ecin(A) = ,Z)iB = quAB .
La charge de I'électron est g. = —e < 0 et la ten-
| | sion entre A et B Uy = +U > 0, étant donné
positive négative que I’électron “descend” le champ électrique.

Ainsi,

1 1 2eU
Emv%—émvgz—eU<O = UB:\/vg—%<vo.

L’électron a effectivement été freiné.

(b) Nous allons refaire un dessin et considérer le mouvement de 1’électron jusqu’a 'arrét
entre les armatures :

Objet : I'électron
F 6_ — —
Force : électrique F' = q . F .

Yy
Qe

L’électron s’arréte en C'.
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Nous pouvons a nouveau exploiter le théoreme de 1’énergie cinétique :

Pour le trajet de A a C', le théoreme de 'énergie
cinétique s’écrit

Ecin(C) - Ecin(A) = f\)ic - QGUAC .

L’énergie cinétique en C est nulle.
— Déterminons la tension Uye en se souvenant que

- L le champ E est uniforme.
positive négative

Par définition,

B
UAC:/ B di=F-AC = Edye .
A

D’autre part, la tension entre A et B est

U
0<U=Upp=FEdsp=FEd = E:E

Alors,
d
Uac = Edac = U%
o 1 Ud 2d
2 ctaac mug
0 5" q.Uac 7 = dac el

La durée du freinage t; est obtenue par exemple en considérant I’évolution de la vitesse,
sachant que l'accélération due a la force électrique est constante :

muod

te —
f eU
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