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8 Rotation en deux dimensions

8.1 Moment d’une force (rotation autour d’un axe)

Si on veut mettre un objet en mouvement autour d’un axe fixe A, on doit appliquer une
force F' en un point P.

Vue en 3D Vue en 2D dans un plan
perpendiculaire a ’axe A

axe A
F AP -
axe A
La mise en rotation est donnée par 7
axe A -
My =b||F q -
A= bIIF], N p 7
XN o
ou P N
b=||7|||sinc] support de F
est le bras de levier.
Moment de la force F' par rapport a A :
]\ZA:Fxﬁ, unité : Nm,

avec 17 = z@ Le sens de la rotation induite par M A est donné par la regle du tire-
bouchon. Dans le cas de la figure ci-dessus, le moment de force est sortant : ©M 4.

—

Si plusieurs forces F; sont appliquées sur 'objet considéré en des points P;,

MA: E MAJ': E T_’;XFi, avec 7:;:14[:‘@
S -

7

8.2 Statique

Relativement a un référentiel d’inertie, un objet au repos pour la translation et la rotation
vérifie les relations

Fot=N"Fot =0 et M=) M3 =0, VA,

La somme des forces extérieures et la somme des moments des forces extérieures par
rapport a n’importe quel point fixe A sont nulles.



8.3 Théoreme du moment cinétique

8.3.1 Cas d’une masse ponctuelle

On considére un point A fixe dans un 7 7
référentiel d’inertie et une masse ponc-
tuelle m se déplagant a une vitesse U et P
soumise a une force F'. m
7FNCA
Moment cinétique de m par rapport a A :
Ly=7"XxXP=rxmuv, unité : kgm?s~t.

Théoreme du moment cinétique :

8.3.2 Cas d’un systeme de plusieurs masses

On considere un point A et un systeme
formé de plusieurs masses m; subissant
chacune une force (résultante) F; .

U3
mao
— ml _
F1 /\ U1
Pour chaque masse m; , -
Fy
3 = A
/\F ’ )

Ma;=La;.

U3
Moment cinétique du systéme par rapport a A :
La=) La;.
i
Selon la troisieme loi de Newton (action=réaction),
My=Y My;=> M.
i i

Seules les forces externes et leur moment interviennent donc dans la dynamique du
systeme.

Théoreme du moment cinétique :

“rext =



8.3.3 Cas d’un solide

Dans un solide, les positions relatives des masses m; ne changent pas au cours du temps.

Imaginons un solide en rotation autour d'un
axe passant par A et choisissons un sens posi-
tif de rotation. Selon la regle du tire-bouchon,
ce sens positif de rotation est décrit par un
vecteur €, parallele a 'axe de rotation et
donc normal au plan (z,y).

La rotation du solide est alors completement
donnée par le vecteur vitesse angulaire

JJ’A:wAé’Z.

La vitesse scalaire, définie en page 13 du po-
lycopié du semestre d’automne, s’écrit ainsi

Vi = 7”1'92' =T;WwA .
Le moment cinétique du solide par rapport a A a pour expression
La=Lae,,

avec

2 2
L= E Ly, = E rim; v = E waAm;T; = < E mirl->wA:IAwA,

7
ou
Iy= 2 ité : kem?
A= m; Ty, unité : kgm”,
7

est le moment d’inertie du solide par rapport a A.
Vectoriellement, on peut écrire

Text

LA:]A@A et A ZLAZIALUA,

ol Wy est I’accélération angulaire du solide.

Moment d’inertie pour quelques solides homogenes de masse m :

1) Cerceau (cercle) ou cylindre creux, p.r. a 'axe de symétrie passant par le CM

g

2) Disque ou cylindre plein, p.r. a 'axe de symétrie passant par le CM

m; ICM = TTI,‘R2 .

1
ICM = imRQ .



3) Sphere, p.r. & un axe passant par le CM

2
ICM = ngQ .

4) Boule, p.r. & un axe passant par le CM

2
Iom = ngQ.

5) Tige mince, p.r. & un axe normal a la tige et passant par le CM

1 2

L

Regle de Steiner :
Connaissant ¢y p.r. a un axe passant par le
CM, on a I4 p.r. & un axe parallele passant
par A :

IA =m d2 + ICM s

8.3.4 Référentiel du CM

Dans le référentiel lié au CM dun objet

constitué de masses ponctuelles m;, on a F;
— — + -/
T = cM T 7.
~—~ CM
rel. & O rel. a O rel. au CM
— — —I— — !
U; = Uom + U S /,
' ! T reM
— — !
a; = acm+4a; . O

Le CM est immobile par rapport a lui-méme :
— / I~ — / ~ — / =
La deuxieme loi de Newton reste valable si I'on ajoute la “force” d’inertie —m; dcy :

— ’

Fi —m;dcy = m; d; .

4



Remarque :
En sommant sur les m;, il vient

—

F—maCMZO.

Le théoreme du moment cinétique M = L4 reste valable relativement au référentiel

du CM :

“rext =
CM — LCM 5

et ce, méme si le CM est accéléré !

8.4 Théoreme de I’énergie cinétique et énergie cinétique de
rotation d’un solide

—

Rappel : pour une masse ponctuelle m; : m; a; = F; .
On peut s’intéresser a ’énergie du CM, ou a celle de toutes les parties du solide.

8.4.1 Energie cinétique du CM de 'objet

1,2
Avec Eenom = 5Mugy

2
Ecin,CM(2> - Ecin,CM(l) = 1632 = / 176Xt . dFCM .
1

La variation de I'énergie cinétique du CM de I'objet est donnée par le travail des forces
extérieures sur le CM.

8.4.2 Energie cinétique de ’objet
Produit scalaire avec ¥;, somme sur i : avec Egy = Y Eein; = ) %mivf ,

Ecin(2) - Ecin(l) = f§2 + Wlultﬂ .

La variation de ’énergie cinétique (totale) de I'objet est donnée par le travail des forces
extérieures et intérieures sur leur point d’application.

8.4.3 Cas d’un solide

L’énergie cinétique d’un solide s’écrit

Ecin = Ecin,CM + Ecin,rot. )




avec les définitions

Energie cinétique de translation :

1
2
Ecin,CM - 5 mUcm

Energie cinétique de rotation par rapport au CM :

1

2
Ecin,rot. - 5 CM W -

La variation de 1’énergie cinétique d’un solide ne dépend que des forces extérieures :
2 —
Ecin(Q) - Ecin(l) = Wleifg = Z/ FieXt . dﬁ .
— J1
K2

Par ailleurs, les dérivées par rapport au temps s’écrivent

’ Cext y rext -
Ecin,CM =F “Ucm et Ecin,rot. = MCM *WeM -

9 Electrostatique

L’électrostatique est I’étude des phénomenes électriques relatifs a des charges immobiles.

9.1 Force, charge et champ électriques
9.1.1 Electrisation par frottements, attraction, répulsion (expérience)

Il existe deux types de charges : positives et négatives. Deux charges de méme signe
se repoussent alors que deux charges de signe contraire s’attirent.
Un objet portant autant de charges positives que de charges négatives est dit neutre.

9.1.2 Charge élémentaire

La charge d'un systeme est toujours un multiple entier positif ou négatif d'une charge
élémentaire e (quantification de la charge) : e = 1.602 - 10717 C.

Unité de la charge : Le Coulomb C.

La charge électrique totale d’un systeme isolé est une grandeur conservée.

9.1.3 Force de Coulomb

Force de Coulomb exercée sur une
charge ¢ par une autre charge @) :

1 q@Q
—€ .

F= 5
dmeg 1

La constante ¢y = 8.854 - 10712 N='m=2C? est appelée permittivité du vide.

6



9.1.4 Champ électrique E
La force exercée sur une charge ¢ par une autre charge () peut donc s’écrire :
F=qE,

avec

1 Q

- N
E = —€ unité : — =
Aregr? C

Bl <

Y

ot E est le champ électrique produit par la charge ) a I'endroit ou se trouve q. Le
volt V est une unité introduite a la section 9.2.

Principe de superposition :
Le champ E du a N charges Q1,Qs, ..., QN est

—

E(F) = Ey(7) + Ey(F) + - - + En(7).

Q2> 0

La force électrique excercée sur une charge ¢ située dans le champ électrique est ainsi

donnée par
F=qF.

Lignes de champ :

Un vecteur E = E(F) est associé a chaque position 7 et on peut représenter graphi-
quement ce champ vectoriel en tracant un ensemble de vecteurs dont les modules et
les directions correspondent aux valeurs de E aux points d’origine des vecteurs dessinés.
Une autre représentation possible d’un champ de vecteurs consiste a tracer des lignes qui
sont tangentes a la direction de E en tout point. On parle alors de lignes de champ.
Ces dernieres ne peuvent pas se croiser et vont toujours des charges positives aux charges
négatives.



9.2 Tension et potentiel électrique

Considérons une région ou regne un champ électrique E(F) et un chemin I' d’un point
A vers un point B.

Une charge ¢ suivant I" subirait la force
électrique F = qE .

A

La force électrique est conservative : son travail s’exprime aussi comme une différence
d’énergie potentielle. De plus, la charge ¢ peut étre mise en évidence :

B B
Wan(F) — / Fodi = q/ B.di = Eyu(A) = Eyu(B)
A A

= qUas = qPs—qPp.
Potentiel électrique:
O(7), unité : V (“volt”).
Le potentiel électrique a la position 7 dans le champ électrique est I’énergie poten-
tielle électrique par unité de charge (“hauteur dans le champ électrique”).
(C’est un nombre défini, a une constante arbitraire pres, en tout point de I'espace

(champ scalaire).

Tension électrique entre A et B:

B
UAB:/ E-di=®, — ®p.
A

La tension électrique est le travail de la force électrique par unité de charge ou
encore la différence de potentiel (“différence de hauteur dans le champ électrique”).
Surface équipotentielle :
L’ensemble des points de 1'espace au méme potentiel est une surface appelée équipo-
tentielle.
Propriétés :

1) Uap est un nombre réel (positif, négatif ou nul).

\)

Uap est indépendante du chemin de A a B : E est conservatif.
Uap ne dépend que de A et de B.

W

)

)

)

) Upa = —Uap (chemin inverse).
) Uaa =0V (chemin fermé).
)

)

)

S Ot

Usac = Usp +Upc .

En électrostatique, le champ E est normal aux équipotentielles.

~J

8) Le potentiel diminue lorsqu’on parcourt une ligne de champ dans le sens de E.

8



Une charge ¢ suivant un chemin de A vers B dans un champ électrique recoit de ’énergie
sous forme de travail de la force électrique

Wap =qUap.

L’électron-volt est une unité d’énergie définie par ’énergie électrique recue par une charge
élémentaire sous une tension de 1V :

1eV =1.602-10"% 7.

Cas particuliers :

a) Charge ponctuelle Q)

_ 1 Q
E = — —eé,
(7) 4reg 72 ©
1 @
P = — +ct
(7) dmeg 1 +te

Alors

1 1
‘ - (58)
TEo TA B

Les équipotentielles sont des spheres centrées sur ().

b) Plaque infinie

. ® E(f) = Ey= Eyé,
N .
! R O(r) = —FEox+ cte
i : ~ B Alors
N .
1 > UAB:E:()'B:E(](QIB—ZKA).
1 .
N .
+ —_—)
€

Les équipotentielles sont des plans paralleles a la plaque.

9.3 Conducteurs
9.3.1 Champ électrique dans un conducteur

Un corps est dit conducteur si les charges peuvent facilement y circuler. Dans le cas
contraire, il est dit isolant. Dans un conducteur, il existe des particules chargées sus-
ceptibles de se déplacer.

En électrostatique, le champ électrique est nul a 'intérieur des conducteurs. Deux points
quelconques d'un méme conducteur peuvent toujours étre joints par un chemin sur lequel
le champ est partout nul. Par conséquent,

e La tension entre deux points d’un conducteur est toujours nulle.

e Tous les points d'un conducteur sont au méme potentiel.



Remarque :

En électrostatique, les lignes de champ sont perpendiculaires a la surface des conducteurs
(celle-ci étant une équipotentielle).

9.3.2 Phénomene d’influence

Plagons un conducteur (spheére métallique) dans un champ électrique E;

Erésulta‘nt =k Erésu]tant - El + E2 Er'ésu]tant =0
Etat initial Etat intermédiaire Etat final

Les charges se séparent de telle maniere que Erésu]tant =0 (électrostatique).

9.3.3 Effet de pointe

Plus la courbure de la surface du conducteur est forte (c’est-a-dire plus le rayon de
courbure est petit), plus le champ électrique en son voisinage est important.

9.4 Théoréme de Gauss

Surface fermée ¥ : Surface enfermant une région (un volume) de l'espace.

Deux exemples : Sphere et parallélépipede fermé

—

dx

X
| \ S
5 F 7777777 %ﬁ

Elément de surface dY : Vecteur . ..
e associé a un point P de X
e normal a X ;
e pointant vers 'extérieur de X3 ;
e dont la norme correspond a 'aire de 1’élément de surface.
Remarque :
Si 7 est un vecteur unitaire normal a ¥ en P, pointant vers l'extérieur, on peut écrire
(somme sur la surface fermée)

]{ﬁ-di:j{dZ:airede .
Y fermée Y fermée

10



Flux de E a travers dY : FE

Soit X une surfage fermée dans un dx

champ élecgrique E, le flux d¥ de E '

A travers dX s’écrit 0 by
dV = E - d%.

Remarque :

e Si E L dY, alors dV =0 ;
e Si E et dg pointent du méme coté, d¥ > 0 ;
e Si E et dX pointent du coté opposé, d¥ < 0.

Flux de E a travers ¥ :

En sommant les éléments de flux, on obtient le flux de E & travers la surface fermée . :
\I/:% A :7{ E-ds.
> fermée 3 fermée
On peut distinguer trois cas.

1) Tout ce qui entre ressort :

by

Il n’y a pas de source ou de puits
de E a l'intérieur de X :

U =0.

—

E

2) Il sort davantage qu’il n’entre :

Y
Une source est présente dans Y. :

v >0.

—

E
3) 1l entre davantage qu’il ne sort :

)y

Un puits, une perte est présente
dans ¥ :
U <0.

=

11



La source du champ électrique E est la charge électrique. Expérimentalement, on cons-
tate que le flux de E a travers une surface fermée ¥ est proportionnel a la somme des
charges se trouvant a l'intérieur de X :

U = 7{ E-dS = it , (théoreme de Gauss ou loi de Gauss)
s

fermée €o

ol € = 8.854- 10712 CV 'm .
Applications :

1) Champ électrique E d’une charge ponctuelle @ :

p ~E Par invariance de rotation (par symétrie), le
7S champ est radial et sa norme ne dépend que
de la distance r a la charge : E = E(r)é, .

Choix de Y : sphere centrée sur Q).

Elément de flux : dU = E - d%, = EdY..

Le flux total s’écrit alors

\1/:]{E-di:j[Edz:Ej{dzzmwﬂGESS9
> > >

€0

(r : rayon de la sphere). D’ou

1 Q

Aregr?

E(r)

2) En électrostatique, les charges en exces d’un conducteur sont a la surface.
3) En électrostatique, le champ est nul dans la cavité d’un conducteur.

4) La paroi interne de la cavité d’un conducteur est chargée par influence si la cavité
renferme une charge.

5) A la surface d'un conducteur, le champ est proportionnel a la densité superficielle
de charges :

surface S

+

conducteur
E+£0
B Y fermée (petite)
t E=0
\P:ESGgss Qint. E:—’
€0 €0

avec la densité superficielle de charges o =

12



9.5 Condensateurs

Un condensateur est un ensemble formé de deux conducteurs isolés, se faisant face. Si
I'une des armatures est chargée, I’autre possede une charge de signe contraire.

Exemple : Condensateur formé de deux plaques (vues de profil et en coupe)

Q>0 Q<0 Q>0 —-Q <0

fil de connexion A

—

E

IRRRRRRRRRNN

’++++++++++++
A

t{

armatures

U=Upp >0

Dans un condensateur, i) on crée un champ F, ii) on stocke des charges.

Conventions :

e La charge d'un condensateur est celle de I’'armature positive.
e La tension d'un condensateur U est celle du + au —, donc positive.

La tension et la charge sont liées par la relation
Q=CU,

ou C est la capacité du condensateur dont I'unité est CV™' = F (“farad”). C’est une
caractéristique du condensateur : a tension donnée, plus C' est grande, plus la charge
du condensateur est grande. C' dépend de la géométrie (distance entre les armatures,
surface, etc.).

Exemples :

a) Condensateur plan :

S
C =€ a’
ou S est la surface d'une des plaques et d la distance entre les plaques (supposées

identiques).

b) Condensateur sphérique :

1 1\
C = 4me (———) ,
r1 T2

ou 71 et 9 sont les rayons des deux spheres concentriques (ry > 71).

13



c¢) Condensateur cylindrique :

h
—
In 2

]

C = 2meg
ou 71 et r9 sont les rayons des deux cylindres et h la hauteur de ces derniers (ry > 7

et h > 7’2).

Des unités telles que le puF (107¢ F, microfarad), nF (107 F, nanofarad) ou le pF
(107'2 F, picofarad) sont souvent utilisées.

9.5.1 Groupement de condensateurs

On cherche a regrouper plusieurs condensateurs pour obtenir un condensateur équivalent.

1) Branchement en parallele de trois condensateurs :

A A

Q Q Qs Q__

Uas S
C]. CQ 03 Céquivalente

CYéquivaulente = Cl + C’2 + 03 .
Le branchement en parallele augmente donc la capacité.

2) Branchement en série de trois condensateurs :

Q Q Q

o
&
S

I

Céquivalente

1 1 1 1

=t .
Céquivalente CYl C(2 Cd

Le branchement en série diminue donc la capacité.

9.5.2 Energie stockée dans un condensateur

L’énergie stockée dans un condensateur correspond au travail a fournir pour charger ce
dernier avec un certain nombre de charges élémentaires :

1 2
W= cur.

14



10 Circuits a courant continu

10.1 Origine du courant dans un conducteur

Lorsqu’une tension Uap est établie aux bornes d'un conducteur, il regne un champ £
a l'intérieur de ce dernier. Les porteurs de charges (électrons) subissent alors une force
électrique Fé°° et se déplacent collectivement & une vitesse ¥, créant un courant :

Remarques :

e les lignes de champ suivent le conducteur;
e le conducteur reste neutre;
e les électrons subissent également un frottement (résistance).

10.2 Courant électrique

Le courant électrique I est la quantité de charges traversant la section d’un conducteur
par unité de temps :
dq

1=~
dt’

unité: Cs~' = A (“ampere”).

Convention : le sens du courant est celui des charges positives.

Exemple : Courant traversant un fil de section S

S A
AQ = enSAx = enSvAt = [ = —Q =enSv,
¥ ! e At
I l =
A /v ou v est la vitesse des électrons et n la den-
Ax = vAt sité électronique (nombre d’électrons de conduc-

tion par unité de volume).

Remarque : Plus généralement, le courant est décrit par la densité de courant 7
(courant par unité de surface). Le vecteur 7= 7(Z) est un champ vectoriel.

J dx Courant & travers I'élément de surface dY, :

dl = 7-dS.

15



10.3 Regles de Kirchhoff

1) Sur un chemin fermé, la somme des tensions est nulle.

Exemple de circuit :

A B E Dans toute maille (chemin fermé), la somme
— @ des tensions est nulle :
— @ [] () 1) Uap+Upc+Ucp+Upa=0V.
2) Upg +Ugr +Upc +Ucg =0V.
D C F 3) Uag +Upc+Uca=0V.

2) La charge est conservée.

Cas d’un noeud dans un circuit :

L+ L=0L+1,+15.

La somme des courants entrant est égale a la
somme des courants sortant.

Remarque :
Si on ne connait pas le sens d'un courant, on choisit un sens positif et I peut alors
étre positif ou négatif.

il
]1+IQ+]3:0.

I3

10.4 Puissance électrique

La puissance électrique est une variation d’énergie par unité de temps :

dE
P= o unité : Js~ = W (“Watt”).

La puissance électrique fournie a un dispositif de bornes A et B (ex. : circuit électrique,
ampoule, moteur) est I’énergie par unité de temps permettant d’avoir un courant électri-
que [ entre A et B.

Dispositif — P=Uugpl!.
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10.5 Résistance d’un conducteur

Dans un conducteur, un électron accéléré par une force F¢° = gFE est freiné a cause
des chocs avec les atomes et les autres électrons.

chocs

N

L’électron avance avec une vitesse moyenne

d’environ 0.5 mms—!.

<y

10.5.1 Loi d’Ohm

L’expérience montre que dans la plupart des conducteurs le courant est proportionnel a
la tension

U=RI, (loi dOhm)

ou U est la tension aux bornes du conducteur, I est le courant traversant ce dernier, et
R est la résistance du conducteur (unité : VA™' = Q, “ohm”)

Remarque : Plus la résistance est faible, plus les électrons se déplacent facilement et
plus le courant est élevé.

10.5.2 Modéele de la résistance d’un conducteur
On suppose une force de frottement proportionnelle a la vitesse des électrons :
e~ ﬁélec. — qE

N _— =
ffrott — _A/U v

En admettant une vitesse des électrons constante (et donc une accélération nulle),

AT —eE >0 ,
il vient, en norme,
v=uE,  oliu= ; est la mobilité.
Dans un fil conducteur, on peut donc écrire I = enSv = enSuFE . D’autre part, pour
une longueur L et un champ électrique ||E|| = E = cste, on a U = EL, de sorte que
L
U= I,
enSu
d’ou 1 I I
R=——==p=.
enu, S S
~~
P

Résistivité :

1
p=—, unité: Qm.
enu
Remarques :

e Plus le conducteur est long, plus sa résistance est grande.
e Plus le conducteur est épais, plus sa résistance est faible.

17



10.5.3 Effet Joule

En raison de la résistance, la puissance électrique fournie au conducteur est dissipée en
chaleur :
A —— B
2
R ;] * PJoule = RI".

10.5.4 Groupement de résistances

On cherche a regrouper plusieurs résistances pour obtenir une résistance équivalente.
1) Branchement en série de trois résistances :
A Rl R2 R3 B A Réquivalente B
—— F— = o ~ L1
1 C D 1 1
Réquivalente =R+ Ry + RS .

Le branchement en série augmente donc la résistance.

2) Branchement en parallele de trois résistances :
Ry

1
| S|

R Réuivaene
A 2 B N A ‘Yéquivalente B

I fs
| I |

1 1 1 1
Réquivalente Rl R2 R3 .
Le branchement en parallele diminue donc la résistance.

10.6 Générateur électrique

Un générateur électrique est un appareil qui permet de transformer de I’énergie en énergie
électrique (et en énergie thermique). Il possede deux bornes : une positive (portant
des charges positives) et une négative. Lorsque le générateur alimente un circuit, il est
traversé par un courant.

La tension Uy p aux bornes dépend de
e la tension électromotrice Uy, (tension maximale, sans courant) ;

e la résistance interne r.

L +
_ o T
A ‘ \ B schéma détaillé 4 } L 1 Z
: L
=
(UGHU T’) Uem
UAB = Uem — ’I"[ .
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10.7 Moteur électrique
Un moteur électrique est un appareil qui permet de transformer de 1’énergie électrique

en énergie mécanique (et en énergie thermique).

Pfournie (électrique) = Pméc. + IDtherm. )

A B
I UAB[ = Pméc.+r[27

ou r est la résistance interne et P4 est la puissance
mécanique développée par le moteur.

En écrivant,
Prnéc. - Ucem [7

on définit la tension contre-électromotrice, Ueen, qui est la tension utile.

UAB = Ucem +\ rl ,

bornes utile perte
Remarques :
e Plus le moteur est sollicité, plus le courant est important.
e Si le moteur est bloqué, Pog.. =0, Ueem =0 et Uy — 11 =71
Uem
r+r
Le courant est alors tres important et le moteur chauffe.

= I =

e Si le moteur tourne a vide, I =2 0A, et Usmy = Ucem.

10.8 Rendement

Le rendement est la puissance effectivement développée pour la fonction du dispositif
divisée par la puissance fournie au dispositif :

n = Putile
Pfournie

0<n<1, unité : - .

Y

10.9 Amperemetre et voltmetre

L’ampéremetre mesure des courants alors que le voltmetre mesure des tensions.

Pour mesurer le courant traversant un 1 /D
élément d’'un circuit, on doit insérer U
I’amperemetre en série avec cet élément. La
résistance de 'amperemetre doit étre la plus
petite possible. \

Pour mesurer la tension aux bornes d’un

| |
| I |
élément d’un circuit, on doit insérer le m

voltmetre en parallele avec cet élément. La
résistance du voltmetre doit étre la plus
grande possible.
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11 Magnétostatique

11.1 Force de Lorentz et champ magnétique

La force que subit une particule chargée en mouvement au voisinage d’'un aimant ou
d’un fil parcouru par un courant est appelée force de Lorentz :

ﬁ:qﬁxg,

ou ¢ est la charge de la particule, ¢ sa vitesse et B un vecteur dépendant de 'aimant
ou du courant dans le fil, ainsi que de I’endroit 7 ou se trouve la charge ¢ (voir section
11.5.1).

Remarque : La force de Lorentz ne travaille pas.

Le champ vectoriel B = E(F) est le champ magnétique a l’endroit 7.
Vs

Unité : — =T (“tesla”).
m

Exemple : Cas d'un fil rectiligne infini parcouru par un courant [/

2D

Les lignes de champ sont dans ce cas des cercles perpendiculaires au fil et centrés sur ce
dernier. Le sens de B est donné par la regle du tire-bouchon : en tournant dans le sens
indiqué par B, on avance selon I.

Pour une charge g a vitesse ¥ :
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11.1.1 Mouvement d’une particule chargée dans un champ magnétique

. . = —
a) Cas d'un champ magnétique uniforme (B = cste)
mu

gl B
ii) Si ¢ est quelconque : trajectoire hélicoidale, ayant comme axe une ligne du

i) Si ¥ L B : mouvement circulaire uniforme de rayon R =

champ magnétique B.

b) Cas d'un champ magnétique produit par un fil rectiligne infini

Si la vitesse de la particule est parallele au plan formé par la particule et le fil
rectiligne, cette derniere reste toujours dans le méme plan et sa trajectoire a un
rayon de courbure grand loin du fil et petit proche du fil.

11.1.2 Effet Hall

Un courant dans une feuille métallique plongée dans un champ magnétique B induit une
tension transversale.

B Sous leffet de ﬁLorentZ, les charges se
® = séparent jusqu’a ce que Fye. (due au
lec. A champ électrique crée par les charges
T T T T déplacées) /C‘ompense exactement la
I l 7 i l l E I force magnétique :
e_ — — — — —
P q(E+7xB)=0 = E=-UxB.
B
ﬁLorentZ Il apparait donc une tension transver-
sale Uyp.
11.2 Force de Laplace
Considérons un fil de longueur L = ||L||, parcouru par un courant I et plongé dans un
champ B.
B Les électrons de conduction subissent ﬁLorentZ et
appuient sur le fil. Ainsi, un fil parcouru par un
L courant dans un champ magnétique subit la force
de Laplace
—_— - — = —
Q I P > F=ILxB,
- ol L est le vecteur donnant la longueur du fil et le
FLorents sens du courant.
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11.2.1 Deux fils paralléles parcourus par des courants

Le courant I, se trouve dans le champ B, produit par le courant I;.

a) Courants de méme sens b) Courants de sens opposé
Il _[2 Il IQ
< ——
F F
0 0
B1 Bl
Les fils se rapprochent. Les fils s’éloignent.

11.2.2 Galvanometre, moteur électrique

Le galvanometre est un cadre rectangulaire de cotés a et b, mobile autour d’un axe et
plongé dans un champ magnétique B. Lorsque le cadre est parcouru par un courant I,
ce dernier subit un couple de forces de Laplace.

laxe de rotation Vue do d
ue de dessus

o]
Bt
1
~
)
X
]l

ST

Lorsque le couple est compensé par un couple de rappel de constante C', la mesure de
I’angle d’équilibre 6 permet de déduire le courant traversant le cadre :

I Co
~ abBcosf’

Le moteur électrique a courant continu est basé sur le méme principe que le gal-
vanometre si ce n’est que le couple de rappel n’existe pas et que le sens du courant est
inversé périodiquement de maniere a ce que le couple soit toujours dans le méme sens.
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11.3 Moment dipolaire magnétique, aimants

On définit le moment dipolaire ,axe de rotation

magnétique d'un cadre par !
m=19,

ol S est le vecteur normal
au cadre, de mnorme ab (sur-
face définie par le cadre) et de
sens donné par la regle du tire-
bouchon selon le sens du courant.

Le moment dipolaire m tend a s’aligner sur le champ B.

Exemple :
Un aimant peut étre vu comme formé de petits courants permanents : il crée un

champ B.
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Un second aimant peut étre vu comme un dipole magnétique (moment dipolaire) m
s’alignant sur le champ B produit par le premier aimant :

gl
N

Un aimant possede toujours deux poles. Deux poles similaires se repoussent et deux poles
différents s’attirent.

11.4 Flux du champ magnétique
Le flux du champ magnétique a travers une surface fermée est toujours nul :
Yv=¢ B-dL=0.
Y fermée

Il n’existe donc pas de charge magnétique (le champ magnétique n’a ni sources, ni puits)
et les lignes de champ sont toujours fermées.

Pour rappel, en électrostatique, le flux du champ électrique s’écrit quant a lui (loi de
Gauss)

E . di — ant

3 fermée €0

Y

ce qui traduit le fait que le champ électrique possede des sources (charges électriques).
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11.5 Circulation du champ magnétique

Considérons une courbe fermée I' dans un champ B :

B

La circulation de B le long de I' est proportionnelle
aux courants enlacés par I :

Cr = jgé ~dr = po Ipaee  (Loi d’ampere) ,
r

ot g = 47-1077 Vs A~'m~! est une constante appelée
perméabilité magnétique du vide.
dr

I L2

1

1, I €st compté positif s’il a le sens de
l'avancement du tire-bouchon tournant dans
le sens du parcours :

\ Lo =1+ 13— 1y
<)

11.5.1 Application : champ d’un courant rectiligne

Fil rectiligne infini

Par symétrie,

o B est perpendiculaire au fil ;

e les lignes de champ sont des cercles perpendiculaires au fil et centrés sur le fil;

e ||B]|| ne dépend que de r-.

Choix de I' : une ligne de champ (cercle de rayon r)
Alors,

om f 5oae fpir= B =Bt = 5=
r r r
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11.5.2 Application : champ dans un solénoide

r
S > R
P Q
B
I I
™ L b}

Hypothese : B uniforme & I'intérieur, B = ( a lextérieur
(bobine de longueur > diametre).
Choix de I : PQRS
e P—(Q: E-dF:Bdr, B = constante ;
° Q%R:E-d?zo,cargj_df;
. R—)S:g-dfz(),cargzﬁ;
° S%P:é-d?zO,carB‘J_dF.

cr= ¢
T

ou N est le nombre de spires.

Ainsi,
polN I
L )

]}

Q
-dF:/ Bdr = BL = joNI = B=
P
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