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Exercice 1
Comme le courant ne circule que pendant une seconde, il faut différencier deux cas.

Lorsque le moteur est en fonction (c’est-a-dire lorsque le courant circule), le rotor voit sa
vitesse angulaire augmenter. Le moment de force M est parallele et de méme signe que
la vitesse angulaire du rotor . Ainsi,

M=,

ol M est le moment du couple. Ce moment est constant et non nul dans la premiere
seconde apres 'enclenchement (0 < ¢ < 1s). Ensuite (pour ¢ > 1s), il est nul. Il convient
donc de procéder en deux étapes.

Pour 0 <t < 1s, le moment du couple est non nul et provoque une accélération angulaire

w = — = constante .

La vitesse angulaire est alors donnée par

M
W(t) = Tt—l—wo,

ol wy = w(0) = 0s™' car le moteur est initialement immobile. L’angle parcouru par le
rotor a quant a lui pour expression

1

ou l'on va poser ¢y = ¢(0) =0.
On a donc en particulier,

2 12
ls)= —=20s"" et p(ls)=-— =
wils) =57 =205 et ol =555
Pour ¢ > 1s, le moment du couple est nul. Il n’y a donc pas d’accélération angulaire et la
vitesse angulaire du rotor est constante :

10.

w=0 = w(t)=w(ls)=w = constante.
L’angle parcouru par le rotor est ainsi donné par

o(t) = p(1s) +wi(t—15s).
Ainsi,

©(28) =10+20(2—1) =30
et le nombre de tours correspondant est

©(2s)

n(2s) = -

=4.77.

Exercice 2

Il n’est pas judicieux de choisir comme objet cylindre et contrepoids, ces deux parties ne
bougeant pas de la méme maniere. Ainsi,
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e on considere tour a tour le cylindre et la masse

e on établit la liaison géométrique entre leurs mouvements.

a) Cylindre
Objet : cylindre
Forces : poids, tensions

Le CM est accéléré :
m1§’+f+f' = mlc_il .

Selon €, ,
mig+T —T =mia, .

Rotation autour du CM :

Moy = MCM(m1§) + MCM(T) + MCM(T,) = Iom@om
—_—— — ' — —

0 ® ®
Selon €, :
rT + RT' = ICMwCM .
b) Masse (contrepoids)
Objet : contrepoids
I—TH Forces : poids, tension
{ mag — T= Mady

€y Selon €, :

lng
mog — T = moas .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du

cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.

° Si, pendant At le cylindre tourne d’un
®E, { . angle Af dans le sens donné par €, , le
€y fil & gauche se déroule de

As = RAO

et le CM du cylindre se déplace de
Ay; = As = RAO
dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ay . Af :
A A T A A ¢ e = a s fsou.



° Si, pendant At, le cylindre tourne d’un angle A6
dans le sens donné par €., le fil se déroule et le
contrepoids se déplace de As = rAf par rapport
au cylindre dans le sens donné par ¢, .

Donc par rapport au plafond, msy se déplace de

Ays = Ay; + As = (R+1r)Ad

dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ayy . A0 o o .
Al}fglOTt_(R—’_T)Al}fIEOKt ~ UQ—(R—f—T)wCM = ag—(R—i—r)wCM.

d) Résolution du systéeme

mg+T—-T = ma
rT + RT/ = ICMLZJCM
mog — T = maas
a; = RCZJCM
ay = (R + T)@CM .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de wey et de
résoudre le systeme

mg+T—T = miRwcm ‘R
rT + RT/ = [CMCUCM -1
meg —T = mo(R+7)wem | - (R+7)

en amplifiant les équations respectivement par R, 1 et 2R, de sorte que I’addition membre
a membre fasse tomber les termes en T" et 7", inconnues non recherchées. On obtient alors

migR + mag(R +r) = (miR* + Icn 4+ ma(R + 1)) -
Il vient alors (avec Icy = %mle pour un cylindre plein)

migR+mag(R+71)  2mi+2ma(1+p) g

WeM = = 7
M S R my(R+7)2 3mu+2mo(1+p)? R
et donc
0 = Riens — 2my + 2ms(1 + p)
! M = S ¥ 2ma(l 1 p)2 Y
. 2my (1 + p) + 2my(1 + p)?
a = R(l1+pweym =
? (1+p)bon 3my + 2ma(1 + p)?
Discussion

e Comme 2m; < 3my et 2mo(1 + p) < 2mo(l +p)?, ona 0 < a; < g. Le CM du
cylindre accélere vers le bas et moins fortement qu’en chute libre.



e Comme ay; > 0, mo accélere bien vers le bas. Mais elle ne peut pas le faire aussi
fortement qu’en chute libre (la tension ne peut pas pousser ms vers le bas). La
relation est donc correcte seulement si ay < g, soitsil+p<1&p< % !

Sip> %, le fil est détendu et ms est en chute libre. En effet, le calcul de T" donne

2mi (1 + p) + 2mo(1 +p)2>
T =m —a = 1-— m
2(9 = a2) ( 3my + 2ma(1 + p)? 2

3my + 2ma(1 + p)? — 2my (1 + p) — 2my(1 + p)? .
3mq + 2m2(1 +p)2 29

( my (1 = 2p) >
= 5 | M2g
3my + 2my(1 + p)

d’ou la condition T'> 0 < p < % .

Exercice 3
Comme dans I'exercice 1,
e on considere tour a tour le cylindre et la masse
e on établit la liaison géométrique entre leurs mouvements.
a) Cylindre
Objet : cylindre
Forces : poids, soutien, tension, frottement

Le CM est accéléré :

= A g G I F
T MG+ S5+T+ f= May
2 Selon €,
> T—f=May (any=0).
*M;q M Rotation autour du CM :
Cx © gz

Moy = MCM(Mff) + MCM(g) "‘MCM(T) ‘|‘MCM(]F) = Iomtem
0 0

Selon €, :
RT + Rf = Icmwew -

b) Masse (contrepoids)

Objet : contrepoids

T “\ O Forces : poids, tension
mg+ T = md,,
[@ Cz  ©e,
B Selon €, :
. €
magy 4

mg —T = ma,, .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.



° Si, pendant At le cylindre tourne d’un
angle Af dans le sens donné par €, , il
“enroule” sur le sol une longueur

As = RAO

et le CM du cylindre se déplace de

Az = As = RAO

dans le sens donné par €, .
Les variations temporelles (dérivées) donnent alors

A Tar T Al Ry @ v feon == o,

° Si, pendant At le cylindre tourne d’un
angle Af dans le sens donné par €, ,
le fil se déroule et le contrepoids se
déplace de As = RAO par rapport au
cylindre dans le sens donné par €, .
Comme le cylindre avance de Axy;, m
se déplace de

Ay, = Az + As = 2RA0

dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ayp, . Ad .
A ar T R ¢t e = = 2ion

d) Résolution du systéeme

T—f = MCLM

RT + Rf = Icmwem
mg—T = ma,,
ay = RwCM
Ay, = QRCUCM .

I1 est souvent plus simple de d’abord exprimer les accélérations en fonction de wey et de
résoudre le systeme
T—f = MRwenm | - R
mg—T = m2Rwcm | - 2R
en amplifiant les équations respectivement par R, 1 et 2R, de sorte que ’addition membre
a membre fasse tomber les termes en T' et f | inconnues non recherchées. On obtient alors

2mgR = (M R? + Ioy + 4mR*)wc -
Avec Icy = %M R? pour un cylindre plein, il vient

B 2mgR B dmg
 MR2+ Iy +4mR2 - (3M +8m)R

weM
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et donc

4dm

M WOM = S L sm Y
8m

“ WOM = S+ 8m Y

Le cylindre accélere vers la gauche et la masse vers le bas.

Exercice 4

Nous allons exploiter le théoreme du moment cinétique pour étudier la dynamique de la
rotation de la toupie.

Nous allons supposer que le couple de freinage est mesuré par rapport au centre de la
toupie (axe de rotation). Par hypothese, ce couple, que nous allons noter M , est supposé
constant. Il s’oppose a la rotation de la toupie et conduit a une décélération de celle-ci :

M =13,

Imaginons que la toupie tourne dans le sens des aiguilles d’'une montre (vecteur vitesse
angulaire ) et choisissons un repeére dans le méme sens (J = ke, avec k > 0).

La projection de I’équation ci-dessus fournit alors
-M=1w.

Le signe traduit le fait que M s’oppose a &@.
Ainsi, I'accélération angulaire s’écrit

w = —— = constante.
I

On devine alors que la vitesse angulaire est de la forme

w(t) =wo — Tt,

ou wp est une constante.
La constante wy correspond a la vitesse de rotation initiale de la toupie :

w(t=0s) =wp = 5027 = 314.159s " .



Nous savons que la toupie tombe apres 30 secondes car sa vitesse angulaire est devenue
négligeable (w = 0s™!). Ainsi,

M
W(tl =30 S) = Wy — Ttl

= 0.
Cette équation permet de déterminer le couple de freinage :

Two 200 - 1073 -107* - 1007

~9209-107*Nm.
t 30 m

M =

L’expression de la vitesse angulaire de la toupie,
M
W(t) = Wy — Tt,
permet de deviner 'angle parcouru par la toupie au cours du temps :

M
0(t) = wot — —12.
(t) = wot = 57

On en déduit le nombre de tours effectués par la toupie jusqu’a son arrét :

o(t 1 M
n(t; =30s) = ;;) = %(wotl - §t12>

Exercice 5

Nous allons appliquer le théoreme du moment cinétique aux masses en rotation m; et ms.
Il sera également nécessaire de décrire le mouvement des masses ms et my se déplacant
verticalement.

Appelons fg, respectivement f4, la force qu’exerce mgs, respectivement my, sur les cylindres
solidaires.

En choisissant €, entrant, la projection du théoreme du moment cinétique selon €, s’écrit

s+ 1Ty = (I + Ir)w,

ou w est 'accélération angulaire des deux cylindres (ces derniers sont supposés solidaires).
La deuxieme loi de Newton appliquée aux masses ms et my s’écrit

m;q+1; = m;a;, oui=3,4.
En projetant selon ¢, dirigé vers le bas, nous obtenons les équations
msg — 13 = mgaz et myg — Ty = myay .

Il convient maintenant de trouver la liaison entre le mouvement de rotation des cylindres
et le mouvement de translation des deux masses ms et my.



Lorsque les cylindres tournent a une vitesse angulaire w, les masses mg et m4 descendent
avec les vitesses respectives
v3 =Tiw et vy = row.

Par conséquent,
as =riw et ag = row.

En résumé, nous avons les équations

mTs+rTy = (I +L)w,

mgg — 13 = maag,

myg — Ty = myay,
a; = mw,
ay, = 7‘2(,2) .

En éliminant T3, T}, a3 et a4, nous obtenons 'expression de 'accélération angulaire :

o= (r1mg + r2my) p
(m1 + TTL3)T12 + (m2 + m4)r22 ’

Les accélérations verticales des deux masses mg et my4 sont alors données par

Tl(Tlmg + T2m4)
(m1 + m3)7’12 + (mg + m4)r22

az —

et
To(rims + romy)

(my + m3)ri2 + (ma + my)r?

aq =

Quant aux tensions dans les fils, elles s’écrivent

r1(rims + romy)
my + m3)ri2 + (mg + myg)re

Ty = mg(g—ag):mgg(l—< 5

miri? + mara? + mars? — riremy
(m1 + m3)7“12 -+ (mg + m4)r22

= masg

et

T2<T1m3 + r2m4)
mq + mg)T12 —+ (m2 + m4)r2

Ty, = my(g—ay) =myg(l — ( 5

m17"12 + m2r22 + m37’12 — T172M3
(m1 + m3)7"12 + (mg + m4)r22

= Myg

Exercice 6

Nous allons appliquer le théoreme du moment cinétique a la masse en rotation m;. Il sera
également nécessaire de décrire le mouvement de translation horizontal des deux masses
mi et my.

Dynamique de I'objet ¢ ”?

Appelons T' la tension dans le fil entre la roue et la masse ms.



]

axe

— — ®€Z

T €z

Avec le choix de €, dirigé vers la gauche et €, sortant, la deuxieme équation de Newton
appliquée a la roue s’écrit

F+T= mias .
D’autre part, dans le référentiel du CM et par rapport a un axe passant par le CM, le
théoreme du moment cinétique fournit

R(F-T) =1,

ol R est le rayon de la roue.

Dynamique de la
La masse ne tourne pas, mais subit une accélération dont ’expression est donnée par la
deuxieme loi de Newton projetée selon €, :

— —

_T €

—T = moaQs .
(a) Nous avons obtenu un systeme de trois équations :
F+ T = miay ,
R(F-T) Iw,

=T = moaQy .

Nous devons maintenant établir le lien entre aq, as et w.
Si ¢ est la longueur du fil entre la roue et l'extrémité du fil et d la longueur du fil entre la
roue et la masse, on a

.
<R7TR
Dd\

(+7R+d=1L.
Cela implique que o
(+d=0
(toute longueur prise sur I'un des morceaux se retrouve sur 'autre).

De plus, lorsque la roue tourne d’un angle ¢, la longueur ¢ gagne Ry. Ainsi { = Rw.



Comme d = x5 — 1, 2 et 21 étant les positions respectives de mo et mq, il vient
(+d=Rio+ay—a; =0.

Notre systéme d’équations est donc finalement, avec I = m R2,

F + T = miaq ,
F-T = miRw,
=T = maas ,

0 = RCZJ"‘(IQ—CLl.

Résolution : variante I En éliminant T" dans les deux premieres équations, il vient
2F = miay + mlRw = ml(al + RW) .

D’autre part, en réécrivant la deuxieme équation a l'aide des deux dernieres relations du
systeme, on obtient
F + meoa; = (mlR —+ ng) w.

Les accélérations de translation et angulaire de la roue ont donc pour expression
F F

ag=— et w= .
mq mlR

On remarque que a; = Rw, ce qui traduit bien le fait que la roue est entrainée par le fil
lorsque ce dernier ne glisse pas sur celle-ci.
Finalement, ’accélération de la masse ms et la tension dans le fil sont quant a elles données
par

a=0 et T =0.

Résolution : variante II Eliminons pour commencer a;, w et ao : multiplions I'éq. 1
par m%? I’éq. 2 par —mil, I’éq. 3 par —m% et additionnons les 4 équations. Il vient

1 1 1
—(F4T)——(F-T)+ —T=0=T=0.
my my mso
Ainsi P 7
CLQIO alsz a; = — w = .
m Rmy

(b) Nous avons obtenu un systeme de trois équations :

F+T = miay ,
R(F-T) = lw,
=T = moasy .
Lorsque le fil glisse sur la roue, cette derniere n’est pas entrainée par le fil et w = 0. Ainsi,

T=F.

Les accélérations de la roue m; et de la masse moy sont alors données par

2F F
ag=— et apg=——.
my ma

Exercice 7

On considere 'objet “haltere” pour la translation (deuxiéme loi de Newton) et pour
la rotation (théoréme du moment cinétique).

Commengons par faire un dessin de 1'haltere en trois dimensions :
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On peut également représenter I'haltere telle qu’elle apparait perpendiculairement a son
axe de rotation :

sol

On note que le point de contact avec le support est plus éloigné du centre que le point de
contact avec le fil.

Nous allons appliquer la deuxieme loi de Newton a l'objet “haltere” :

Objet : haltere

ﬁ+f+m§+§:ma01v[.

Selon €, :
Fcosa+ f=macy -

Il convient de remarquer que le sens de la force de frottement f n’est pas connu a priori.
Dans I'équation ci-dessus, sa composante f selon €, peut donc étre positive ou négative.
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Nous allons maintenant considérer le théoreme du moment cinétique appliqué a I'ob-
jet “haltere” :

eZ
®
sol .
L 4 mg
Rotation par rapport au CM : _
MCM = 01»107~

Selon €, :
_TF - Rf — CMd) .

Comme on suppose que le cylindre roule sans glisser, ’équation de liaison s’écrit :

Aoy — Rw .

On obtient le syteme suivant :

Fcosa+f = mRw

B _ 2. .
_F— Rf = ICMw} = FRcosa—rF =mRw+ Ioyw.

Ainsi,
F(Rcosa — 1) = (mR* 4 Ioy)w,
de sorte que 'accélération angulaire et ’accélération s’écrivent :

Rcosa —r Rcosa —r
v=_—_""" 'F et = Ruo=———RF.
TR+ I, e T T R T

On peut alors trouver ’expression de la force de frottement :

rF IouF Rcosa —r

;o= R R mR2+ Iy,

_rmR+ Tleoy/ R+ Ioy cosa — TICM/RF
mR? + Iy

rmR + Iy cos
mR2 + Iy

Il est intéressant de discuter le signe de I'accélération de maniere a caractériser completement
le mouvement de I'haltere :
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e Si Recosa —r >0 < cosa > 5 (situation ol |a| est petit), I'accélération est
dirigée vers la droite et la force de frottement vers la gauche (f < 0).

r

7> 'haltere est immobile et la force de frottement

e Si Rcosa—r=0 & cosa=

est vers la gauche (f = —3F).

e Si Recosa—7 <0 < cosa < g (situation ot |af est grand), I'accélération est
dirigée vers la gauche et la force de frottement est vers la gauche ou la droite selon
le moment d’inertie.

On se convainc facilement de 'existence de ces trois situations en considérant le moment
des forces extérieures par rapport au point de contact O avec le support.

F

sol 0)

Le moment des forces S mg et f est toujours nul par rapport a ce point. A T'équilibre, le
moment de F' doit donc étre nul, ce qu1 signifie que le support de F (tangent au cylindre
intérieur) passe par O, d’oll cosa = %.
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