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Exercice 1

α
M

m

LA

B

Mg⃗

S⃗

mg⃗

T⃗

e⃗x

e⃗y

⊙
e⃗z

Objet : le cadre

Forces : poids, soutiens exercés par les plans

A l’équilibre, pour la translation,

Mg⃗ +mg⃗ + S⃗ + T⃗ = 0⃗

et pour la rotation par rapport à A,

M⃗A = M⃗A(Mg⃗)+M⃗A(mg⃗)+M⃗A(S⃗)+M⃗A(T⃗ ) = 0⃗ .

Pour la translation,

� selon e⃗x :

−S
1√
2
+ T

1√
2
= 0 ⇒ S = T ,

� selon e⃗y :

−Mg −mg + S
1√
2
+ T

1√
2
= 0 ⇒ S = T =

(M +m)g√
2

.

Les quatre moments de force sont normaux au plan de vue :

� M⃗A(Mg⃗) et M⃗A(S⃗) sont nuls (bras de levier nuls)

� M⃗A(mg⃗) est entrant (bras de levier b)

� M⃗A(T⃗ ) est sortant (bras de levier c)

M⃗A(Mg⃗)︸ ︷︷ ︸
0⃗

+ M⃗A(mg⃗)︸ ︷︷ ︸
⊗

+ M⃗A(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗A(T⃗ )︸ ︷︷ ︸
⊙

= 0⃗ .

Ainsi, selon ⊙ e⃗z (sortant),
−bmg + cT = 0 .

Déterminons les bras de levier :

� Bras de levier de mg⃗ : projection de la tige sur l’horizontale (normale à mg⃗),

b = L cosα .

� Bras de levier de T⃗ : projection de la tige sur la normale à T⃗ ,

α

L

A

B
T⃗

c

c = L cos(α + π
4
) .
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Finalement,

bmg − cT = 0

⇔ Lmg cosα− L
(M +m)g√

2
cos(α + π

4
) = 0

⇔
√
2m cosα− (M +m)

(
cosα cos

(
π
4

)
− sinα sin

(
π
4

))
= 0

⇔ 2m cosα− (M +m)(cosα− sinα) = 0

⇔ (M +m) sinα− (M −m) cosα = 0

⇔ tanα =
M −m

M +m
.

Discussion: considérons les cas limites pour

tanα =
M −m

M +m
=

1− m
M

1 + m
M

.

�
m
M

= 1 : tanα = 0 ⇒ α = 0 . Le cadre est horizontal.

�
m
M

= 0 : tanα = 1 ⇒ α = π
4
. Le cadre est parallèle au plan de gauche.

�
m
M

→ ∞ : tanα → −1 ⇒ α → −π
4
. Le cadre est parallèle au plan de droite.

Exercice 2

A

α

M

CMm

mg⃗

Mg⃗

C⃗

Rα

L/2

⊗ e⃗z

Objet : barre m et masse M

Forces : poids, contact (soutien et frotte-
ment)

Newton :

mg⃗ +Mg⃗ + C⃗ = 0⃗ .

Rem. : la somme des forces étant nulle, le
contact est vertical.
Rotation p.r. à A :

M⃗A(mg⃗)︸ ︷︷ ︸
⊙

+ M⃗A(Mg⃗)︸ ︷︷ ︸
⊗

+ M⃗A(C⃗)︸ ︷︷ ︸
0⃗

= 0⃗ .

Selon e⃗z :

−Rα cosαmg +

(
L

2
−Rα

)
cosαMg = 0 .

Comme cosα = 0 est impossible,(
L

2
−Rα

)
M = Rαm

α =
L

2R

M

M +m
.

Remarque : le CM de l’objet est nécessairement sur le point de contact A . En effet, le
moment de C⃗ par rapport à A étant nul, celui du poids total l’est également : le CM
du tout doit être à la verticale de A . Comme il est aussi sur la barre, il est en A . En
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choisissant l’origine en A , la position du centre de masse du tout est le vecteur nul. Avec
un repère e⃗s parallèle à la barre,

(m+M)sCM = Rαm−
(
L

2
−Rα

)
M = 0 ⇒ α =

L

2R

M

M +m
.

Exercice 3

Nous allons exploiter le théorème du moment cinétique. La démarche est analogue à celle
qui conduit à la deuxième loi de Kepler affirmant que la vitesse aréolaire d’une planète
est constante.
Nous allons faire l’hypothèse que la planète ne subit qu’une seule force : la force de
gravitation F⃗grav. exercée par l’astre. Cette force est dirigée de la planète vers l’astre :

2a

2b
S1 S2

P

F⃗grav.
r⃗

v⃗0

P0P1

P2

La force de gravitation F⃗grav. est une force centrale : elle est toujours dirigée vers le même

point S1. En choisissant comme origine le point S1, les vecteurs position r⃗ et force F⃗grav.

sont en tout temps parallèles.
Ainsi, le moment de la force est toujours nul :

M⃗S1 = r⃗ × F⃗grav. = 0⃗ .

Le théorème du moment cinétique permet alors d’affirmer que

˙⃗
LS1 = 0⃗ ⇔ L⃗S1 = r⃗ ×mv⃗ =

−−−−−−→
constante ,

où m est la masse de la planète.
Pour pouvoir exploiter la conservation du moment cinétique durant le mouvement de la
planète autour de l’astre, il est nécessaire de déterminer les vecteurs positions aux points
P1 et P2. En particulier, nous allons avoir besoin de la distance f séparant l’astre du
centre de l’ellipse.

2a

2b
S1 S2

P

F⃗grav.
r⃗

f

v⃗0

P0P1

P2
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En utilisant la contrainte S1P+S2P = 2a définissant l’ellipse pour le point P2, on constate
que

f 2 + b2 = a2 =⇒ f =
√
a2 − b2 .

La conservation du moment cinétique permet alors d’écrire, selon la direction perpendi-
culaire au plan du mouvement,

(a+ f)mv0 = (a− f)mv1 = bmv2 .

Ainsi, les vitesses aux points P1 (périhélie) et P2 sont, respectivement, données par

v1 =
a+ f

a− f
v0 =

a+
√
a2 − b2

a−
√
a2 − b2

v0 et v2 =
a+ f

b
v0 =

a+
√
a2 − b2

b
v0 .

Numériquement, dans le cas de la Terre en orbite autour du Soleil, on obtient

v1 = 30.29 km/s et v2 = 29.78 km/s .

Exercice 4

On commence par faire un schéma de la situation :

axe fixe

O

m

r

fil

F⃗

⊗ ˆ⃗z

R⃗

On suppose qu’il n’y a pas de frottement. Le CM du cerceau ne se déplace pas et la somme
des forces exercées sur le cerceau est donc nulle : le poids du cerceau (de masse m et de

rayon r) est compensé par une force de soutien au niveau de l’axe et F⃗ par un second

soutien R⃗ horizontal.
Nous pouvons alors écrire, pour le cerceau par rapport à son centre O,

τ⃗O = IOα⃗ ,

où α ≡ ω̇ est l’accélération angulaire. Selon ˆ⃗z, on a donc

τO = rF = IOα ,

où F = ||F⃗ || et IO = mr2. L’accélération angulaire α est constante et vaut

α(t) = α0 =
rF

IO
=

rF

mr2
=

F

mr
= 200 s−2 .

Comme l’accélération angulaire est constante, on peut s’inspirer des équations du mou-
vement uniformément accéléré pour trouver l’expression de la vitesse angulaire :

ω(t) = α0t+ ω0 =
F

mr
t ,

où l’on a tenu compte de la condition initiale ω(t = 0) = 0 pour fixer ω0 : ω0 = 0 s−1 .
La vitesse angulaire après un temps t1 est donc

ω1 = ω(t1) =
F

mr
t1 = 1000 s−1 .
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L’angle de rotation au temps t pour la condition initiale θ(t = 0) = 0 est donné par

θ(t) =
1

2

F

mr︸︷︷︸
=ω̇=cste

t2 .

L’angle après un temps t1 est ainsi

θ1 = θ(t1) =
Ft21
2mr

= 2500 ,

ce qui correspond à un nombre de tours

n1 =
θ1
2π

=
Ft21
4πmr

∼= 398 tours .

Exercice 5

Il n’est pas judicieux de choisir comme objet “cylindre et contrepoids”, ces deux parties
ne bougeant pas de la même manière. Ainsi,

� on considère tour à tour le cylindre et la masse ;
� on établit la liaison géométrique entre leurs mouvements.

Il est primordial (comme toujours) de faire un dessin convenable de la situation :

m1

A

R

m2

Notons que l’axe de rotation A du cylindre est fixe.

O
R

T⃗

m1g⃗

S⃗⊗ e⃗z

Objet : cylindre

Forces : poids, soutien, tension

Comme le CM est au repos, il n’est pas
nécessaire de considérer la translation.
Rotation autour de O :

M⃗O = M⃗O(m1g⃗)︸ ︷︷ ︸
0⃗

+ M⃗O(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗O(T⃗ )︸ ︷︷ ︸
⊗

= IO ˙⃗ω

Selon e⃗z :
RT = I0ω̇ .

−T⃗

m2g⃗

e⃗y

Objet : contrepoids

Forces : poids, tension

m2g⃗ − T⃗ = m2a⃗2

Selon e⃗y :

m2g − T = m2a2 .

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du contrepoids :
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�

O

R
⊗ e⃗z

e⃗y

∆y = ∆s

∆θ
∆s

Si la poulie tourne d’un angle ∆θ dans le sens
donné par e⃗z , le fil se déroule et le contre-
poids se déplace de ∆y = R∆θ dans le sens
donné par e⃗y .

� La variation par rapport au temps (dérivée) donne alors la liaison entre les vitesses :

lim
∆t→0

∆y

∆t
= R lim

∆t→0

∆θ

∆t
⇔ v2 = Rω .

� La variation des vitesses par rapport au temps (dérivée) donne ensuite la liaison
entre les accélérations :

a2 = Rω̇ .

Nous sommes donc amenés à résoudre le système suivant :
RT = IOω̇

m2g − T = m2a2
a2 = Rω̇ .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇ (a2 = Rω̇)
et de résoudre le système {

RT = IOω̇ · 1
m2g − T = m2Rω̇ ·R

en amplifiant les équations respectivement par 1 et par R , de sorte que l’addition membre
à membre fasse tomber les termes en T , inconnue non recherchée. On obtient alors

m2gR = (IO +m2R
2)ω̇ .

Avec IO = 1
2
m1R

2 pour un cylindre plein, il vient

ω̇ =
m2gR

IO +m2R2
=

2m2g

(m1 + 2m2)R

et donc

a2 = Rω̇ =
2m2

m1 + 2m2

g > 0 .

Le contrepoids accélère vers le bas avec une accélération inférieure à g :

a2 = Rω̇ =
2m2

m1 + 2m2

g =
1

m1

2m2
+ 1

g < g .

Remarque : on est libre de choisir les repères comme on veut. Par exemple, avec le même
choix de e⃗z entrant et le choix (différent) de e⃗y vers le haut, les projections et équations
de liaison sont modifiées comme suit.

RT = IOω̇ (inchangée)
−m2g + T = m2a2 (modifiée)

a2 = −Rω̇ (modifiée) .

Avec a2 = −Rω̇ , il vient {
RT = IOω̇ · 1

−m2g + T = −m2Rω̇ · (−R)
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En amplifiant les équations respectivement par 1 et par −R , de sorte que l’addition
membre à membre fasse tomber les termes en T , inconnue non recherchée, on obtient
alors

m2gR = (IO +m2R
2)ω̇

et donc, comme ci-dessus,

ω̇ =
m2gR

IO +m2R2

mais

a2 = −Rω̇ = − m2R
2

IO +m2R2
g < 0 .

Toutefois, le contrepoids accélère bien vers le bas, e⃗y étant orienté vers le haut.

Connaissant l’accélération, on peut (en principe. . .) en déduire la vitesse et la position à
chaque instant. On considère alors l’instant correspondant à la distance parcourue.
L’accélération du contrepoids est constante. On sait que la vitesse est linéaire dans le
temps et la position quadratique (accélération = dérivée de la vitesse, vitesse = dérivée
de la position). Pour le contrepoids, avec un choix de l’origine à l’endroit où la vitesse est
nulle (t0 = 0), nous obtenons l’évolution temporelle selon e⃗y :

a2 =
2m2

m1 + 2m2

g = cte

v2(t) = a2 t car v2(0) = 0

y2(t) =
1

2
a2 t

2 car y2(0) = 0 .

Déterminons l’instant correspondant à une descente h . Notons th l’instant auquel le
contrepoids a parcouru une distance verticale h :

y2(th) =
1

2
a2 t

2
h = h ⇒ th =

√
2h

a2
.

Nous obtenons alors la vitesse à cet instant :

v2(th) = a2th =
√

2ha2 =

√
4hm2g

m1 + 2m2

.

Autre méthode de résolution : comme nous cherchons une relation entre une posi-
tion et une vitesse (sans être intéressés par le temps), nous pouvons imaginer exploiter
le théorème de l’énergie cinétique pour les instants t0 = 0 et th correspondant à un
déplacement vertical h.

Intéressons-nous d’abord au contrepoids soumis à son poids et à la tension T⃗ :

Ecin(th)− Ecin(t0) = W0→h(m2g⃗) +W0→h(−T⃗ )

1

2
m2v

2
h − 0 = m2gh+W0→h(−T⃗ ) .

Comme le travail de la tension est inconnu, nous sommes amenés à considérer également
la poulie soumise à son poids, au soutien et à la tension T⃗ :

Ecin(th)− Ecin(t0) = W0→h(m1g⃗) +W0→h(S⃗) +W0→h(T⃗ )

1

2
IOω

2
h − 0 = W0→h(T⃗ ) .
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Les travaux de la tension sur le contrepoids et la poulie étant égaux et opposés, nous
avons par addition

1

2
m2v

2
h +

1

2
IOω

2
h = m2gh .

Avec l’équation de liaison v2 = Rω , nous obtenons finalement

1

2
m2v

2
h +

1

2
IO

v2h
R2

=
1

2
m2v

2
h +

1

2

1

2
m1R

2 v
2
h

R2
=

(
1

2
m2 +

1

2

1

2
m1

)
v2h = m2gh

et donc

vh =

√
4m2gh

2m2 +m1

.

Exercice 6

Pour bien comprendre l’exercice, il est nécessaire de visualiser sur des dessins le mouve-
ment de la voiture et celui des roues.

La voiture fait un virage : l’axe des roues arrière effectue une rotation autour du centre
du virage. Quel est le mouvement du centre de chacune des roues ?

O
R

roue int.

roue ext.

C

v⃗

v⃗ext

v⃗int

L L

La vitesse de rotation du centre de l’axe C autour
du centre du virage O vaut

v = RΩ ⇔ Ω =
v

R
.

Les roues extérieure et intérieure (leurs centres) ne
se déplacent pas à la même vitesse que C :

vext > v > vint .

Le centre des roues se déplace sur un arc de cercle de rayon respectif

Rext = R + L et Rint = R− L ,

avec la même vitesse angulaire Ω que C . Ainsi

vext = (R + L)Ω =
R + L

R
v

vint = (R− L)Ω =
R− L

R
v .

D’autre part, la vitesse d’une roue roulant sans glisser est liée à la vitesse angulaire autour
de son centre :

v⃗

r
∆θ

∆s
∆x

Si une roue de rayon r fait une rotation d’un angle
∆θ autour de son axe pendant une durée ∆t , elle
“déroule” sur le sol la longueur d’arc ∆s = r∆θ
correspondante. Le centre de la roue avance donc
d’autant :

∆x = ∆s = r∆θ .
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Dans la limite ∆t → 0 , le quotient par ∆t donne la relation entre vitesse (selon l’hori-
zontale) et vitesse angulaire :

∆x

∆t
= r

∆θ

∆t
−→
∆t→0

v = rω .

Ainsi, pour les roues extérieure et intérieure,

ωext =
vext
r

=
R + L

Rr
v

et

ωint =
vint
r

=
R− L

Rr
v .

Le nombre de tours effectués par chacune des roues est donné par la distance parcourue
par leur centre.
Sur le quart de tour, la distance parcourue par le centre des roues est

dext = (R + L)
π

2

dint = (R− L)
π

2
.

L’angle de rotation correspondant vaut

θext =
dext
r

=
R + L

r

π

2

θint =
dint
r

=
R− L

r

π

2
.

Enfin, l’angle de rotation pour un tour étant 2π , le nombre de tours effectués est

next =
θext
2π

=
R + L

4r

nint =
θint
2π

=
R− L

4r
.

Exercice 7

Nous allons exploiter le lien entre moment de force et accélération angulaire. En choisissant
ˆ⃗z pointant dans le plan de la feuille (ˆ⃗z ⊗), nous pouvons écrire, par rapport à l’axe de
rotation,

M = −RF = −kRω

= Iα =
1

2
mR2α .

Comme α = α(t) = ω̇(t), on obtient alors l’équation différentielle

ω̇(t) = − 2k

mR
ω(t) .

On devine que la vitesse angulaire ω(t) solution de cette équation différentielle est une
fonction de type exponentielle. On va donc poser, dans le cas le plus général,

w(t) = AeBt ,

9



où A et B sont des constantes.
L’accélération angulaire s’écrit alors

α(t) = ω̇(t) = BAeBt = Bω(t) .

On obtient alors que A = ω(0) = ω0 et B = − 2k
mR

.

L’évolution de la vitesse angulaire est ainsi donnée par

ω(t) = ω0 e
− 2k

mR
t .
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