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Exercice 1

Nous allons étudier l’objet “aimant” du point de vue de la translation et de la rotation.
Les forces s’exerçant sur l’objet “aimant” sont : son poids, le soutien du sol et les forces
de Laplace :

Nous savons que l’aimant possède un moment dipolaire magnétique m⃗dm. Il peut ainsi être
identifié à une boucle de courant s’orientant dans le champ magnétique B⃗ : le vecteur m⃗dm

tend à s’aligner sur le champ B⃗ et est à l’origine d’un moment de force M⃗L ayant pour
effet de redresser l’aimant posé sur le sol. Par rapport au centre de masse de l’aimant, ce
moment s’écrit M⃗L = m⃗dm∧ B⃗. Ainsi, en supposant que le vecteur m⃗dm est vers la droite,
le champ magnétique vertical B⃗ doit être vers le haut pour que l’aimant puisse être à
l’équilibre (du point de vue de la rotation) :

L

S⃗

mg⃗

m⃗dm

∫
dF⃗L = 0⃗

B⃗

e⃗z

⊗ e⃗x

Remarquons que du point de vue de la translation (deuxième loi de Newton), nous pouvons
écrire, en projetant selon le repère e⃗z,

mg − S + 0 = 0 ⇔ S = mg .
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En effet, les forces de Laplace agissant sur chaque élément dL⃗ de la boucle de courant
représentant l’aimant se compensent deux à deux. La résultante est donc nulle, alors que
le moment résultant est différent de zéro :∫

dF⃗L = 0⃗ et m⃗dm ∧ B⃗ ̸= 0⃗ .

L’équilibre de l’aimant pour la rotation par rapport à son centre de masse (qui est
également le point où s’applique la force mg⃗) se traduit par la relation∑

M⃗CM = r⃗S ∧ S⃗ + m⃗dm ∧ B⃗ + 0⃗ = 0⃗ .

En projetant selon un repère entrant e⃗x, il vient, avec S = mg,

L

2
mg −mdmB = 0 ⇔ mdmB =

L

2
mg .

Le champ magnétique a donc pour intensité

B =
Lmg

2mdm

.

Exercice 2

Nous allons calculer explicitement la circulation du champ magnétique B⃗ le long de chacun
des côtés du triangle ABC.

Nous considérons un triangle ABC dans un champ magnétique uniforme B⃗ :

A

B

C

Γ

dr⃗

B⃗

La circulation du champ magnétique le long de la courbe fermée Γ définie par le triangle
ABC s’écrit

CΓ =

∮
Γ

B⃗ · dr⃗ =

∫ B

A

B⃗ · dr⃗ +
∫ C

B

B⃗ · dr⃗ +
∫ A

C

B⃗ · dr⃗

= B⃗ ·
−−→
AB + B⃗ ·

−−→
BC + B⃗ ·

−−→
CA ,

où nous avons utilisé le fait que le champ magnétique B⃗ est constant pour passer de la
première ligne à la seconde.

On détermine séparément les trois termes intervenant le calcul de CΓ :

• Comme le segment
−−→
AB a la même direction que B⃗ et est de même sens, nous avons

B⃗ ·
−−→
AB = BL ,

où L = ||
−−→
AB|| .
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• Le produit scalaire B⃗ ·
−−→
BC peut être vu comme la projection de

−−→
BC le long de B⃗,

multipliée par la norme de B⃗. Autrement dit, le deuxième terme de la circulation
s’écrit

B⃗ ·
−−→
BC = −BL .

• Comme le segment
−−→
CA est perpendiculaire à B⃗, il vient

B⃗ ·
−−→
CA = 0 .

Ainsi, la circulation du champ magnétique B⃗ le long du triangle ABC (c’est-à-dire le long
de la courbe Γ) est nulle :

CΓ =

∮
Γ

B⃗ · dr⃗ = BL−BL+ 0 = 0 .

Ce résultat n’est pas étonnant, dans la mesure où la courbe Γ n’enlace aucun courant.

Remarque

Comme le champ magnétique est uniforme, nous aurions pu directement écrire :

CΓ =

∮
Γ

B⃗ · dr⃗ = B⃗ ·
∮
Γ

dr⃗ = B⃗ · 0⃗ = 0 .

Exercice 3

Nous allons exploiter la loi d’Ampère en choisissant judicieusement une courbe fermée.

La symétrie axiale implique que les lignes de champ sont des cercles normaux au câble et
centrés sur son axe. En écrivant la loi d’Ampère selon une ligne de champ de rayon r, il
vient ∮

B⃗ · dr⃗ = B2πr = µ0Ienlacé .

(a)
• Pour r > Ra : le courant enlacé correspond à l’intégralité du courant qui circule
dans le câble,

Ienlacé = I0 .

Le champ magnétique a alors pour expression

B(r) =
µ0I0
2πr

.

• Pour 0 ≤ r ≤ Ra : le courant enlacé est proportionnel à la surface du disque de
rayon r,

Ienlacé = I0
πr2

πR2
a

.

Dans ce cas, le champ magnétique s’écrit

B(r) =
µ0I0
2π

r

R2
a

.

La représentation graphique du champ B(r) est donc
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r

B(r)

0 Ra

µ0I0
2πRa

(b)
• Pour 0 ≤ r ≤ Ra : le courant enlacé est proportionnel à la surface du disque de
rayon r,

Ienlacé = I0
πr2

πR2
a

,

si bien que le champ magnétique est proportionnel à r :

B(r) =
µ0I0
2π

r

R2
a

.

• Pour Ra < r ≤ Rb : le courant enlacé est I0, diminué d’un courant proportionnel à
la surface de la couronne de rayon intérieur Ra et de rayon extérieur r,

Ienlacé = I0 − I0
π(r2 −R2

a)

π(R2
b −R2

a)
,

et le champ magnétique est donné par

B(r) =
µ0I0
2π

1

r

R2
b − r2

R2
b −R2

a

.

• Pour r > Rb : le courant enlacé est nul,

Ienlacé = 0.

Il en va alors de même pour le champ magnétique :

B(r) = 0 .

La représentation graphique du champ B(r) est ainsi

r

B(r)

0 Ra Rb

µ0I0
2πRa
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Exercice 4

Nous allons nous intéresser aux opérations sur le fil (symétries, translations, rotations, . . .)
laissant le champ magnétique invariant.

Les opérations laissant le champ magnétique invariant sont

� la translation parallèle au fil rectiligne infini,

� la rotation d’axe donné par le fil.

Il s’agit donc d’une symétrie axiale.

Les surfaces fermées ayant cette symétrie sont les cylindres et les couronnes d’axe donné
par le fil.
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Considérons le cas d’une couronne :

I

Σ B⃗

Les lignes de champ sont circulaires : elles
ne coupent pas Σ .
Le flux du champ magnétique à travers Σ
est donc nul :

ΨΣ =

∫
Σ

dΨ =

∫
Σ

B⃗ · dΣ⃗ = 0 .

Nous pouvons également nous pencher sur le cas d’une portion de couronne :

I

Σ

B⃗
dΣ⃗2

dΣ⃗1

Les lignes de champ ne coupent Σ
que sur les faces Σ1 (“arrière”) et
Σ2 (“avant”).

Le flux se calcule alors comme suit :

ΨΣ =

∫
Σ

B⃗ · dΣ⃗ =

∫
Σ1

B⃗ · dΣ⃗ +

∫
Σ2

B⃗ · dΣ⃗

=

∫
Σ1

B dΣ−
∫
Σ2

B dΣ

= 0 ,

le champ B⃗ étant, pour le fil rectiligne et infini, de même intensité en tout point d’une
ligne de champ.

Remarque
Toute surface fermée peut être divisée en petites portions de couronne comme ci-dessus.
On en déduit que le flux du champ magnétique à travers toute surface fermée est nulle.
Ce résultat est général et ne dépend pas de la “forme” du champ B⃗ .
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