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Mouvements amortis et forcés

EPFL - CMS/MAN - Physique, Burmeister 2 juin 2022

1 Freinage proportionnel à la vitesse

1.1 Modèle

Considérons un objet glissant sur le sol et soumis à une
force de frottement de la forme

~f = −λ~v .

Newton : −λ~v = m~a = m~̇v .

~v0
~f ~v

~ex
O x

Pour un choix des origines du temps et de l’espace, il passe à l’instant t = 0 en x = 0 avec la vitesse ~v0

(conditions initiales).

Selon ~ex : −λv = mv̇ , v(0) = v0 et x(0) = 0 . Posons γ = λ
m :

v̇ + γv = 0 ∀t avec v(0) = v0 et x(0) = 0 . (1)

Nous cherchons les fonctions du temps v(t) vérifiant (1).

1.2 Solution

Soit f(t) = e−γt . Alors ḟ = −γe−γt = −γf et f vérifie

ḟ + γf = 0 ∀t .

On peut montrer que toute solution à (1) est multiple de f(t) . Ainsi v(t) = Ae−γt .

Avec la condition initiale v(0) = A = v0 ,

v(t) = v0e
−γt . (2)

t

v(t)

v0

O
Il suit (primitive) que x(t) = −v0γ e

−γt +B .

Avec la condition initiale x(0) = −v0γ +B = 0 ,

x(t) =
v0

γ
(1− e−γt) . (3)

t

x(t)
v0
γ

O
Remarque : pour t→∞ , nous avons bien v → 0 (l’objet s’arrête) et la position finale est x→ v0

γ .
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1.3 Evolution semblable : décroissance de la radioactivité

Dans un morceau de matière radioactive, notons N le nombre de noyaux non désintégrés. Pendant un
intervalle de temps dt , chacun a une probabilité de se désintégrer donnée par

p = λdt ,

et leur nombre change de dN = −pN = −λNdt :

Ṅ + λN = 0 .

Avec un nombre initial N0 = N(0) de noyaux non désintégrés, l’évolution temporelle est ainsi

N(t) = N0e
−λt .

On appelle demie-vie T d’un élément radioactif le temps de diviser le nombre de noyaux non désintégrés
par deux :

N(T ) = N0e
−λT =

N0

2
⇒ T =

ln 2

λ
.

Remarque : τ = 1/λ est également la durée de vie moyenne d’un noyau non désintégré.

2 Oscillateur harmonique

2.1 Modèle

Considérons un objet glissant sur le sol et sou-
mis à une force de rappel

~R = −k~d = −kx~ex .

Equation de Newton : −k~d = m~a .

~d
~R

~ex
x O x0

A l’instant t = 0 , il est lâché en x = x0 à vitesse v0 (conditions initiales).

Selon ~ex : −kx = mẍ , v(0) = v0 et x(0) = x0 . Posons ω2
0 = k

m :

ẍ+ ω2
0x = 0 ∀t avec v(0) = v0 et x(0) = x0 . (4)

Nous cherchons les fonctions du temps x(t) vérifiant (4).

2.2 Solution

Rappel : les dérivées de la fonction u(t) = eλt , λ ∈ C , sont multiples de u(t) :

u(n)(t) = λnu(t) n ∈ N .

En mettant une telle fonction dans l’équation de l’OH (4), on obtient le polynôme caractéristique et ses
racines

λ2 + ω2
0 = 0⇔ λ = ±iω0 .

Les solutions complexes à (4) sont alors u1(t) = e+iω0t et u2(t) = e−iω0t .
Toute solution à (4) est combinaison linéaire de u1(t) et de u2(t) .
Ainsi x(t) = A1u1(t) +A2u2(t) (A1, A2 ∈ C) et

x(0) = A1u1(0) +A2u2(0) = A1 +A2 = x0 .

De plus, v(t) = ẋ(t) = A1u̇1 +A2u̇2 = iωA1u1 − iωA2u2 et

v(0) = iω(A1 −A2) = v0 .



©
G

.
B

ur
m

ei
st

er
2

ju
in

20
22

EPFL - MAN - Physique G. Burmeister 2 juin 2022 3

Les constantes A1 et A2 valent alors

A1 =
1

2

(
x0 +

v0

iω0

)
A2 =

1

2

(
x0 −

v0

iω0

)
et la solution s’écrit donc

x(t) = x0 cos(ω0t) +
v0

ω0
sin(ω0t) . (5)

Dans le cas d’un lâcher à vitesse nulle,

x(t) = x0 cos(ω0t) . (6)
t

x(t)

x0

O

T

3 Oscillateur harmonique amorti

3.1 Modèle

Considérons un objet glissant sur le sol et soumis à une force de rappel et à un frottement proportionnel
à la vitesse

~f = −µ~v = −µẋ~ex .

A l’instant t = 0 , il est lâché en x = x0 à vitesse v0 (conditions initiales).

Selon ~ex : −µẋ− kx = mẍ , v(0) = v0 et x(0) = x0 . Posons ω2
0 = k

m et 2ν = µ
m :

ẍ+ 2νẋ+ ω2
0x = 0 ∀t avec v(0) = v0 et x(0) = x0 . (7)

Nous cherchons les fonctions du temps x(t) vérifiant (7).

3.2 Solution

Rappel : les dérivées de la fonction u(t) = eλt , λ ∈ C , sont multiples de u(t) :

u(n)(t) = λnu(t) n ∈ N .

Les racines du polynôme caractéristique sont données par

λ2 + 2νλ+ ω2
0 = 0⇔ λ = −ν ±

√
ν2 − ω2

0 .

Supposons que l’amortissement est faible (ν2 < ω2
0) et posons ω2 = ω2

0 − ν2 > 0 . Les solutions complexes

sont alors
u1(t) = e−νt+iωt u2(t) = e−νt−iωt

Toute solution à (7) est combinaison linéaire de u1(t) et de u2(t) .
Ainsi x(t) = A1u1(t) +A2u2(t) (A1, A2 ∈ C) et

x(0) = A1u1(0) +A2u2(0) = A1 +A2 = x0 .

De plus, v(t) = ẋ(t) = A1u̇1 +A2u̇2 = (−ν + iω)A1u1 + (−ν − iω)A2u2 et

v(0) = (−ν + iω)A1 + (−ν − iω)A2 = v0 .

Les constantes A1 et A2 valent alors

A1 =
1

2

(
x0 +

v0 + νx0

iω

)
A2 =

1

2

(
x0 −

v0 + νx0

iω

)
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et la solution s’écrit donc

x(t) =

(
x0 cos(ωt) +

v0 + νx0

ω
sin(ωt)

)
e−νt . (8)

L’oscillation est amortie par le frottement.
Dans le cas d’un lâcher à vitesse nulle,

x(t) = x0

(
cos(ωt) + ν

ω sin(ωt)
)
e−νt . (9)

t

x(t)

x0

O

x0e
−νt

La période T de l’oscillation amortie est donnée par T = 2π
ω . Comme ω < ω0 , la période de l’oscillateur

amortie est plus grande que celle de l’oscillateur harmonique, conséquence du freinage.

4 Oscillateur harmonique amorti et forcé

4.1 Modèle

Considérons un objet glissant sur le sol et soumis à une force de rappel, à un frottement proportionnel
à la vitesse et, en plus, à une force périodique de pulsation Ω (par exemple si l’objet porte une charge
électrique et bouge parallèlement à un champ électrique alternatif). A l’instant t = 0 , il est lâché en
x = x0 à vitesse v0 (conditions initiales). Selon ~ex : −µẋ− kx+F sin(Ωt) = mẍ , v(0) = v0 et x(0) = x0 .

Posons ω2
0 = k

m , 2ν = µ
m et p = F

m :

ẍ+ 2νẋ+ ω2
0x = p sin(Ωt) ∀t avec v(0) = v0 et x(0) = x0 . (10)

Nous cherchons les fonctions du temps x(t) vérifiant (10).

4.2 Solution

On peut montrer que toute solution à l’équation différentielle (10) est une superposition (somme) de deux
fonctions.

— L’une est une solution quelconque au � problème homogène � (sans second membre), équation
différentielle (7). Cette solution est amortie, donc transitoire : xtrans(t) = A1e

−νt+iωt+A2e
−νt−iωt .

— La seconde est une solution particulière à l’équation différentielle (10). Cette solution n’est pas
amortie, mais permanente : xperm(t) .

Ainsi,

x(t) = xtrans(t) + xperm(t) ∀t avec v(0) = v0 et x(0) = x0 . (11)

4.3 Solution permanente

Nous pouvons nous attendre à ce que xperm(t) soit de même pulsation que l’excitation :

xperm(t) = A cos(Ωt) +B sin(Ωt) .

En imposant que cette fonction soit solution à (10), nous déterminons les coefficients A et B .
Remarquons cependant que sin(Ωt) est la partie imaginaire de eiΩt . Comme (10) est une équation
différentielle linéaire, il suffit de chercher la solution complexe x̃(t) pour l’excitation complexe peiΩt

et d’en prendre la partie imaginaire.
Cherchons donc une solution x̃(t) = HeiΩt , de même pulsation que l’excitation. Avec

x̃ = HeiΩt ˙̃x = iΩHeiΩt ¨̃x = −Ω2HeiΩt ,
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(10) devient
(−Ω2 + i2νΩ + ω2

0)HeiΩt = peiΩt ∀t .

On en tire le coefficient H(Ω) (fonction de transfert) :

H(Ω) =
p

ω2
0 − Ω2 + i2νΩ

que l’on peut mettre sous forme trigonométrique H(Ω) = |H|e−iϕ .
Ainsi

xperm(t) = Im x̃(t) = Im (HeiΩt) = |H| sin(Ωt− ϕ) . (12)

L’amplitude de la réponse permanente est donc une fonction de la pulsation de l’excitation :

A(Ω) = |H(Ω)| = p√
(ω2

0 − Ω2)2 + (2νΩ)2

Ω

A

O

Ar

Ωr
Son maximum (résonance) Ar = p

2ν
√
ω2

0−ν2
est atteint pour Ω2

r = ω2
0 − 2ν2 .

L’oscillateur forcé agit donc comme un filtre basse-bande : les fréquences voisines de
Ωr
2π

sont bien trans-

mises, les autres moins bien.
Comme Im (H) ≤ 0 , le déphasage ϕ est entre 0 et π . On montre qu’il est donné par

cosϕ =
ω2

0 − Ω2√
(ω2

0 − Ω2)2 + (2νΩ)2
sinϕ =

2νΩ√
(ω2

0 − Ω2)2 + (2νΩ)2
> 0 ϕ ∈ [0, π] .

Il décrit, à l’échelle d’une oscillation, le retard temporel de la réponse sur l’excitation. Petit à basses
fréquences, il tend vers π à hautes fréquences.

Ωt

xperm

O

excitation

réponseϕ

Ω

ϕ

O

π
2

ω0

π

4.4 Battement transitoire

La solution
x(t) = xtrans(t) + xperm(t)

est une superposition de deux oscillations, de pulsations ω et Ω, la première étant amortie, la seconde
permanente. Voyons comment interpréter cette somme.
Pour le cas simple d’une addition de deux sinus de même amplitude, nous avons par identité trigo-
nométrique

sin(Ωt) + sin(ωt) = 2 cos

(
Ω− ω

2
t

)
sin

(
Ω + ω

2
t

)
.
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Si les deux pulsations sont proches, leur moyenne est du même ordre. Cependant leur demi-différence est
petite :

ω ' Ω ' Ω + ω

2

Ω− ω
2
� Ω .

Cela s’interprète comme une oscillation rapide de pulsation Ω+ω
2 et d’amplitude fluctuant lentement

au cours du temps avec une pulsation Ω−ω
2 . Selon si l’interférence entre les deux ondes est constructive

(en phase) ou destructrice (en contre-phase), l’amplitude résultante est importante ou faible : c’est le
battement.

t

x(t)

O

2 cos
(

Ω−ω
2 t
)

L’amortissement de la contribution transitoire xtrans(t) entrâıne la disparition progressive du battement.
Ne subsiste que la réponse permanente xperm(t) . En effet,

sin(Ωt) + e−νt sin(ωt) = (1− e−νt) sin(Ωt) + e−νt (sin(Ωt) + sin(ωt))

= (1− e−νt) sin(Ωt) + 2e−νt cos

(
Ω− ω

2
t

)
sin

(
Ω + ω

2
t

)
.

t

x(t)

O

2e−νt cos
(

Ω−ω
2 t
)

1− e−νt

Pour les conditions initiales v(0) = v0 = 0 et x(0) = x0 = 0 , la solution à l’équation (10) est donnée par

x(t) = (A cos(ωt) +B sin(ωt)) e−νt + |H| sin(Ωt− ϕ)

avec

A = |H| sinϕ B =
|H|
Ω

(ν sinϕ− Ω cosϕ)

et donc

x(t) = |H|
{(

sinϕ cos(ωt) + ν sinϕ−Ω cosϕ
ω sin(ωt) + sin(Ωt− ϕ)

)
e−νt

+ (1− e−νt) sin(Ωt− ϕ)
}
, . (13)

On y reconnâıt bien le battement transitoire et la réponse permanente.
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t

x(t)

O
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