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Dalton Joe

SCIPER : 987654

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé
recto-verso, il contient 12 questions sur 12 pages, les dernières pouvant être vides.
Ne pas dégrafer.

• Posez votre carte d’étudiant.e sur la table.
• Aucun document n’est autorisé.
• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant
l’épreuve.

• Pour les questions à choix unique, on comptera :
les points indiqués si la réponse est correcte,
0 point si il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du cor-
recteur blanc si nécessaire.

• Les dessins peuvent être faits au crayon.
• Répondez dans l’espace prévu (aucune feuille supplémentaire ne sera fournie).
• Dans les éventuelles applications numériques, on posera g = 10m/s2.
• Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.
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Première partie, 10 questions à choix unique
Pour chacun des trois énoncés proposés, plusieurs questions sont posées. Pour chaque ques-
tion, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n’y a qu’une
seule réponse correcte par question.

Enoncé

Un récipient contient de l’huile et un litre d’eau à
10◦C. On y ajoute un cube de glace d’arête 10 cm
à −10◦C et on observe que l’équilibre thermique
s’établit à 0◦C. L’huile a alors perdu 4.4 · 104 J.
On admet que l’épaisseur de la couche d’huile
est supérieure à 10 cm et que l’on peut négliger
les pertes dans l’environnement.

huile

eau

air

glace

sol

ϱeau = 103 kgm−3, ϱglace = 0.9 · 103 kgm−3, ϱhuile = 0.85 · 103 kgm−3, ceau = 4 · 103 J kg−1 K−1,
cglace = 2 · 103 J kg−1 K−1, chuile = 1.8 · 103 J kg−1 K−1, λsol-liq,eau = 3.3 · 105 J kg−1

Question 1 (2 points)
Question préliminaire, ne concernant que le cube de glace hors du récipient : pendant combien
de temps au minimum faudrait-il éclairer un cube de glace d’arête 10 cm à 0◦C avec une lampe
fournissant une puissance de 6600W pour qu’il fonde entièrement? On néglige les pertes dans
l’environnement.

0.2 s
100 s

50 s
18 s

45 s
2 s

20
9
s

20 s
90 s
0 s

Question 2 (2 points)
A quel endroit le cube de glace se place-t-il juste après qu’il soit mis dans le récipient?

La moitié dans l’eau, la moitié dans
l’huile
Deux tiers dans l’eau, un tiers dans l’huile
Un tiers dans l’huile, deux tiers dans l’air

Deux tiers dans l’huile, un tiers dans l’air
Un tiers dans l’eau, deux tiers dans l’huile
Au fond du récipient
La moitié dans l’huile, la moitié dans l’air

Question 3 (1 point)
Que s’est-il passé pour l’eau déjà présente dans le récipient entre l’instant de l’ajout du bloc
de glace et l’équilibre thermique? L’eau a . . .

perdu 20000 J
gagné 4000 J

gagné 2000 J
gagné 20000 J

perdu 2000 J
perdu 4000 J

perdu 40000 J
gagné 40000 J

Question 4 (2 points)
Quelle masse de glace a-t-elle fondu lorsque l’équilibre thermique est atteint?

0.5 kg
0 kg

0.3 kg
0.7 kg

0.4 kg
0.2 kg

0.8 kg
0.9 kg

0.6 kg
0.1 kg
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Enoncé

Un rail circulaire de rayon R est fixé horizontalement sur le sol. Un petit bloc de masse m peut
longer le rail sur la partie extérieure. Il est plaqué contre le rail grâce à un ressort fixé au bloc
et sur le centre C du rail. Le ressort, de constante k, a une longueur naturelle ℓ0 = 3

4
R.

Initialement à l’arrêt, le bloc est tiré le long du rail avec une force T⃗ de norme constante T .
Tous les frottements sont négligeables.
Vue de dessus :

C

R m

rail

T⃗

Question 5 (2 points)
Après combien de temps le bloc a-t-il fait un tour complet, en admettant qu’il reste plaqué
contre le rail?

√
2π

√
mR

T

2π

√
mR

T

1

2π

√
mR

T

1
√
2π

√
mR

T

1

2
√
π

√
mR

T

2
√
π

√
mR

T

Question 6 (1 point)
A l’instant où le bloc atteint la vitesse angulaire ω autour de C, que vaut son accélération
normale, en admettant qu’il reste plaqué contre le rail?

|an| = |ω̇|
R

|an| = mRω2

|an| = R|ω̇|

|an| = Rω2

|an| = mω2

R

|an| = |ω̇|

|an| = ω2

|an| = ω2

R

Question 7 (1 point)
Pendant que le bloc reste plaqué contre le rail, la norme de la force exercée par le ressort sur
le bloc . . .

reste constante diminue augmente

Question 8 (2 points)
A quelle condition la vitesse angulaire ω du bloc autour de C doit satisfaire pour que le bloc
reste plaqué contre le rail?

ω2 <
2k

m

ω2 >
2k

m

ω2 <
4k

m

ω2 <
k

m

ω2 <
k

4m

ω2 <
k

2m
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Enoncé

Un vaisseau spatial de massem destiné à se poser sur la Lune se trouve à une grande distance
D du sol lunaire. Stabilisé par ses moteurs, ce vaisseau a une vitesse négligeable au moment
d’aborder sa descente vers la Lune.
Dans les expressions ci-dessous, G est la constante gravitationnelle (constante universelle de
la gravitation), ML est la masse de la Lune, et RL est le rayon de la Lune. On admet qu’il n’y
a pas de frottement, ni d’influence d’aucun autre astre.

Question 9 (2 points)
Quelle est l’expression du travail de la force exercée par les moteurs du vaisseau spatial pen-
dant la descente si la vitesse de ce dernier au moment de toucher le sol lunaire est nulle ?

GmML
(RL + D)2

GmMLD

RL(RL + D)

GmMLRL
D(RL + D)

−
GmML

(RL + D)2

−
GmMLRL
D(RL + D)

−
GmMLD

RL(RL + D)

Question 10 (1 point)
Quelle est la norme du poids du vaisseau une fois qu’il s’est posé sur la Lune?

GmML
(RL + D)2

GmML
RL

GmML
RL + D

GmML
R2

L

GmMLRL
D(RL + D)

GmMLD

RL(RL + D)
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Deuxième partie, 2 questions de type ouvert
Répondre dans l’espace dédié. Votre réponse doit être soigneusement justifiée, toutes les
étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à
cocher : elles sont réservées au correcteur.

Question 11: Cette question est notée sur 8 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5

6 7 8

Dans l’air à température Ta = 30◦C et pression
pa = 105 Pa, deux boîtes métalliques identiques de
base S = 3m2 et de hauteur h = 3m sont reliées par
un petit tube de volume négligeable et muni d’un robi-
net. Tant que le robinet est fermé, la boîte supérieure
contient un gaz à pression p0 = 2.5 · 105 Pa, alors que
la boîte inférieure est vide.
Pour l’application numérique, prendre
Tzéro absolu = −270◦C, k = 3

2
· 10−23 J K−1.

(a) Combien y a-t-il de molécules de gaz enfermé?

(b) Une fois le robinet ouvert, que vaut la pression du
gaz enfermé à l’équilibre thermique?

h

gaz
h

robinet

sol

S

On refait la même l’expérience en fixant la boîte in-
férieure dans un large bac d’eau, l’eau recouvrant la
boîte sur une épaisseur h. La boîte est initialement
remplie d’eau et un trou percé à sa base permet à l’eau
d’en sortir.

(c) Une fois le robinet ouvert, on observe que du gaz
entre dans la boîte inférieure.
Que vaut le volume du gaz dans la boîte inférieure
à l’équilibre thermique?
On négligera la variation de l’épaisseur de la
couche d’eau au-dessus de la boîte inférieure.

gaz

robinet

h

trou
sol

air
eau
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Solution

(a) Le gaz dans la boîte supérieure est en équilibre thermique avec l’air: T = Ta

p0Sh = NkTa ⇒ N =
p0Sh

kTa

=
2.5 · 105 Pa · 3m2 · 3m

3
2
· 10−23 J K−1 · (30 + 270)K

= 5 · 1026 .

(b) Le gaz occupe les deux boîtes, son volume a doublé.

p12Sh = NkTa = p0Sh ⇒ p1 =
p0

2
= 1.25 · 105 Pa .

(c) Le gaz parfait occupe la boîte supérieure et une partie de la boîte inférieure. Notons δ la
hauteur de gaz dans la boîte inférieure.

p′S(h + δ) = NkTa = p0Sh .

D’autre part, la pression du gaz est égale à celle de l’eau à la profondeur h + δ. Selon la
loi de l’hydrostatique,

p′ = pa + ϱeaug(h + δ) .

On obtient donc l’équation du deuxième degré en h + δ suivante :

p′(h + δ) = p0h

(pa + ϱeaug(h + δ))(h + δ) − p0h = 0

ϱeaug(h + δ)2 + pa(h + δ) − p0h = 0 .

On résout directement avec

∆ = p2
a + 4ϱeaugp0h = 1010 + 4 · 103 · 10 · 2.5 · 105 · 3 = 4 · 1010 = (2 · 105)2 Pa2.

La solution acceptable est

h + δ =
−105 + 2 · 105

2 · 104
= 5m ,

d’où
δ = 2m

et
Volume cherché = 2m · 3m2 = 6m3.

Alternativement, on peut déjà remplacer ϱeau, g, pa et p0h par leur valeur numérique
pour avoir

104 · (h + δ)2 + 105 · (h + δ) − 3 · 2.5 · 105 = 0

(h + δ)2 + 10 · (h + δ) − 3 · 2.5 · 10 = 0 .

Le discriminant est
∆ = 102 + 4 · 3 · 2.5 · 10 = 400 = 202 ,

et la solution acceptable
h + δ =

−10 + 20

2
= 5m ,

d’où
δ = 2m ,

et
Volume cherché = 2m · 3m2 = 6m3.
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Question 12: Cette question est notée sur 8 points.
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On considère une expérience durant laquelle une petite balle de masse m, initialement immo-
bile au point A, est propulsée par un ressort de constante k le long d’un rail ABCD situé dans
un plan vertical. On observe que la petite balle arrive au point D avec une vitesse v⃗. Elle se
retrouve alors dans le vide.
Le rail est constitué de trois parties : un court segment horizontal AB situé à une hauteur h
au-dessus du sol, un segment circulaire BC d’ouverture α et de rayon de courbure r = 3h, et
un segment CD incliné du même angle α. Le sommet D se trouve à une hauteur H = 4h par
rapport au sol.

m

v⃗

A B
C

D

r
α

α

sol

h

H

k

Tous les effets liés à la rotation de la petite balle sont supposés négligeables.

(a) En imaginant, pour simplifier, que le frottement est négligeable le long du rail ABCD,
déterminer la déformation initiale (compression) théorique dth. du ressort pour que la
petite balle arrive effectivement au point D avec une vitesse v⃗.

(b) Dans la réalité, le frottement sur le rail n’est pas négligeable. On observe que pour que la
petite balle arrive au point D avec une vitesse v⃗, le ressort doit être initialement déformé
d’une longueur d > dth.. En supposant que la petite balle subit un frottement constant
f⃗ le long du segment CD, déterminer quelle est l’expression de l’énergie dissipée par
frottement sur le trajet AC.

(c) Quelle est, par rapport au sol, la hauteur maximale atteinte par la balle après qu’elle soit
passée au point D ?
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Solution

(a) Si l’on suppose que le frottement est négligeable le long du rail ABCD, toutes les forces
qui s’exercent à un moment ou à un autre sur la balle sont conservatives (cas du poids
et de la force de rappel du ressort) ou ne travaillent pas (cas du soutien). L’énergie
mécanique de la balle est donc conservée et on peut écrire en considérant les points A

et D :
Eméc.(A) = Eméc.(D) .

En choisissant le zéro de l’énergie potentielle au niveau du point A, cette égalité devient :

0 +
1

2
kd 2

th. + 0 =
1

2
mv2 + 0 + Epot., grav.(D) ,

où
Epot., grav.(D) = mg(H − h) = 3mgh .

Ainsi, la déformation initiale (théorique) du ressort est donnée par

dth. =

√
m

k
(v2 + 6gh) .

(b) En présence de frottement, il est par exemple possible d’appliquer le théorème de l’énergie
cinétique à l’objet “balle” entre le point A et le point D (on pourrait également exploiter
la non conservation de l’énergie mécanique). Comme la balle est soumise à quatre forces
à un moment ou à un autre de son déplacement le long du rail ABCD (son poids mg⃗, le
soutien du rail S⃗ (qui peut varier le long du rail, mais qui est toujours perpendiculaire à ce
dernier), la force de rappel du ressort F⃗ressort (qui varie selon la déformation de ce dernier)
et la force de frottement F⃗frottement (qui peut varier le long du rail)), nous pouvons écrire :

Ecin.,D − Ecin.,A = WA→D(mg⃗) + WA→D(S⃗) + WA→D(F⃗ressort) + WA→D(F⃗frottement) ,

où Ecin.,A = 0 (la balle est immobile en A), Ecin.,D =
1

2
mv2, WA→D(S⃗) = 0 (le soutien est

toujours perpendiculaire au rail, c’est-à-dire au déplacement de la balle),

WA→D(mg⃗) = Epot. grav.,A − Epot. grav.,D = 0 − 3mgh = −3mgh

(avec le même choix de référence qu’au point (a)),

WA→D(Fressort) =
1

2
kd2

et
WA→D(F⃗frottement) = WA→C(F⃗frottement) + WC→D(F⃗frottement) .

Dans ce dernier travail, WA→C(F⃗frottement) est l’énergie dissipée cherchée et

WC→D(F⃗frottement) =

∫ D

C

f⃗ · d⃗r = −f

∫ D

C

dr = −f
3h cosα

sinα
= −

3fh cosα

sinα
.

Ainsi, on obtient finalement que

WA→C(F⃗frottement) =
1

2
mv2 + 3mgh −

1

2
kd2 +

3fh cosα

sinα
.
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(c) Entre le point D et le sommet S de sa trajectoire dans le vide, la balle n’est soumise qu’à

la force de gravité qui est une force conservative. L’énergie mécanique de la balle est
donc conservée :

Eméc.(D) = Eméc.(S) .

En choisissant le zéro de l’énergie potentielle de gravitation au niveau du sol, cette égalité
devient :

1

2
mv2 + 4mgh =

1

2
mv 2

S + mgHS ,

où la hauteur HS au sommet S est la hauteur cherchée, et

vS = v cosα

est la composante horizontale (constante) de la vitesse dans le vide (au sommet, la
vitesse verticale de la balle est nulle).
Ainsi, la hauteur maximale atteinte par la balle est

HS =
1

2

v2

g
(1 − cosα 2) + 4h = 4h +

(v sinα)2

2g
.
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