
Ecole polytechnique fédérale de Lausanne Cours de Mathématiques Spéciales
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Exercice 1

Nous allons étudier la situation où les deux masses sont à l’équilibre. Il convient donc de
faire un dessin, choisir un objet, inventorier les forces extérieures s’exerçant sur cet objet,
avant d’écrire la deuxième loi de Newton dans le cas d’une situation statique.

Nous allons nous intéresser à la masse de gauche (objet considéré).

q q

mg⃗

F⃗él.

T⃗

En supposant que la force de gravitation due à la masse de droite est négligeable, les
forces s’exerçant sur la masse de gauche sont le poids mg⃗, la force électrique répulsive F⃗él.

due à la présence de l’autre masse et la traction T⃗ dans le fil.
La deuxième loi de Newton s’écrit

mg⃗ + F⃗él. + T⃗ = 0⃗ .

Nous allons choisir un repère et projeter cette relation vectorielle en supposant que le
rayon des sphères est négligeable vis-à-vis de la longueur l des fils.

l

d

α

e⃗x

e⃗y

mg⃗

F⃗él.

T⃗

� selon e⃗x :

T sinα− Fél. = T sinα− q2

4πϵ0(2d)2
= 0 ⇒ T sinα =

q2

16πϵ0d2
;

� selon e⃗y :
T cosα−mg = 0 ⇒ T cosα = mg .
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Nous avons obtenu le système d’équations suivant :{
T sinα = q2

16πϵ0d2

T cosα = mg .

En éliminant la tension T (en faisant par exemple le rapport de ces deux relations), il
vient

d2 tanα =
q2

16πϵ0mg
,

Finalement, la relation géométrique d = l sinα permet d’écrire

sin2α tanα =
q2

16πϵ0l2mg
.

Exercice 2

Comme les charges s’additionnent, il suffit de connâıtre le nombre d’ions contenus dans
une mole. Or, une mole contient NA ions, où NA = 6.022 · 1023 est le nombre d’Avogadro.

Selon l’énoncé, chaque ion porte une charge élémentaire e = 1.602 · 10−19C.

La charge totale portée par une mole d’ions est donc donnée par

Q(1mole) = NAe = 6.022 · 1023 · 1.602 · 10−19 ∼= 9.65 · 104C .

Ce nombre est connu sous le nom de “constante de Faraday”. Il intervient en électro-
magnétisme et en électrochimie.

Exercice 3

Nous allons exploiter le lien entre la force exercée par une charge Q sur une autre charge
q et le champ électrique produit par la charge Q à l’endroit où se trouve q.
La charge q1 = 4µC est séparée de la charge q2 = 6µC par une certaine distance. Comme
les deux charges sont de même signe, elles se repoussent. Plus précisément, la charge q2
exerce une force électrique répulsive F⃗ 2→1 sur la charge q1. Par la troisième loi de Newton
(“action=réaction”), la charge q1 exerce une force F⃗ 1→2 = −F⃗ 2→1 sur la charge q2 :

q1 q2F⃗ 2→1 F⃗ 1→2

Selon l’énoncé, les forces F⃗ 1→2 et F⃗ 2→1 ont une intensité de 0.4N :

||F⃗ 1→2|| = ||F⃗ 2→1|| = F = 0.4N .

(a) L’intensité du champ électrique de la première charge q1 à l’endroit où se trouve
la seconde charge est donc

E1 = ||E⃗1|| =
F

q2
=

0.4

6 · 10−6
∼= 6.67 · 104Vm−1.

Le champ électrique E⃗1 est parallèle à la force F⃗ 1→2 (et de même sens) :

q1 q2 F⃗ 1→2

E⃗1 =
1

q2
F⃗ 1→2
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(b) De même, l’intensité du champ électrique de la seconde charge q2 à l’endroit où se
trouve la première charge q1 est donnée par

E2 = ||E⃗2|| =
F

q1
=

0.4

4 · 10−6
= 105Vm−1.

Le champ électrique E⃗2 est parallèle à la force F⃗ 2→1 (et de même sens) :

q1 q2F⃗ 2→1

E⃗2=
1

q1
F⃗ 2→1

Exercice 4

La force exercée sur la charge q = e > 0 est la somme (vectorielle) des forces électriques
dues à q1 et q2. La force due à q1 > 0 est radiale et répulsive, alors que celle due à q2 < 0
est radiale et attractive. Déterminons ces forces individuelles F⃗1 et F⃗2 et additionnons-les
graphiquement.
Sur le dessin, on mesure que les distances respectives de q à q1 et q2 sont

r1 = 2.5 cm et r2 = 4.3 cm .

La norme des forces individuelles est alors

F1 =
1

4πε0

q1q

r 2
1

=
4 · (1.602 · 10−19C)2

4π · 8.8542 · 10−12C2N−1m−2 · (2.5 · 10−2m)2

= 1.476 · 10−24N ∼ 1.48 cm ,

F2 =
1

4πε0

|q2|q
r 2
2

=
4 · (1.602 · 10−19C)2

4π · 8.8542 · 10−12C2N−1m−2 · (4.3 · 10−2m)2

= 0.499 · 10−24N ∼ 0.50 cm .

On reporte ces vecteurs à l’échelle sur le dessin et on effectue l’addition graphiquement :

q1 q2

q

F⃗1

F⃗2

F⃗ = F⃗1 + F⃗2

1 cm ∼ 10−24N
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Exercice 5

En un point P quelconque de l’espace (mis à part C1 et C2), le champ électrique dû à
plusieurs charges q1 et q2 aux points C1 et C2 est la somme des champs électriques dus
aux charges individuelles (principe de superposition).

Nous allons calculer les champs électriques E⃗1 et E⃗2 en quelques points et effectuer leur
somme graphiquement.

En un point P choisi par exemple à r1 = 2.5 cm de C1 et à r2 = 4.3 cm de C2 , nous
déterminons le champ dû à q1 :

� la direction est définie par P et C1 ,
� le sens est “à l’opposé” de q1 (car q1 > 0) ,
� la norme vaut

E1 =
1

4πε0

q1
r21

= 9.21 · 10−6NC−1

et le champ dû à q2 :

� la direction est définie par P et C2 ,
� le sens est “vers” q2 (car q2 < 0) ,
� la norme vaut

E2 =
1

4πε0

|q2|
r22

= 3.12 · 10−6NC−1.

Nous reportons ces vecteurs à une certaine échelle sur le dessin et effectuons l’addition
graphiquement :

~E1

~E2

~E = ~E1 + ~E2

q1
C1

q2
C2

1 cm ∼ 6 · 10−6 NC−1

Remarquons d’abord que la situation est invariante par rotation d’axe C1C2 .
Ensuite, en échangeant les charges, nous avons la même situation qu’initialement, à la
différence près que les champs sont inversés. Il existe donc une symétrie plane, de plan
médiateur du segment C1C2 .
Nous déterminons les champs dus à q1 et à q2 sur le plan médiateur : ils sont symétriques
par rapport à la direction C1C2 . Le champ résultant est donc parallèle à C1C2 .
De plus, à proximité d’une charge, le champ dû à cette charge est très important (la
distance à la charge étant petite) et le champ dû à l’autre charge est négligeable. Le
champ résultant possède donc à proximité des charges une symétrie centrale.
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En reliant les deux comportements établis ci-dessus, nous pouvons tracer approximative-
ment les lignes du champ dû aux deux charges.

Plus les lignes de champ s’écartent, plus l’intensité du champ électrique diminue.

Exercice 6

Le théorème de l’énergie cinétique s’applique à un objet choisi. Il convient donc de procéder
comme d’habitude : dessin, choix de l’objet, identification des forces, lois de la dynamique.

Nous allons considérer le cylindre :
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CM
R

mg⃗

T⃗
Objet : cylindre

Forces : poids, tension

Appliquons le théorème de l’énergie cinétique au cylindre :

mR

à t1

mR

à t2

h

e⃗y

Théorème de l’énergie cinétique entre l’instant
initial t1 , la situation (1), et l’instant final t2 ,
la situation (2) :

Ecin(2)− Ecin(1) = W ext
1→2 ,

où l’énergie cinétique du solide (la somme de
l’énergie cinétique de toutes les parties) peut
s’écrire comme somme des énergies cinétiques
de translation du CM et de rotation autour du
CM :

Ecin = Ecin,CM + Ecin,rot .

Ecrivons l’énergie cinétique initiale et finale. Initialement (instant t1) le cylindre est im-
mobile. Après une descente d’une distance h , sa vitesse (celle de son CM) est v⃗2 et sa
vitesse angulaire autour du CM est ω⃗2 :

Ecin(1) = Ecin,CM(1) + Ecin,rot(1) =
1

2
mv21 +

1

2
Iω2

1 = 0

Ecin(2) = Ecin,CM(2) + Ecin,rot(2) =
1

2
mv22 +

1

2
Iω2

2 .

Déterminons maintenant le travail de chacune des forces, en se souvenant que, par définition,
le travail d’une force F⃗ est

W1→2 =

∫ 2

1

F⃗ · dr⃗ ,

où dr⃗ est le déplacement du point du solide sur lequel la force F⃗ est appliquée.

� Pour le poids, appliqué au CM,

W1→2(mg⃗) =

∫ 2

1

mg⃗ · dr⃗CM .

Le poids étant constant et le CM en mouvement vertical vers le bas,

W1→2(mg⃗) = mg

∫ 2

1

dyCM = mgh .

Remarque : ce travail est positif.
� Pour la tension, appliquée au morceau mi du cylindre lorsqu’il atteint le fil vertical
(point C)

W1→2(T⃗ ) =

∫ 2

1

T⃗ · dr⃗i .

Dans le référentiel du CM, tout mi sur le cylindre est en rotation autour du CM.
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⊗ ω⃗CMr⃗ ′
i

v⃗ ′
i

v⃗CM

v⃗ ′
i = ω⃗CM × r⃗ ′

i .

Dans le référentiel d’inertie, la vitesse
de mi est alors

v⃗i = v⃗CM + v⃗ ′
i = v⃗CM + ω⃗CM × r⃗ ′

i .

En particulier, lorsque mi atteint le le point C , d’une part v⃗CM est dirigée vers le
bas et de norme RωCM (si le fil se déroule de ∆s = R∆θ , le CM descend d’autant)
et d’autre part ω⃗CM × r⃗ ′

i est vers le haut et de norme RωCM ,

v⃗i = 0⃗ en C .

On dit que C est le centre instantané de rotation.
Pendant une durée infinitésimale dt , le déplacement dr⃗i de mi est donc nul et le
travail de la tension également :

W1→2(T⃗ ) =

∫ 2

1

T⃗ · dr⃗i = 0 .

Revenons au théorème de l’énergie cinétique. Ce dernier s’écrit ainsi

Ecin(2)− Ecin(1) = W ext
1→2

1

2
mv22 +

1

2
Iω2

2 = mgh .

De plus, comme déjà indiqué, le mouvement du CM et la rotation autour du CM sont liés
par le déroulement du fil. A l’instant t2 ,

v2 = Rω2 .

Finalement,
1

2
mv22 +

1

2
Iω2

2 =
1

2
mv22 +

1

2
I
v22
R2

=
mR2 + I

2R2
v22 = mgh ,

d’où

v2 =

√
2ghmR2

mR2 + I
=

√
2gh

1 + I
mR2

<
√

2gh .

L’inertie de rotation fait que la descente est plus lente qu’en chute libre.
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