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Exercice 1

Comme le courant ne circule que pendant une seconde, il faut différencier deux cas.

Lorsque le moteur est en fonction (c’est-à-dire lorsque le courant circule), le rotor voit sa

vitesse angulaire augmenter. Le moment de force M⃗ est parallèle et de même signe que
la vitesse angulaire du rotor ω⃗. Ainsi,

M = Iω̇ ,

où M est le moment du couple. Ce moment est constant et non nul dans la première
seconde après l’enclenchement (0 < t < 1 s). Ensuite (pour t > 1 s), il est nul. Il convient
donc de procéder en deux étapes.

Pour 0 < t < 1 s, le moment du couple est non nul et provoque une accélération angulaire

ω̇ =
M

I
= constante .

La vitesse angulaire est alors donnée par

ω(t) =
M

I
t+ ω0 ,

où ω0 = ω(0) = 0 s−1 car le moteur est initialement immobile. L’angle parcouru par le
rotor a quant à lui pour expression

φ(t) =
1

2

M

I
t2 + φ0 ,

où l’on va poser φ0 = φ(0) = 0 .

On a donc en particulier,

ω(1 s) =
2

0.1
= 20 s−1 et φ(1 s) =

1

2

2

0.1
= 10 .

Pour t > 1 s, le moment du couple est nul. Il n’y a donc pas d’accélération angulaire et la
vitesse angulaire du rotor est constante :

ω̇ = 0 ⇒ ω(t) = ω(1 s) = ω1 = constante .

L’angle parcouru par le rotor est ainsi donné par

φ(t) = φ(1 s) + ω1(t− 1 s) .

Ainsi,
φ(2 s) = 10 + 20(2− 1) = 30

et le nombre de tours correspondant est

n(2 s) =
φ(2 s)

2π
∼= 4.77 .

Exercice 2

Il n’est pas judicieux de choisir comme objet cylindre et contrepoids, ces deux parties ne
bougeant pas de la même manière. Ainsi,
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� on considère tour à tour le cylindre et la masse

� on établit la liaison géométrique entre leurs mouvements.

a) Cylindre

CMrR

T⃗
m1g⃗

T⃗ ′

⊗ e⃗z

e⃗y

Objet : cylindre

Forces : poids, tensions

Le CM est accéléré :

m1g⃗ + T⃗ + T⃗ ′ = m1a⃗1 .

Selon e⃗y ,
m1g + T − T ′ = m1a1 .

Rotation autour du CM :

M⃗CM = M⃗CM(m1g⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(T⃗ )︸ ︷︷ ︸
⊗

+ M⃗CM(T⃗
′)︸ ︷︷ ︸

⊗

= ICM
˙⃗ωCM

Selon e⃗z :
rT +RT ′ = ICMω̇CM .

b) Masse (contrepoids)

−T⃗

m2g⃗

e⃗y

Objet : contrepoids

Forces : poids, tension

m2g⃗ − T⃗ = m2a⃗2

Selon e⃗y :

m2g − T = m2a2 .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.

�

CM

R

⊗ e⃗z e⃗y

∆y1 = ∆s = R∆θ ∆θ

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z , le
fil à gauche se déroule de

∆s = R∆θ

et le CM du cylindre se déplace de

∆y1 = ∆s = R∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆y1
∆t

= R lim
∆t→0

∆θ

∆t
⇔ v1 = RωCM ⇒ a1 = Rω̇CM .
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�

CM

r
⊗ e⃗z

e⃗y

∆s

∆θ
∆s

Si, pendant ∆t , le cylindre tourne d’un angle ∆θ
dans le sens donné par e⃗z , le fil se déroule et le
contrepoids se déplace de ∆s = r∆θ par rapport
au cylindre dans le sens donné par e⃗y .
Donc par rapport au plafond, m2 se déplace de

∆y2 = ∆y1 +∆s = (R + r)∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆y2
∆t

= (R + r) lim
∆t→0

∆θ

∆t
⇔ v2 = (R + r)ωCM ⇒ a2 = (R + r)ω̇CM .

d) Résolution du système
m1g + T − T ′ = m1a1

rT +RT ′ = ICMω̇CM

m2g − T = m2a2
a1 = Rω̇CM

a2 = (R + r)ω̇CM .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇CM et de
résoudre le système

m1g + T − T ′ = m1Rω̇CM ·R
rT +RT ′ = ICMω̇CM · 1
m2g − T = m2(R + r)ω̇CM · (R + r)

en amplifiant les équations respectivement par R , 1 et 2R , de sorte que l’addition membre
à membre fasse tomber les termes en T et T ′, inconnues non recherchées. On obtient alors

m1gR +m2g(R + r) = (m1R
2 + ICM +m2(R + r)2)ω̇CM .

Il vient alors (avec ICM = 1
2
m1R

2 pour un cylindre plein)

ω̇CM =
m1gR +m2g(R + r)
3
2
m1R2 +m2(R + r)2

=
2m1 + 2m2(1 + p)

3m1 + 2m2(1 + p)2
g

R

et donc

a1 = Rω̇CM =
2m1 + 2m2(1 + p)

3m1 + 2m2(1 + p)2
g

a2 = R(1 + p)ω̇CM =
2m1(1 + p) + 2m2(1 + p)2

3m1 + 2m2(1 + p)2
g .

Discussion
� Comme 2m1 < 3m1 et 2m2(1 + p) < 2m2(1 + p)2, on a 0 < a1 < g. Le CM du
cylindre accélère vers le bas et moins fortement qu’en chute libre.
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� Comme a2 > 0, m2 accélère bien vers le bas. Mais elle ne peut pas le faire aussi
fortement qu’en chute libre (la tension ne peut pas pousser m2 vers le bas). La
relation est donc correcte seulement si a2 < g, soit si 1 + p < 1 ⇔ p < 1

2
!

Si p > 1
2
, le fil est détendu et m2 est en chute libre. En effet, le calcul de T donne

T = m2(g − a2) =

(
1− 2m1(1 + p) + 2m2(1 + p)2

3m1 + 2m2(1 + p)2

)
m2g

=

(
3m1 + 2m2(1 + p)2 − 2m1(1 + p)− 2m2(1 + p)2

3m1 + 2m2(1 + p)2

)
m2g

=

(
m1(1− 2p)

3m1 + 2m2(1 + p)2

)
m2g

d’où la condition T > 0 ⇔ p < 1
2
.

Exercice 3

Comme dans l’exercice 1,

� on considère tour à tour le cylindre et la masse

� on établit la liaison géométrique entre leurs mouvements.

a) Cylindre

m

T⃗

f⃗
Mg⃗

S⃗

⊙ e⃗z

e⃗y

e⃗x

Objet : cylindre

Forces : poids, soutien, tension, frottement

Le CM est accéléré :

Mg⃗ + S⃗ + T⃗ + f⃗ = Ma⃗M .

Selon e⃗x ,
T − f = MaM (aM,y = 0) .

Rotation autour du CM :

M⃗CM = M⃗CM(Mg⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(T⃗ )︸ ︷︷ ︸
⊙

+ M⃗CM(f⃗)︸ ︷︷ ︸
⊙

= ICM
˙⃗ωCM

Selon e⃗z :
RT +Rf = ICMω̇CM .

b) Masse (contrepoids)

m

T⃗ ′

mg⃗

⊙ e⃗z

e⃗y

e⃗x

Objet : contrepoids

Forces : poids, tension

mg⃗ + T⃗ ′ = ma⃗m

Selon e⃗y :

mg − T = mam .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.
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�

CM

R

∆xM = ∆s = R∆θ

∆θ

⊙ e⃗z

e⃗y

e⃗x

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z , il
“enroule” sur le sol une longueur

∆s = R∆θ

et le CM du cylindre se déplace de

∆xM = ∆s = R∆θ

dans le sens donné par e⃗x .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆xM

∆t
= R lim

∆t→0

∆θ

∆t
⇔ vM = RωCM ⇒ aM = Rω̇CM .

�

CM

R

∆s = R∆θ

∆θ

⊙ e⃗z

e⃗y

e⃗x

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z ,
le fil se déroule et le contrepoids se
déplace de ∆s = R∆θ par rapport au
cylindre dans le sens donné par e⃗y .
Comme le cylindre avance de ∆xM , m
se déplace de

∆ym = ∆xM +∆s = 2R∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆ym
∆t

= 2R lim
∆t→0

∆θ

∆t
⇔ vm = 2RωCM ⇒ am = 2Rω̇CM .

d) Résolution du système 
T − f = MaM

RT +Rf = ICMω̇CM

mg − T = mam
aM = Rω̇CM

am = 2Rω̇CM .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇CM et de
résoudre le système 

T − f = MRω̇CM ·R
RT +Rf = ICMω̇CM · 1
mg − T = m2Rω̇CM · 2R

en amplifiant les équations respectivement par R , 1 et 2R , de sorte que l’addition membre
à membre fasse tomber les termes en T et f , inconnues non recherchées. On obtient alors

2mgR = (MR2 + ICM + 4mR2)ω̇CM .

Avec ICM = 1
2
MR2 pour un cylindre plein, il vient

ω̇CM =
2mgR

MR2 + ICM + 4mR2
=

4mg

(3M + 8m)R
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et donc
aM = Rω̇CM =

4m

3M + 8m
g > 0

am = 2Rω̇CM =
8m

3M + 8m
g > 0 .

Le cylindre accélère vers la gauche et la masse vers le bas.

Exercice 4

Nous allons exploiter le théorème du moment cinétique pour étudier la dynamique de la
rotation de la toupie.
Nous allons supposer que le couple de freinage est mesuré par rapport au centre de la
toupie (axe de rotation). Par hypothèse, ce couple, que nous allons noter M⃗ , est supposé
constant. Il s’oppose à la rotation de la toupie et conduit à une décélération de celle-ci :

M⃗ = I ˙⃗ω .

Imaginons que la toupie tourne dans le sens des aiguilles d’une montre (vecteur vitesse
angulaire ω⃗) et choisissons un repère dans le même sens (ω⃗ = ke⃗z, avec k > 0).

ω⃗

M⃗

˙⃗ω

e⃗z

La projection de l’équation ci-dessus fournit alors

−M = Iω̇ .

Le signe traduit le fait que M⃗ s’oppose à ω⃗.
Ainsi, l’accélération angulaire s’écrit

ω̇ = −M

I
= constante .

On devine alors que la vitesse angulaire est de la forme

ω(t) = ω0 −
M

I
t ,

où ω0 est une constante.
La constante ω0 correspond à la vitesse de rotation initiale de la toupie :

ω(t = 0 s) = ω0 = 50 · 2π ∼= 314.159 s−1 .
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Nous savons que la toupie tombe après 30 secondes car sa vitesse angulaire est devenue
négligeable (ω ∼= 0 s−1). Ainsi,

ω(t1 = 30 s) = ω0 −
M

I
t1

= 0 .

Cette équation permet de déterminer le couple de freinage :

M =
Iω0

t1
=

200 · 10−3 · 10−4 · 100π
30

∼= 2.09 · 10−4Nm .

L’expression de la vitesse angulaire de la toupie,

ω(t) = ω0 −
M

I
t ,

permet de deviner l’angle parcouru par la toupie au cours du temps :

θ(t) = ω0t−
M

2I
t2 .

On en déduit le nombre de tours effectués par la toupie jusqu’à son arrêt :

n(t1 = 30 s) =
θ(t1)

2π
=

1

2π

(
ω0t1 −

M

2I
t1

2
)

=
1

2π

(
ω0t1 −

ω0t1
2

)
=

ω0t1
4π

=
100π · 30

4π
= 750 .

Exercice 5

Nous allons appliquer le théorème du moment cinétique aux masses en rotation m1 et m2.
Il sera également nécessaire de décrire le mouvement des masses m3 et m4 se déplaçant
verticalement.
Appelons T⃗3, respectivement T⃗4, la force qu’exercem3, respectivementm4, sur les cylindres
solidaires.
En choisissant e⃗z entrant, la projection du théorème du moment cinétique selon e⃗z s’écrit

r1T3 + r2T4 = (I1 + I2)ω̇ ,

où ω̇ est l’accélération angulaire des deux cylindres (ces derniers sont supposés solidaires).
La deuxième loi de Newton appliquée aux masses m3 et m4 s’écrit

mig⃗ + T⃗i = mia⃗i , où i = 3, 4 .

En projetant selon e⃗y dirigé vers le bas, nous obtenons les équations

m3g − T3 = m3a3 et m4g − T4 = m4a4 .

Il convient maintenant de trouver la liaison entre le mouvement de rotation des cylindres
et le mouvement de translation des deux masses m3 et m4.
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Lorsque les cylindres tournent à une vitesse angulaire ω, les masses m3 et m4 descendent
avec les vitesses respectives

v3 = r1ω et v4 = r2ω.

Par conséquent,
a3 = r1ω̇ et a4 = r2ω̇.

En résumé, nous avons les équations

r1T3 + r2T4 = (I1 + I2)ω̇ ,

m3g − T3 = m3a3 ,

m4g − T4 = m4a4 ,

a3 = r1ω̇ ,

a4 = r2ω̇ .

En éliminant T3, T4, a3 et a4, nous obtenons l’expression de l’accélération angulaire :

ω̇ =
(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g .

Les accélérations verticales des deux masses m3 et m4 sont alors données par

a3 =
r1(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g

et

a4 =
r2(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g .

Quant aux tensions dans les fils, elles s’écrivent

T3 = m3(g − a3) = m3g(1−
r1(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
)

= m3g
m1r1

2 +m2r2
2 +m4r2

2 − r1r2m4

(m1 +m3)r12 + (m2 +m4)r22

et

T4 = m4(g − a4) = m4g(1−
r2(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
)

= m4g
m1r1

2 +m2r2
2 +m3r1

2 − r1r2m3

(m1 +m3)r12 + (m2 +m4)r22
.

Exercice 6

Nous allons appliquer le théorème du moment cinétique à la masse en rotation m1. Il sera
également nécessaire de décrire le mouvement de translation horizontal des deux masses
m1 et m2.

Dynamique de l’objet “roue”
Appelons T⃗ la tension dans le fil entre la roue et la masse m2.

8



axe
m1

F⃗

T⃗ e⃗x
e⃗z⊙

R

Avec le choix de e⃗x dirigé vers la gauche et e⃗z sortant, la deuxième équation de Newton
appliquée à la roue s’écrit

F + T = m1a1 .

D’autre part, dans le référentiel du CM et par rapport à un axe passant par le CM, le
théorème du moment cinétique fournit

R(F − T ) = Iω̇ ,

où R est le rayon de la roue.

Dynamique de la masse m2

La masse ne tourne pas, mais subit une accélération dont l’expression est donnée par la
deuxième loi de Newton projetée selon e⃗x :

m2

−T⃗ e⃗x

−T = m2a2 .

(a) Nous avons obtenu un système de trois équations :
F + T = m1a1 ,

R(F − T ) = Iω̇ ,
−T = m2a2 .

Nous devons maintenant établir le lien entre a1, a2 et ω̇.
Si ℓ est la longueur du fil entre la roue et l’extrémité du fil et d la longueur du fil entre la
roue et la masse, on a

ℓ

d

πRR

ℓ+ πR + d = L .

Cela implique que
ℓ̇+ ḋ = 0

(toute longueur prise sur l’un des morceaux se retrouve sur l’autre).

De plus, lorsque la roue tourne d’un angle φ, la longueur ℓ gagne Rφ. Ainsi ℓ̇ = Rω.
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Comme d = x2 − x1, x2 et x1 étant les positions respectives de m2 et m1, il vient

ℓ̈+ d̈ = Rω̇ + a2 − a1 = 0 .

Notre système d’équations est donc finalement, avec I = m1R
2,

F + T = m1a1 ,
F − T = m1Rω̇ ,

−T = m2a2 ,
0 = Rω̇ + a2 − a1 .

Résolution : variante I En éliminant T dans les deux premières équations, il vient

2F = m1a1 +m1Rω̇ = m1(a1 +Rω̇) .

D’autre part, en réécrivant la deuxième équation à l’aide des deux dernières relations du
système, on obtient

F +m2a1 = (m1R +m2R) ω̇ .

Les accélérations de translation et angulaire de la roue ont donc pour expression

a1 =
F

m1

et ω̇ =
F

m1R
.

On remarque que a1 = Rω̇, ce qui traduit bien le fait que la roue est entrâınée par le fil
lorsque ce dernier ne glisse pas sur celle-ci.
Finalement, l’accélération de la massem2 et la tension dans le fil sont quant à elles données
par

a2 = 0 et T = 0 .

Résolution : variante II Eliminons pour commencer a1, ω̇ et a2 : multiplions l’éq. 1
par 1

m1
, l’éq. 2 par − 1

m1
, l’éq. 3 par − 1

m2
et additionnons les 4 équations. Il vient

1

m1

(F + T )− 1

m1

(F − T ) +
1

m2

T = 0 ⇒ T = 0 .

Ainsi

a2 = 0 a1 = Rω̇ a1 =
F

m1

ω̇ =
F

Rm1

.

(b) Nous avons obtenu un système de trois équations :
F + T = m1a1 ,

R(F − T ) = Iω̇ ,
−T = m2a2 .

Lorsque le fil glisse sur la roue, cette dernière n’est pas entrâınée par le fil et ω̇ = 0. Ainsi,

T = F .

Les accélérations de la roue m1 et de la masse m2 sont alors données par

a1 =
2F

m1

et a2 = − F

m2

.

Exercice 7

On considère l’objet “haltère” pour la translation (deuxième loi de Newton) et pour
la rotation (théorème du moment cinétique).

Commençons par faire un dessin de l’haltère en trois dimensions :
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F⃗

α

On peut également représenter l’haltère telle qu’elle apparâıt perpendiculairement à son
axe de rotation :

sol

F⃗

α

On note que le point de contact avec le support est plus éloigné du centre que le point de
contact avec le fil.

Nous allons appliquer la deuxième loi de Newton à l’objet “haltère” :

sol

CM

F⃗

α

f⃗

mg⃗

S⃗

e⃗x

Objet : haltère
F⃗ + f⃗ +mg⃗ + S⃗ = ma⃗CM .

Selon e⃗x :
F cosα + f = maCM .

Il convient de remarquer que le sens de la force de frottement f⃗ n’est pas connu a priori.
Dans l’équation ci-dessus, sa composante f selon e⃗x peut donc être positive ou négative.
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Nous allons maintenant considérer le théorème du moment cinétique appliqué à l’ob-
jet “haltère” :

sol

CM

F⃗

f⃗

mg⃗

S⃗

e⃗z
⊗

Rotation par rapport au CM :
M⃗CM = ICM

˙⃗ω .

Selon e⃗z :
−rF −Rf = ICMω̇ .

Comme on suppose que le cylindre roule sans glisser, l’équation de liaison s’écrit :

aCM = Rω̇ .

On obtient le sytème suivant :

F cosα + f = mRω̇
−rF −Rf = ICMω̇

}
⇒ FR cosα− rF = mR2ω̇ + ICMω̇ .

Ainsi,
F (R cosα− r) = (mR2 + ICM)ω̇ ,

de sorte que l’accélération angulaire et l’accélération s’écrivent :

ω̇ =
R cosα− r

mR2 + ICM

F et aCM = Rω̇ =
R cosα− r

mR2 + ICM

RF .

On peut alors trouver l’expression de la force de frottement :

f = −rF

R
− ICMF

R

R cosα− r

mR2 + ICM

= −rmR + rICM/R + ICM cosα− rICM/R

mR2 + ICM

F

= −rmR + ICM cosα

mR2 + ICM

F .

Il est intéressant de discuter le signe de l’accélération de manière à caractériser complètement
le mouvement de l’haltère :
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• Si R cosα − r > 0 ⇔ cosα > r
R

(situation où |α| est petit), l’accélération est
dirigée vers la droite et la force de frottement vers la gauche (f < 0).

• Si R cosα− r = 0 ⇔ cosα = r
R
, l’haltère est immobile et la force de frottement

est vers la gauche (f = − r
R
F ).

• Si R cosα − r < 0 ⇔ cosα < r
R
(situation où |α| est grand), l’accélération est

dirigée vers la gauche et la force de frottement est vers la gauche ou la droite selon
le moment d’inertie.

On se convainc facilement de l’existence de ces trois situations en considérant le moment
des forces extérieures par rapport au point de contact O avec le support.

sol O

f⃗

mg⃗

S⃗

e⃗z
⊗

r

F⃗

R

α

Le moment des forces S⃗, mg⃗ et f⃗ est toujours nul par rapport à ce point. A l’équilibre, le
moment de F⃗ doit donc être nul, ce qui signifie que le support de F⃗ (tangent au cylindre
intérieur) passe par O, d’où cosα = r

R
.
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