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Exercice 1

Une spire étant formé d’un fil, on peut adapter la situation du fil rectiligne à celle d’un
fil courbé.

Considérons la spire comme formée de petits bouts de fils traversés par le courant. Le
champ magnétique est la superposition des champs dus à chacun de ces petits bouts. Son
sens est déterminé en appliquant la règle du tire-bouchon.

Dans la spire, tous les champs individuels sont de même sens : selon la règle du tire-
bouchon, pour le cas où la partie gauche de la spire est en avant, les lignes de champ
traversent la spire de la droite vers la gauche (voir esquisse en page suivante).

B⃗I

Hors de la spire, les champs individuels se compensent partiellement. Le champ dû aux
bouts de fil les plus proches est dominant.
Selon la règle du tire-bouchon, pour le cas où la partie gauche de la spire est en avant, les
lignes de champ se referment hors de la spire, de gauche à droite dans le plan de la spire.

Exercice 2

Comme d’habitude, il convient de faire un dessin et de répertorier les forces s’exerçant
sur l’électron ainsi que les caractéristiques de ces dernières.
Nous allons négliger la force de la gravitation.

Supposons que le champ électrique est dirigé vers le haut. La force électrique que ressent
l’électron pousse ce dernier vers le bas (un électron est chargé négativement : q = −e).
La force magnétique doit donc être dirigée vers le haut :

E⃗

e− v⃗

F⃗électrique = qE⃗

F⃗magnétique
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L’électron suit alors une trajectoire rectiligne (mouvement rectiligne uniforme à vitesse
constante v⃗).

La force magnétique (force de Lorentz) que ressent l’électron a pour expression :

F⃗magnétique = q v⃗ ∧ B⃗ .

Par conséquent, si la vitesse v⃗ de l’électron est dirigée vers la droite, le champ magnétique
B⃗ doit être perpendiculaire au plan de la feuille et sortant : ⊙B⃗

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

B⃗

E⃗

e−

v⃗

F⃗électrique = qE⃗

F⃗magnétique

e⃗z

L’intensité B = ||B⃗|| du champ magnétique est donnée par la deuxième loi de Newton
projetée selon la verticale e⃗z :

q(E⃗ + v⃗ ∧ B⃗) = 0⃗ ⇒ B =
E

v
.

Exercice 3

Nous allons commencer par faire un dessin. Nous pourrons alors décrire la phase d’accélération
des électrons, avant de nous intéresser à celle durant laquelle le faisceau est dévié.

Les électrons sont accélérés par une tension Uacc. entre l’anode et la cathode, avant d’être
dévié par un champ magnétique B⃗ :

anode
cathode

Uacc.

+−

e−

R

v⃗
B⃗
⊙

Nous allons utiliser le théorème de l’énergie cinétique en supposant que les électrons ont
initialement une vitesse nulle et que la seule force intervenant est la force électrique :

1

2
mv2 − 0 = Wacc.(F⃗él.) = eUacc. ,

où v est la vitesse des électrons après la phase d’accélération. Cette vitesse est donc donnée
par

v =

√
2eUacc.

m
.
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Dans le champ magnétique B⃗ (ici perpendiculaire au faisceau), les électrons subissent la
force de Lorentz

F⃗Lor. = −e v⃗ ∧ B⃗

qui est perpendiculaire à la vitesse. L’accélération des électrons est donc normale à la
trajectoire :

F⃗Lor. = ma⃗ = ma⃗n .

En projetant cette équation selon la normale à la trajectoire, il vient

evB = m
v2

R
,

si bien que le champ magnétique a finalement pour expression

B =
mv

eR
=

1

R

√
2mUacc.

e

∼=
1

0.1

√
2 · 9.1095 · 10−31 · 1200

1.6022 · 10−19
∼= 1.17 · 10−3T.

Exercice 4

Dans ce problème, il convient de distinguer deux phases :

� la phase d’accélération des particules durant laquelle la norme de la vitesse change
(sous l’effet de la force électrique) ;

� la phase durant laquelle les particules décrivent un mouvement circulaire uniforme
(sous l’effet du champ magnétique uniforme perpendiculaire à la vitesse).

(a) L’énergie cinétique acquise par une particule de masse m et de charge q, initialement
immobile, sous une tension d’accélération Uacc. est

1

2
mv2 = q Uacc. .

Autrement dit, la vitesse de la particule après la phase d’accélération est donnée par

v =

√
2eUacc.

m
.

Cette vitesse ne sera pas modifiée par la présence du champ magnétique (la force de
Lorentz ne travaille pas).

Dans le cas d’un électron et d’un proton, nous avons donc, numériquement,

ve =

√
2eUacc.

me

∼=
√

2 · 1.6022 · 10−19 · 2000
9.1095 · 10−31

∼= 2.65 · 107ms−1 ;

vp =

√
2eUacc.

mp

∼=
√

2 · 1.6022 · 10−19 · 2000
1.6726 · 10−27

∼= 6.19 · 105ms−1.

(b) Une particule de masse m et de charge q lancée perpendiculairement aux lignes d’un

champ magnétique uniforme B⃗ avec une vitesse v⃗ aura un mouvement circulaire uniforme
de rayon

R =
mv

|q|B
,

où v = ||v⃗|| et B = ||B⃗||.
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Dans le cas de l’électron et du proton évoqués au point (a), nous avons donc, numériquement,

Re =
meve
eB

∼=
9.1095 · 10−31 · 2.65 · 107

1.6022 · 10−19 · 0.5
∼= 3 · 10−4m ;

Rp =
mpvp
eB

∼=
1.6726 · 10−27 · 6.19 · 105

1.6022 · 10−19 · 0.5
∼= 1.3 · 10−2m .

(c) Nous avons rappelé au point (b) que, dans le cas où la vitesse des particules est per-
pendiculaire au champ magnétique (mouvement circulaire uniforme), le rayon de courbure
R et l’intensité B sont reliés par la relation

R =
mv

|q|B
⇔ B =

mv

|q|R
.

En imposant un rayon de courbure R = 1m, il vient, dans le cas de l’électron et du proton
évoqués au point (a),

Be =
meve
eR

∼=
9.1095 · 10−31 · 2.65 · 107

1.6022 · 10−19 · 1
∼= 1.5 · 10−4T

Bp =
mpvp
eR

∼=
1.6726 · 10−27 · 6.19 · 105

1.6022 · 10−19 · 1
∼= 6.5 · 10−3T.
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Exercice 5

Nous allons considérer l’objet “électron” et étudier séparément les différents étapes du
parcours de cet objet.

(a) Nous commençons par appliquer le théorème de l’énergie cinétique entre la cathode
(où l’électron a une vitesse quasiment nulle) et la sortie de l’anode (l’électron a alors une
vitesse de norme v0 = ||v⃗0||). Si l’on néglige la force de gravitation, seule la force électrique
intervient et le travail des forces extérieures entre la cathode et la sortie de l’anode s’écrit

Wc→a(F⃗
ext) = Wc→a(F⃗élec.) = (−e)(−Uacc.) = eUacc. ,

où Uacc. > 0 est la tension d’accélération cherchée.

Ainsi, nous obtenons
1

2
mv20 = eUacc ,

et

Uacc. =
mv20
2e

.

(b) Si l’on néglige la gravitation, les électrons ne sont déviés que par la force de Lorentz

F⃗ = −e v⃗ ∧ B⃗ .

Pour obtenir la trajectoire représentée sur la figure, le champ magnétique B⃗ doit pointer
hors du plan (⊙B⃗), de manière à ce que la force de Lorentz soit dirigée vers l’intérieur du
virage :

B⃗⊙

e−v⃗0

F⃗Lorentz

(c) Dans la région où règne un champ magnétique B⃗, la trajectoire de l’électron est un
cercle de rayon R centré au point C :

B⃗⊙

e−v⃗0

C

e⃗n R

F⃗Lorentz
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Selon la deuxième loi de Newton,

F⃗Lorentz = −e v⃗ ∧ B⃗ = ma⃗ .

La force de Lorentz étant normale à la trajectoire, l’accélération tangentielle est nulle et
la projection de l’équation vectorielle ci-dessus selon un repère e⃗n dirigé vers le centre C
de la trajectoire fournit

e vB = man = m
v20
R

.

Le rayon de courbure a donc pour expression

R =
mv0
eB

.
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(d) Entre les plaques de déflexion, le champ est uniforme et la tension est donnée par

U = Ed .

L’électron entre dans le champ électrique avec une vitesse v⃗0 faisant un angle φ avec
l’horizontale :

éc
ra
n

plaque

plaque

L

d

U

−+ e−
v⃗0

φ

e⃗y

e⃗x

En négligeant la gravitation, la seule force s’exerçant sur l’électron est la force électrique.
Selon la deuxième loi de Newton,

F⃗élec. = −eE⃗ = ma⃗ .

En projetant cette relation vectorielle sur le vecteur horizontal e⃗x, il vient

0 = max ⇒ vx(t) = constante = v0 cosφ ⇒ x(t) = v0 cosφ t .

En particulier, le temps de séjour ts de l’électron entre les plaques est donné par

L = v0 cosφ ts ⇒ ts =
L

v0 cosφ
.

En projetant la deuxième loi de Newton sur le vecteur vertical e⃗y, on obtient

−eE = may ⇒ vy(t) = v0 sinφ− eE

m
t .

A la sortie des plaques, la vitesse verticale de l’électron doit être nulle. Autrement dit,

vy(ts) = 0 = v0 sinφ− eE

m
ts .

Le champ électrique a donc pour expression

E =
mv0 sinφ

e ts
=

mv20 cosφ sinφ

eL
.
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Finalement, la tension entre les plaques est donnée par

U = Ed =
mv20d cosφ sinφ

eL
.

Exercice 6

Nous allons étudier le mouvement d’un électron de conduction du barreau métallique.

Les électrons de conduction du barreau métallique se déplacent avec ce dernier à la vitesse
v⃗0, subissent la force de Lorentz et migrent vers une extrémité du barreau, créant un champ
électrique. Ils ressentent dès lors également une force électrique. La migration prend fin
lorsque les forces électrique et de Lorentz se compensent :

Vue de dessus

v⃗0

e−
v⃗0

F⃗élec.

F⃗Lorentz
B⃗⊗ B⃗⊗

B⃗⊗

E⃗

L

F⃗élec. + F⃗Lorentz = qE⃗ + q v⃗0 ∧ B⃗ = q(E⃗ + v⃗0 ∧ B⃗) = 0⃗ .

Ainsi, le champ électrique créé est lié au champ magnétique et à la vitesse du barreau par
l’expression

E⃗ = −v⃗0 ∧ B⃗ .

Selon l’énoncé, la vitesse du barreau et le champ magnétique sont supposés constants. Par
conséquent, le champ électrique est uniforme.

Vue de dessus

v⃗0

A

B

E⃗ E⃗

L
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La tension UAB entre les extrémités du barreau a donc pour expression :

UAB =

∫ B

A

E⃗ · dr⃗ = EL = v0BL ,

où v0 = ||v⃗0|| et B = ||B⃗|| .
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