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8.3 Théorème du moment cinétique . . . . . . . . . . . . . . . . . . . . . . . 2

8.3.1 Cas d’une masse ponctuelle . . . . . . . . . . . . . . . . . . . . . 2
8.3.2 Cas d’un système de plusieurs masses . . . . . . . . . . . . . . . . 2
8.3.3 Cas d’un solide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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9.4 Théorème de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9.5 Condensateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.5.1 Groupement de condensateurs . . . . . . . . . . . . . . . . . . . . 14
9.5.2 Energie stockée dans un condensateur . . . . . . . . . . . . . . . . 14
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8 Rotation en deux dimensions

8.1 Moment d’une force (rotation autour d’un axe)

Si on veut mettre un objet en mouvement autour d’un axe fixe A, on doit appliquer une
force ~F en un point P .

Vue en 3D

P

axe A

~F

Vue en 2D dans un plan
perpendiculaire à l’axe A

axe A

~r ~FP

La mise en rotation est donnée par

MA = b ||~F || ,

où
b = ||~r || | sin↵|

est le bras de levier.

support de ~F

P ~F

axe A

↵

~r
b

Moment de la force ~F par rapport à A :

~MA = ~r ⇥ ~F , unité : Nm ,

avec ~r =
�!
AP . Le sens de la rotation induite par ~MA est donné par la règle du tire-

bouchon. Dans le cas de la figure ci-dessus, le moment de force est sortant : � ~MA.

Si plusieurs forces ~Fi sont appliquées sur l’objet considéré en des points Pi ,

~MA =
X

i

~MA,i =
X

i

~ri ⇥ ~Fi , avec ~ri =
��!
APi .

8.2 Statique

Relativement à un référentiel d’inertie, un objet au repos pour la translation et la rotation
vérifie les relations

~F ext =
X

i

~F ext

i = ~0 et ~M ext

A =
X

i

~M ext

A,i = ~0 , 8A .

La somme des forces extérieures et la somme des moments des forces extérieures par
rapport à n’importe quel point fixe A sont nulles.
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8.3 Théorème du moment cinétique

8.3.1 Cas d’une masse ponctuelle

On considère un point A fixe dans un
référentiel d’inertie et une masse ponc-
tuelle m se déplaçant à une vitesse ~v et
soumise à une force ~F .

A~r

P
m

~F~v

Moment cinétique de m par rapport à A :

~LA = ~r ⇥ ~P = ~r ⇥m~v , unité : kgm2 s�1.

Théorème du moment cinétique :

~MA =
d

dt
~LA ⌘ ~̇LA .

8.3.2 Cas d’un système de plusieurs masses

On considère un point A et un système
formé de plusieurs masses mi subissant
chacune une force (résultante) ~Fi .
Pour chaque masse mi ,

~MA,i = ~̇LA,i . A

m
1~F

1

~v
1

m
2

~F
2

~v
2

m
3 ~F

3

~v
3

Moment cinétique du système par rapport à A :

~LA =
X

i

~LA,i .

Selon la troisième loi de Newton (action=réaction),

~MA =
X

i

~MA,i =
X

i

~M ext

A,i .

Seules les forces externes et leur moment interviennent donc dans la dynamique du
système.

Théorème du moment cinétique :

~M ext

A = ~̇LA .
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8.3.3 Cas d’un solide

Dans un solide, les positions relatives des masses mi ne changent pas au cours du temps.

Imaginons un solide en rotation autour d’un
axe passant par A et choisissons un sens posi-
tif de rotation. Selon la règle du tire-bouchon,
ce sens positif de rotation est décrit par un
vecteur ~ez parallèle à l’axe de rotation et
donc normal au plan (x, y).
La rotation du solide est alors complètement
donnée par le vecteur vitesse angulaire

~!A = !A ~ez .

La vitesse scalaire, définie en page 13 du po-
lycopié du semestre d’automne, s’écrit ainsi

vi = ri ✓̇i = ri !A .

mi

~ey

~vi

✓i

~ex

~ri

A

�~ez
sens positif choisi

Le moment cinétique du solide par rapport à A a pour expression

~LA = LA ~ez ,

avec

LA =
X

i

LA,i =
X

i

ri mi vi =
X

i

!A mi r
2

i =
⇣X

i

mi r
2

i

⌘
!A = IA !A ,

où
IA =

X

i

mi r
2

i , unité : kgm2 ,

est le moment d’inertie du solide par rapport à A.
Vectoriellement, on peut écrire

~LA = IA ~!A et ~M ext

A = ~̇LA = IA ~̇!A ,

où ~̇!A est l’accélération angulaire du solide.

Moment d’inertie pour quelques solides homogènes de masse m :

1) Cerceau (cercle) ou cylindre creux, p.r. à l’axe de symétrie passant par le CM

R

~ri mi

CM

I
CM

= mR2 .

2) Disque ou cylindre plein, p.r. à l’axe de symétrie passant par le CM

R

~ri
mi

CM

I
CM

=
1

2
mR2 .
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3) Sphère, p.r. à un axe passant par le CM

CM I
CM

=
2

3
mR2 .

4) Boule, p.r. à un axe passant par le CM

I
CM

=
2

5
mR2 .

5) Tige mince, p.r. à un axe normal à la tige et passant par le CM

CM
L

I
CM

=
1

12
mL2 .

Règle de Steiner :
Connaissant I

CM

p.r. à un axe passant par le
CM, on a IA p.r. à un axe parallèle passant
par A :

IA = md2 + I
CM

,

avec d = ||~r
CM

|| et I
CM

=
P

i mi ri
02 .

CM

A

~r
CM

~r
CM

+ ~ri
0 = ~ri

~ri
0

mi

8.3.4 Référentiel du CM

Dans le référentiel lié au CM d’un objet
constitué de masses ponctuelles mi, on a

~ri|{z}
rel. à O

= ~r
CM|{z}

rel. à O

+ ~r
0

i|{z}
rel. au CM

~vi = ~v
CM

+ ~v
0

i

~ai = ~a
CM

+ ~a
0

i .

CM

O

~r
CM

~ri

~ri
0

mi

~v
CM

~Fi

Le CM est immobile par rapport à lui-même :

~r
0

CM

= ~0 , ~v
0

CM

= ~0 et ~a
0

CM

= ~0 .

La deuxième loi de Newton reste valable si l’on ajoute la “force” d’inertie �mi~aCM

:

~Fi �mi~aCM

= mi~a
0

i .
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Remarque :

En sommant sur les mi, il vient

~F �m~a
CM

= ~0 .

Le théorème du moment cinétique ~M ext

A = ~̇LA reste valable relativement au référentiel
du CM :

~M ext

CM

= ~̇L
CM

,

et ce, même si le CM est accéléré !

8.4 Théorème de l’énergie cinétique et énergie cinétique de
rotation d’un solide

Rappel : pour une masse ponctuelle mi : mi~ai = ~Fi .
On peut s’intéresser à l’énergie du CM, ou à celle de toutes les parties du solide.

8.4.1 Energie cinétique du CM de l’objet

Avec E
cin,CM

= 1

2

mv2
CM

,

E
cin,CM

(2)� E
cin,CM

(1) = W ext

1!2

=

Z
2

1

~F ext · d~r
CM

.

La variation de l’énergie cinétique du CM de l’objet est donnée par le travail des forces
extérieures sur le CM.

8.4.2 Energie cinétique de l’objet

Produit scalaire avec ~vi, somme sur i : avec E
cin

=
P

i Ecin,i =
P

i
1

2

miv
2

i ,

E
cin

(2)� E
cin

(1) = W ext

1!2

+W int

1!2

.

La variation de l’énergie cinétique (totale) de l’objet est donnée par le travail des forces
extérieures et intérieures sur leur point d’application.

8.4.3 Cas d’un solide

L’énergie cinétique d’un solide s’écrit

E
cin

= E
cin,CM

+ E
cin,rot.

, CM

O

~r
CM

~v
CM

~!
CM

5



avec les définitions

Energie cinétique de translation :

E
cin,CM

=
1

2
mv2

CM

Energie cinétique de rotation par rapport au CM :

E
cin,rot.

=
1

2
I
CM

!2

CM

.

La variation de l’énergie cinétique d’un solide ne dépend que des forces extérieures :

E
cin

(2)� E
cin

(1) = W ext

1!2

=
X

i

Z
2

1

~F ext

i · d~ri .

Par ailleurs, les dérivées par rapport au temps s’écrivent

Ė
cin,CM

= ~F ext · ~v
CM

et Ė
cin,rot.

= ~M ext

CM

· ~!
CM

.

9 Electrostatique

L’électrostatique est l’étude des phénomènes électriques relatifs à des charges immobiles.

9.1 Force, charge et champ électriques

9.1.1 Electrisation par frottements, attraction, répulsion (expérience)

Il existe deux types de charges : positives et négatives. Deux charges de même signe
se repoussent alors que deux charges de signe contraire s’attirent.
Un objet portant autant de charges positives que de charges négatives est dit neutre.

9.1.2 Charge élémentaire

La charge d’un système est toujours un multiple entier positif ou négatif d’une charge
élémentaire e (quantification de la charge) : e = 1.602 · 10�19 C.
Unité de la charge : Le Coulomb C.
La charge électrique totale d’un système isolé est une grandeur conservée.

9.1.3 Force de Coulomb

Force de Coulomb exercée sur une
charge q par une autre charge Q :

~F =
1

4⇡✏
0

q Q

r2
~er .

~er

~F

Q

q

(cas où qQ > 0 : répulsion)

r

La constante ✏
0

= 8.854 · 10�12 N�1m�2C2 est appelée permittivité du vide.
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9.1.4 Champ électrique ~E

La force exercée sur une charge q par une autre charge Q peut donc s’écrire :

~F = q ~E ,

avec
~E =

1

4⇡✏
0

Q

r2
~er , unité :

N

C
=

V

m
,

où ~E est le champ électrique produit par la charge Q à l’endroit où se trouve q. Le
volt V est une unité introduite à la section 9.2.

Principe de superposition :
Le champ ~E dû à N charges Q

1

, Q
2

, . . . , QN est

~E(~r) = ~E
1

(~r) + ~E
2

(~r) + · · ·+ ~EN(~r) .

Q
1

> 0

Q
2

> 0

~E
2

(~r)

~E
1

(~r)

~E(~r) = ~E
1

(~r) + ~E
2

(~r)

O

~r

La force électrique excercée sur une charge q située dans le champ électrique est ainsi
donnée par

~F = q ~E .

Lignes de champ :
Un vecteur ~E = ~E(~r) est associé à chaque position ~r et on peut représenter graphi-
quement ce champ vectoriel en traçant un ensemble de vecteurs dont les modules et
les directions correspondent aux valeurs de ~E aux points d’origine des vecteurs dessinés.
Une autre représentation possible d’un champ de vecteurs consiste à tracer des lignes qui
sont tangentes à la direction de ~E en tout point. On parle alors de lignes de champ.
Ces dernières ne peuvent pas se croiser et vont toujours des charges positives aux charges
négatives.
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9.2 Tension et potentiel électrique

Considérons une région où règne un champ électrique ~E(~r) et un chemin � d’un point
A vers un point B .

A

B

�
~E

d~r

Une charge q suivant � subirait la force
électrique ~F = q ~E .

La force électrique est conservative : son travail s’exprime aussi comme une di↵érence
d’énergie potentielle. De plus, la charge q peut être mise en évidence :

WA!B(~F ) =

Z B

A

~F · d~r = q

Z B

A

~E · d~r = E
pot

(A)� E
pot

(B)

= q UAB = q�A � q�B .

Potentiel électrique :
�(~r) , unité : V (“volt”).

Le potentiel électrique à la position ~r dans le champ électrique est l’énergie poten-
tielle électrique par unité de charge (“hauteur dans le champ électrique”).

C’est un nombre défini, à une constante arbitraire près, en tout point de l’espace
(champ scalaire).

Tension électrique entre A et B :

UAB =

Z B

A

~E · d~r = �A � �B .

La tension électrique est le travail de la force électrique par unité de charge ou
encore la di↵érence de potentiel (“di↵érence de hauteur dans le champ électrique”).

Surface équipotentielle :

L’ensemble des points de l’espace au même potentiel est une surface appelée équipo-
tentielle.

Propriétés :

1) UAB est un nombre réel (positif, négatif ou nul).

2) UAB est indépendante du chemin de A à B : ~E est conservatif.

3) UAB ne dépend que de A et de B .

4) UBA = �UAB (chemin inverse).

5) UAA = 0V (chemin fermé).

6) UAC = UAB + UBC .

7) En électrostatique, le champ ~E est normal aux équipotentielles.

8) Le potentiel diminue lorsqu’on parcourt une ligne de champ dans le sens de ~E.

8



Une charge q suivant un chemin de A vers B dans un champ électrique reçoit de l’énergie
sous forme de travail de la force électrique

WAB = q UAB .

L’électron-volt est une unité d’énergie définie par l’énergie électrique reçue par une charge
élémentaire sous une tension de 1V :

1 eV = 1.602 · 10�19 J.

Cas particuliers :

a) Charge ponctuelle Q

Q > 0

~E

~er �

~E(~r) =
1

4⇡"
0

Q

r2
~er

�(~r) =
1

4⇡"
0

Q

r
+ cte

Alors

UAB =
Q

4⇡"
0

✓
1

rA
� 1

rB

◆
.

Les équipotentielles sont des sphères centrées sur Q .

b) Plaque infinie

+

+

+

+

+

+

+

+

+

+

+

+

+

~E

~ex

� ~E(~r) = ~E
0

= E
0

~ex

�(~r) = �E
0

x+ cte

Alors

UAB = ~E
0

·�!AB = E
0

(xB � xA) .

Les équipotentielles sont des plans parallèles à la plaque.

9.3 Conducteurs

9.3.1 Champ électrique dans un conducteur

Un corps est dit conducteur si les charges peuvent facilement y circuler. Dans le cas
contraire, il est dit isolant. Dans un conducteur, il existe des particules chargées sus-
ceptibles de se déplacer.
En électrostatique, le champ électrique est nul à l’intérieur des conducteurs. Deux points
quelconques d’un même conducteur peuvent toujours être joints par un chemin sur lequel
le champ est partout nul. Par conséquent,

• La tension entre deux points d’un conducteur est toujours nulle.

• Tous les points d’un conducteur sont au même potentiel.

9



Remarque :

En électrostatique, les lignes de champ sont perpendiculaires à la surface des conducteurs
(celle-ci étant une équipotentielle).

9.3.2 Phénomène d’influence

Plaçons un conducteur (sphère métallique) dans un champ électrique ~E
1

:

~E
1

~E
1

~E
1

~E
2

~E
2

~E
résultant

= ~E
1

~E
résultant

= ~E
1

+ ~E
2

~E
résultant

= ~0

�

� +

+
�

�
�

�

�

+

+
+

+

+

Etat initial Etat intermédiaire Etat final

Les charges se séparent de telle manière que ~E
résultant

= ~0 (électrostatique).

9.3.3 E↵et de pointe

Plus la courbure de la surface du conducteur est forte (c’est-à-dire plus le rayon de
courbure est petit), plus le champ électrique en son voisinage est important.

9.4 Théorème de Gauss

Surface fermée ⌃ : Surface enfermant une région (un volume) de l’espace.

Deux exemples : Sphère et parallélépipède fermé

d~⌃

P
P

d~⌃⌃

⌃

Elément de surface d~⌃ : Vecteur . . .
• associé à un point P de ⌃ ;
• normal à ⌃ ;
• pointant vers l’extérieur de ⌃ ;
• dont la norme correspond à l’aire de l’élément de surface.

Remarque :

Si ~n est un vecteur unitaire normal à ⌃ en P , pointant vers l’extérieur, on peut écrire
(somme sur la surface fermée)

I

⌃ fermée

~n · d~⌃ =

I

⌃ fermée

d⌃ = aire de ⌃ .

10



Flux de ~E à travers d~⌃ :

Soit ⌃ une surface fermée dans un
champ électrique ~E, le flux d de ~E
à travers d~⌃ s’écrit

d = ~E · d~⌃ .

P
⌃

d~⌃

~E

Remarque :

• Si ~E ? d~⌃, alors d = 0 ;
• Si ~E et d~⌃ pointent du même côté, d > 0 ;
• Si ~E et d~⌃ pointent du côté opposé, d < 0 .

Flux de ~E à travers ⌃ :

En sommant les éléments de flux, on obtient le flux de ~E à travers la surface fermée ⌃ :

 =

I

⌃ fermée

d =

I

⌃ fermée

~E · d~⌃ .

On peut distinguer trois cas.

1) Tout ce qui entre ressort :

~E

⌃

Il n’y a pas de source ou de puits
de ~E à l’intérieur de ⌃ :

 = 0 .

2) Il sort davantage qu’il n’entre :

⌃

~E

Une source est présente dans ⌃ :

 > 0 .

3) Il entre davantage qu’il ne sort :

⌃

~E

Un puits, une perte est présente
dans ⌃ :

 < 0 .
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La source du champ électrique ~E est la charge électrique. Expérimentalement, on cons-
tate que le flux de ~E à travers une surface fermée ⌃ est proportionnel à la somme des
charges se trouvant à l’intérieur de ⌃ :

 =

I

⌃ fermée

~E · d~⌃ =
Q

int.

✏
0

, (théorème de Gauss ou loi de Gauss)

où ✏
0

= 8.854 · 10�12 CV�1m�1.

Applications :

1) Champ électrique ~E d’une charge ponctuelle Q :

P ~E

d~⌃

~erQ > 0

Par invariance de rotation (par symétrie), le
champ est radial et sa norme ne dépend que
de la distance r à la charge : ~E = E(r)~er .

Choix de ⌃ : sphère centrée sur Q.

Elément de flux : d = ~E · d~⌃ = Ed⌃.

Le flux total s’écrit alors

 =

I

⌃

~E · d~⌃ =

I

⌃

E d⌃ = E

I

⌃

d⌃ = E 4⇡r2
Gauss

=
Q

✏
0

(r : rayon de la sphère). D’où

E(r) =
1

4⇡✏
0

Q

r2
.

2) En électrostatique, les charges en excès d’un conducteur sont à la surface.

3) En électrostatique, le champ est nul dans la cavité d’un conducteur.

4) La paroi interne de la cavité d’un conducteur est chargée par influence si la cavité
renferme une charge.

5) A la surface d’un conducteur, le champ est proportionnel à la densité superficielle
de charges :

+

+
+

+

+
+

+

~E = ~0

conducteur

~E 6= ~0
P

⌃ fermée (petite)

surface S

+

 = ES
Gauss

=
Q

int.

✏
0

) E =
�

✏
0

,

avec la densité superficielle de charges � =
Q

int.

S
(unité : Cm�2).
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9.5 Condensateurs

Un condensateur est un ensemble formé de deux conducteurs isolés, se faisant face. Si
l’une des armatures est chargée, l’autre possède une charge de signe contraire.

Exemple : Condensateur formé de deux plaques (vues de profil et en coupe)

Q > 0 �Q < 0

fil de connexion

armatures

+

+

+

+

+

+

+

+

+

+

+

+

�
�
�
�
�
�
�
�
�
�
�
�

~E

A B

Q > 0 �Q < 0

U = UAB > 0

Dans un condensateur, i) on crée un champ ~E, ii) on stocke des charges.

Conventions :

• La charge d’un condensateur est celle de l’armature positive.
• La tension d’un condensateur U est celle du + au �, donc positive.

La tension et la charge sont liées par la relation

Q = CU ,

où C est la capacité du condensateur dont l’unité est CV�1 = F (“farad”). C’est une
caractéristique du condensateur : à tension donnée, plus C est grande, plus la charge
du condensateur est grande. C dépend de la géométrie (distance entre les armatures,
surface, etc.).

Exemples :

a) Condensateur plan :

C = ✏
0

S

d
,

où S est la surface d’une des plaques et d la distance entre les plaques (supposées
identiques).

b) Condensateur sphérique :

C = 4⇡✏
0

✓
1

r
1

� 1

r
2

◆�1

,

où r
1

et r
2

sont les rayons des deux sphères concentriques (r
2

> r
1

).
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c) Condensateur cylindrique :

C = 2⇡✏
0

h

ln
r
2

r
1

,

où r
1

et r
2

sont les rayons des deux cylindres et h la hauteur de ces derniers (r
2

> r
1

et h � r
2

).

Des unités telles que le µF (10�6 F, microfarad), nF (10�9 F, nanofarad) ou le pF
(10�12 F, picofarad) sont souvent utilisées.

9.5.1 Groupement de condensateurs

On cherche à regrouper plusieurs condensateurs pour obtenir un condensateur équivalent.

1) Branchement en parallèle de trois condensateurs :

Q

B

AA

B

C
3

C
2

C
1

Q
1

Q
2

Q
3

UAB

C
équivalente

⇠

C
équivalente

= C
1

+ C
2

+ C
3

.

Le branchement en parallèle augmente donc la capacité.

2) Branchement en série de trois condensateurs :

A

B

UAB

C
équivalente

C
1

C
2

C
3

D E

Q Q Q

Q

B

A

⇠

1

C
équivalente

=
1

C
1

+
1

C
2

+
1

C
3

.

Le branchement en série diminue donc la capacité.

9.5.2 Energie stockée dans un condensateur

L’énergie stockée dans un condensateur correspond au travail à fournir pour charger ce
dernier avec un certain nombre de charges élémentaires :

W =
1

2
CU2 .
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10 Circuits à courant continu

10.1 Origine du courant dans un conducteur

Lorsqu’une tension UAB est établie aux bornes d’un conducteur, il règne un champ ~E
à l’intérieur de ce dernier. Les porteurs de charges (électrons) subissent alors une force
électrique ~F élec. et se déplacent collectivement à une vitesse ~v, créant un courant :

B
e�

~E

A

~F élec.

~v

Remarques :

• les lignes de champ suivent le conducteur ;
• le conducteur reste neutre ;
• les électrons subissent également un frottement (résistance).

10.2 Courant électrique

Le courant électrique I est la quantité de charges traversant la section d’un conducteur
par unité de temps :

I =
dq

dt
, unité : Cs�1 = A (“ampère”).

Convention : le sens du courant est celui des charges positives.

Exemple : Courant traversant un fil de section S

e�
S

~v

�x = v�t

�Q = enS�x = enSv�t ) I =
�Q

�t
= enSv ,

où v est la vitesse des électrons et n la den-
sité électronique (nombre d’électrons de conduc-
tion par unité de volume).

Remarque : Plus généralement, le courant est décrit par la densité de courant ~|
(courant par unité de surface). Le vecteur ~| = ~| (~x) est un champ vectoriel.

~| d~⌃
Courant à travers l’élément de surface d~⌃ :

dI = ~| · d~⌃ .
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10.3 Règles de Kirchho↵

1) Sur un chemin fermé, la somme des tensions est nulle.

Exemple de circuit :

B

FCD

A E Dans toute maille (chemin fermé), la somme
des tensions est nulle :

1) UAB + UBC + UCD + UDA = 0V.

2) UBE + UEF + UFC + UCB = 0V.

3) UAE + UEC + UCA = 0V.

2) La charge est conservée.

Cas d’un noeud dans un circuit :

I
3

I
1

I
5

I
4

I
2 I

1

+ I
3

= I
2

+ I
4

+ I
5

.

La somme des courants entrant est égale à la
somme des courants sortant.

Remarque :
Si on ne connâıt pas le sens d’un courant, on choisit un sens positif et I peut alors
être positif ou négatif.

I
2

I
3

I
1

I
1

+ I
2

+ I
3

= 0 .

10.4 Puissance électrique

La puissance électrique est une variation d’énergie par unité de temps :

P =
dE

dt
, unité : J s�1 = W (“Watt”).

La puissance électrique fournie à un dispositif de bornes A et B (ex. : circuit électrique,
ampoule, moteur) est l’énergie par unité de temps permettant d’avoir un courant électri-
que I entre A et B.

BA

I
Dispositif P = UAB I .
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10.5 Résistance d’un conducteur

Dans un conducteur, un électron accéléré par une force ~F élec. = q ~E est freiné à cause
des chocs avec les atomes et les autres électrons.

e�
~v

chocs

L’électron avance avec une vitesse moyenne
d’environ 0.5 mms�1.

10.5.1 Loi d’Ohm

L’expérience montre que dans la plupart des conducteurs le courant est proportionnel à
la tension

U = RI , (loi d’Ohm)

où U est la tension aux bornes du conducteur, I est le courant traversant ce dernier, et
R est la résistance du conducteur (unité : VA�1 = ⌦, “ohm”)

Remarque : Plus la résistance est faible, plus les électrons se déplacent facilement et
plus le courant est élevé.

10.5.2 Modèle de la résistance d’un conducteur

On suppose une force de frottement proportionnelle à la vitesse des électrons :

e�

~v~f
frott.

= ��~v

~F élec. = q ~E

En admettant une vitesse des électrons constante (et donc une accélération nulle),

��~v � e ~E ⇠= ~0 ,

il vient, en norme,

v = uE , où u =
e

�
est la mobilité.

Dans un fil conducteur, on peut donc écrire I = enSv = enSuE . D’autre part, pour
une longueur L et un champ électrique || ~E|| = E = cste, on a U = EL, de sorte que

U =
L

enSu
I ,

d’où

R =
1

enu|{z}
⇢

L

S
= ⇢

L

S
.

Résistivité :

⇢ =
1

enu
, unité : ⌦m.

Remarques :

• Plus le conducteur est long, plus sa résistance est grande.
• Plus le conducteur est épais, plus sa résistance est faible.

17



10.5.3 E↵et Joule

En raison de la résistance, la puissance électrique fournie au conducteur est dissipée en
chaleur :

A B

I
R P

Joule

= RI2.

10.5.4 Groupement de résistances

On cherche à regrouper plusieurs résistances pour obtenir une résistance équivalente.

1) Branchement en série de trois résistances :

I

BA A BR
équivalente

R
1

R
2

R
3

C D I I
⇠

R
équivalente

= R
1

+R
2

+R
3

.

Le branchement en série augmente donc la résistance.

2) Branchement en parallèle de trois résistances :

R
1

R
2

R
3

II

I
1

I
3

I
2

BA A BR
équivalente

⇠

1

R
équivalente

=
1

R
1

+
1

R
2

+
1

R
3

.

Le branchement en parallèle diminue donc la résistance.

10.6 Générateur électrique

Un générateur électrique est un appareil qui permet de transformer de l’énergie en énergie
électrique (et en énergie thermique). Il possède deux bornes : une positive (portant
des charges positives) et une négative. Lorsque le générateur alimente un circuit, il est
traversé par un courant.

La tension UAB aux bornes dépend de

• la tension électromotrice U
em

(tension maximale, sans courant) ;

• la résistance interne r.

A B

+
�

(U
em

, r)

schéma détaillé�!
A

+
�

B

I I

U
em

r

UAB = U
em

� rI .
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10.7 Moteur électrique

Un moteur électrique est un appareil qui permet de transformer de l’énergie électrique
en énergie mécanique (et en énergie thermique).

A B

I
M

P
fournie (électrique)

= P
méc.

+ P
therm.

,

UAB I = P
méc.

+ rI2 ,

où r est la résistance interne et P
méc.

est la puissance
mécanique développée par le moteur.

En écrivant,
P
méc.

= U
cem

I ,

on définit la tension contre-électromotrice, U
cem

, qui est la tension utile.

UAB|{z}
bornes

= U
cem|{z}

utile

+ rI|{z}
perte

.

Remarques :

• Plus le moteur est sollicité, plus le courant est important.

• Si le moteur est bloqué, P
méc.

= 0, U
cem

= 0 et U
em

� rI = r0I

) I =
U
em

r + r0
.

Le courant est alors très important et le moteur chau↵e.

• Si le moteur tourne à vide, I ⇠= 0A, et U
em

⇠= U
cem

.

10.8 Rendement

Le rendement est la puissance e↵ectivement développée pour la fonction du dispositif
divisée par la puissance fournie au dispositif :

⌘ =
P
utile

P
fournie

, 0  ⌘  1 , unité : - .

10.9 Ampèremètre et voltmètre

L’ampèremètre mesure des courants alors que le voltmètre mesure des tensions.

Pour mesurer le courant traversant un
élément d’un circuit, on doit insérer
l’ampèremètre en série avec cet élément. La
résistance de l’ampèremètre doit être la plus
petite possible.

A

Pour mesurer la tension aux bornes d’un
élément d’un circuit, on doit insérer le
voltmètre en parallèle avec cet élément. La
résistance du voltmètre doit être la plus
grande possible.

V
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11 Magnétostatique

11.1 Force de Lorentz et champ magnétique

La force que subit une particule chargée en mouvement au voisinage d’un aimant ou
d’un fil parcouru par un courant est appelée force de Lorentz :

~F = q ~v ⇥ ~B ,

où q est la charge de la particule, ~v sa vitesse et ~B un vecteur dépendant de l’aimant
ou du courant dans le fil, ainsi que de l’endroit ~r où se trouve la charge q (voir section
11.5.1).

Remarque : La force de Lorentz ne travaille pas.

Le champ vectoriel ~B = ~B(~r) est le champ magnétique à l’endroit ~r.

Unité :
Vs

m2

= T (“tesla”).

Exemple : Cas d’un fil rectiligne infini parcouru par un courant I

�
~B ~B

⌦

2D 3D

plan ? au fil

~B

I
I

Les lignes de champ sont dans ce cas des cercles perpendiculaires au fil et centrés sur ce
dernier. Le sens de ~B est donné par la règle du tire-bouchon : en tournant dans le sens
indiqué par ~B, on avance selon I.

Pour une charge q à vitesse ~v :

�
~B ~B

⌦

I

~v

q < 0
~v ⇥ ~B

~F

20



11.1.1 Mouvement d’une particule chargée dans un champ magnétique

a) Cas d’un champ magnétique uniforme ( ~B =
��!
cste)

i) Si ~v ? ~B : mouvement circulaire uniforme de rayon R =
mv

|q|B .

ii) Si ~v est quelconque : trajectoire hélicöıdale, ayant comme axe une ligne du
champ magnétique ~B.

b) Cas d’un champ magnétique produit par un fil rectiligne infini

Si la vitesse de la particule est parallèle au plan formé par la particule et le fil
rectiligne, cette dernière reste toujours dans le même plan et sa trajectoire a un
rayon de courbure grand loin du fil et petit proche du fil.

11.1.2 E↵et Hall

Un courant dans une feuille métallique plongée dans un champ magnétique ~B induit une
tension transversale.

I I

A

B

+ + + + +

� � � � �

~E

~F
élec.

~F
Lorentz

~v
e�

⌦
~B Sous l’e↵et de ~F

Lorentz

, les charges se
séparent jusqu’à ce que ~F

élec.

(due au
champ électrique crée par les charges
déplacées) compense exactement la
force magnétique :

q ( ~E + ~v ⇥ ~B) = ~0 ) ~E = �~v ⇥ ~B .

Il apparâıt donc une tension transver-
sale UAB.

11.2 Force de Laplace

Considérons un fil de longueur L = ||~L||, parcouru par un courant I et plongé dans un
champ ~B.

⌦
~B

e�
~v

~F
Lorentz

I

~L

Les électrons de conduction subissent ~F
Lorentz

et
appuient sur le fil. Ainsi, un fil parcouru par un
courant dans un champ magnétique subit la force
de Laplace

~F = I~L⇥ ~B ,

où ~L est le vecteur donnant la longueur du fil et le
sens du courant.
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11.2.1 Deux fils parallèles parcourus par des courants

Le courant I
2

se trouve dans le champ ~B
1

produit par le courant I
1

.

a) Courants de même sens

⌦
~B
1

~F

I
1

I
2

Les fils se rapprochent.

b) Courants de sens opposé

⌦
~B
1

I
1

I
2

~F

Les fils s’éloignent.

11.2.2 Galvanomètre, moteur électrique

Le galvanomètre est un cadre rectangulaire de côtés a et b, mobile autour d’un axe et
plongé dans un champ magnétique ~B. Lorsque le cadre est parcouru par un courant I,
ce dernier subit un couple de forces de Laplace.

~B

I

b

axe de rotation

a
~a

Vue de dessus

�~F

~F = I~a⇥ ~B

b/2

✓axe

�

⌦

~B

b/2

Lorsque le couple est compensé par un couple de rappel de constante C, la mesure de
l’angle d’équilibre ✓ permet de déduire le courant traversant le cadre :

I =
C✓

abB cos ✓
.

Le moteur électrique à courant continu est basé sur le même principe que le gal-
vanomètre si ce n’est que le couple de rappel n’existe pas et que le sens du courant est
inversé périodiquement de manière à ce que le couple soit toujours dans le même sens.
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11.3 Moment dipolaire magnétique, aimants

On définit le moment dipolaire
magnétique d’un cadre par

~m = I ~S ,

où ~S est le vecteur normal
au cadre, de norme ab (sur-
face définie par le cadre) et de
sens donné par la règle du tire-
bouchon selon le sens du courant. ~B

I

b

axe de rotation

a

Rotation induite par ~ML = ~m⇥ ~B

~S
↵

~ML
~B

~S

�

cadre

I
I

~B
~S

~ML ⌦
~S

~ML = ~0 ~B

Le moment dipolaire ~m tend à s’aligner sur le champ ~B.

Exemple :
Un aimant peut être vu comme formé de petits courants permanents : il crée un
champ ~B.

B⃗

N S

23



Un second aimant peut être vu comme un dipôle magnétique (moment dipolaire) ~m

s’alignant sur le champ ~B produit par le premier aimant :

B⃗

N S

S
m⃗

N

Un aimant possède toujours deux pôles. Deux pôles similaires se repoussent et deux pôles
di↵érents s’attirent.

11.4 Flux du champ magnétique

Le flux du champ magnétique à travers une surface fermée est toujours nul :

 =

I

⌃ fermée

~B · d~⌃ = 0 .

Il n’existe donc pas de charge magnétique (le champ magnétique n’a ni sources, ni puits)
et les lignes de champ sont toujours fermées.

Pour rappel, en électrostatique, le flux du champ électrique s’écrit quant à lui (loi de
Gauss) I

⌃ fermée

~E · d~⌃ =
Q

int

✏
0

,

ce qui traduit le fait que le champ électrique possède des sources (charges électriques).
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11.5 Circulation du champ magnétique

Considérons une courbe fermée � dans un champ ~B :

~B

�

d~r

La circulation de ~B le long de � est proportionnelle
aux courants enlacés par � :

C
�

=

I

�

~B · d~r = µ
0

I
enlacé

(Loi d’ampère) ,

où µ
0

= 4⇡ · 10�7 VsA�1m�1 est une constante appelée
perméabilité magnétique du vide.

�
I
4

I
3

I
1

I
2

I
enlacé

est compté positif s’il a le sens de
l’avancement du tire-bouchon tournant dans
le sens du parcours :

I
enlacé

= I
1

+ I
2

� I
4

.

11.5.1 Application : champ d’un courant rectiligne

Fil rectiligne infini

~B

I

rd~r

�
~B

r

I

�

Par symétrie,

• ~B est perpendiculaire au fil ;

• les lignes de champ sont des cercles perpendiculaires au fil et centrés sur le fil ;

• || ~B|| ne dépend que de r.

Choix de � : une ligne de champ (cercle de rayon r)

Alors,

C
�

=

I

�

~B · d~r =
I

�

B dr = B

I

�

dr = B2⇡r = µ
0

I ) B(r) =
µ
0

I

2⇡r
.
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11.5.2 Application : champ dans un solénöıde

L

~B

S
�

P

R

Q

I I

Hypothèse : ~B uniforme à l’intérieur, ~B = ~0 à l’extérieur
(bobine de longueur � diamètre).

Choix de � : PQRS

• P ! Q : ~B · d~r = B dr, B = constante ;

• Q ! R : ~B · d~r = 0, car ~B ? d~r ;

• R ! S : ~B · d~r = 0, car ~B = ~0 ;

• S ! P : ~B · d~r = 0, car ~B ? d~r .

Ainsi,

C
�

=

I

�

~B · d~r =
Z Q

P

B dr = BL = µ
0

NI ) B =
µ
0

NI

L
,

où N est le nombre de spires.
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