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Exercice 1

De l’énergie (sous forme de chaleur) passe du corps de haute température initiale (l’eau)
vers le corps de basse température initiale (le fer) jusqu’à ce que l’équilibre thermique soit
atteint : les températures finales sont alors identiques.

En considérant l’objet formé de l’eau et du fer comme un système isolé, on a que son
énergie interne est conservée :

Uinit = Ufin .

La variation de l’énergie interne est donc nulle et elle est donnée par la somme des varia-
tions de l’énergie interne de chaque constituant du système :

∆U = ∆Ueau +∆Ufer = 0 .

Ni l’eau ni le fer n’échangent de travail. Mais un apport de chaleur s’accompagne d’un
changement de température. Ainsi

∆U = ∆Ueau +∆Ufer

= Qeau +Qfer

= ceaumeau(Téq − Teau) + cfermfer(Téq − Tfer) = 0 .

Alors

Téq =
ceaumeauTeau + cfermferTfer

ceaumeau + cfermfer

=
4.18 · 103 J kg−1 ◦C−1 · 10−2 kg · 50 ◦C + 0.44 · 103 J kg−1 ◦C−1 · 6 · 10−2 kg · 20 ◦C

4.18 · 103 J kg−1 ◦C−1 · 10−2 kg + 0.44 · 103 J kg−1 ◦C−1 · 6 · 10−2 kg

=
2.09 · 103 J + 0.528 · 103 J
41.8 J ◦C−1 + 26.4 J ◦C−1

= 38.39 ◦C.

Exercice 2

De l’énergie (sous forme de chaleur) passe du corps de haute température initiale (l’eau
ajoutée) vers les corps de basse température initiale (le vase et l’eau contenue) jusqu’à ce
que l’équilibre thermique soit atteint : les températures finales sont alors identiques.

En considérant l’objet formé du vase, de l’eau initialement contenue dans le vase et de
l’eau ajoutée, on a que son énergie interne est conservée :

Uinit = Ufin .

La variation de l’énergie interne est donc nulle et elle est donnée par la somme des varia-
tions de l’énergie interne de chaque constituant du système :

∆U = ∆Uvase +∆Ueau (vase) +∆Ueau (suppl) = 0 .

1

https://moodle.epfl.ch/course/view.php?id=14848


Il n’y a aucun échange de travail. Mais un apport de chaleur s’accompagne d’un change-
ment de température.
Notons C la capacité thermique du vase et remarquons qu’initialement le vase et l’eau
qu’il contient se trouvent à la même température Tvase = Teau (vase) = 21 ◦C. Ainsi

∆U = ∆Uvase +∆Ueau (vase) +∆Ueau (suppl)

= Qvase +Qeau (vase) +Qeau (suppl)

= C(Téq − Tvase) + ceaumeau (vase)(Téq − Tvase) + ceaumeau (suppl)(Téq − Teau (suppl)) = 0 .

Alors

C = −ceaumeau (vase) − ceaumeau (suppl)

Téq − Teau (suppl)

Téq − Tvase

= −ceau

(
meau (vase) +meau (suppl)

Téq − Teau (suppl)

Téq − Tvase

)
= −4.18 · 103 J kg−1K−1

(
0.12 kg + 0.05 kg

25 ◦C− 36 ◦C

25 ◦C− 21 ◦C

)
= −4.18 · 103 J kg−1K−1

(
0.12 kg− 0.1375 kg

)
= 73.15 JK−1.

Exercice 3

Lors d’un choc, l’énergie cinétique (macroscopique) est partiellement transformée en
énergie interne. On considère donc deux étapes : la conversion d’énergie (macroscopique)
en énergie cinétique (macroscopique) juste avant le choc et la conversion de cette dernière
en énergie interne.
Pour la boule de masse m en chute libre, la seule force en jeu est son poids, conservatif.
L’énergie mécanique est conservée entre le début de la chute (1) et son arrivée au sol (2) :

Eméc(1) = Eméc(2) .

En choisissant l’origine des hauteurs au sol, on a

mgh1 = Ecin, CM(2) .

Pour la boule, on admet que toute l’énergie cinétique (macroscopique) est convertie par
chaleur en énergie interne, sans compression de la boule :

∆Etot = ∆Ecin, CM +∆U = ∆Ecin, CM +Qboule = ∆Ecin, CM + cPbm∆T = 0 .

Ainsi
cPbm∆T = −∆Ecin, CM = −

(
0− Ecin, CM(2)

)
= mgh1

d’où

∆T =
gh1

cPb
=

9.81m s−2 · 40m
0.12 · 103 J kg−1K−1 = 3.27K.

Exercice 4

Si l’on suppose que le système se trouve à une pression normale de 1 atmosphère, 100◦C
est la température d’ébullition de l’eau. Le processus de transformation de la vapeur en
glace passe donc par quatre étapes successives et, pour autant que l’on connaisse la masse
de la vapeur d’eau, on peut déterminer l’énergie à soutirer lors de chacune de ces étapes.
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La masse de la vapeur d’eau à 100◦C (et donc de la glace à −20◦C) est

m = ρvapeurVvapeur = 0.59 · 0.1 · 10−3 = 5.9 · 10−5 kg .

Le processus de solidification comprend quatre étapes :

(1) la transition de phase vapeur-liquide,

(2) le refroidissement du liquide,

(3) la transition de phase liquide-solide,

(4) le refroidissement du solide.

La chaleur qu’il faut soutirer au système lors du processus est alors composée des termes
respectifs suivants :

Q = −λvlm︸ ︷︷ ︸
(1)

+ clm(Tf − T0)︸ ︷︷ ︸
(2)

−λlsm︸ ︷︷ ︸
(3)

+ csm(T1 − Tf)︸ ︷︷ ︸
(4)

,

avec T0 = Tvapeur = 100◦C, Tf = Tfusion = 0◦C, T1 = −20◦C, λvl = λeau,vaporisation, cl = ceau,
λls = λeau,fusion et cs = cglace .

Numériquement, on obtient

Q = − 23 · 105 · 5.9 · 10−5 + 4.18 · 103 · 5.9 · 10−5 · (0− 100)

− 3.3 · 105 · 5.9 · 10−5 + 2.06 · 103 · 5.9 · 10−5 · (−20− 0)

= −135.7− 24.662− 19.47− 2.4308

= −182.2628 J .

Exercice 5

On commence par déterminer l’état final du système en cherchant dans une table les
températures de fusion et d’ébullition de l’aluminium. On peut alors calculer la chaleur
nécessaire pour obtenir une température finale de 2000 ◦C.
Comme la température finale de l’aluminium se situe entre la température de fusion de
l’aluminium (Tfusion = 660.3◦C) et celle d’ébullition (Tébullition = 2467◦C), nous décomposons
le chauffage en trois étapes :

(1) l’échauffement du métal solide,

(2) la transition de phase solide-liquide et

(3) l’échauffement du métal liquide.

La chaleur absorbée dans le processus est alors composée des trois termes respectifs :

Q = calu, solidem(Tfusion − T0)︸ ︷︷ ︸
(1)

+λalu, fusionm︸ ︷︷ ︸
(2)

+ calu, liquidem(T1 − Tfusion)︸ ︷︷ ︸
(3)

,

où m = 10−2 kg, calu, solide = 0.9 · 103 J kg−1K−1, λalu, fusion = 3.96 · 105 J kg−1, calu, liquide =
1.09 · 103 J kg−1K−1, T0 = 50 ◦C et T1 = 2000 ◦C.

La quantité de chaleur à apporter à l’aluminium s’élève donc à

Q = 0.9 · 103 · 10−2 · (660.3− 50) + 3.96 · 105 · 10−2 + 1.09 · 103 · 10−2 · (2000− 660.3)

∼= 2.41 · 104 J .

Exercice 6
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On considère le bilan énergétique du système “glace+ récipient”. La température finale
du système est nécessairement inférieure à 100◦C, qui est la température d’ébullition de
l’eau.
La glace reçoit de l’énergie du récipient sous forme de chaleur jusqu’à équilibre des
températures. Pour le système formé de la glace et du récipient, l’énergie interne est
conservée et, en admettant que le système soit isolé,

∆U = 0 .

En l’absence de travail, l’échange entre les deux parties est donné par

∆U = ∆Ueau +∆UCu = Qeau +QCu = 0 .

Selon la quantité de glace, celle-ci fond entièrement ou partiellement. Il faut donc distin-
guer les cas où la température finale T1 est supérieure ou égale à Teau,fusion = 0◦C.

• T1 > Teau,fusion : toute la glace a fondu.
L’échange de chaleur dans le système “glace+ récipient” est alors donné par

λeau, fusionm+ ceau, liquidem(T1 − Teau,fusion) + ccuivre, solideM(T1 − Tcuivre,0) = 0

où λeau, fusion = 3.3 · 105 J kg−1, ceau, liquide = 4.18 · 103 J kg−1K−1, ccuivre, solide =
0.39 · 103 J kg−1K−1, M = 1kg, Teau,fusion = 0 ◦C et Tcuivre,0 = 100 ◦C.

Avec m = 20 g, on obtient
T1

∼= 68.41 ◦C .

Ce résultat est en accord avec l’hypothèse de départ : 0◦C < T1 < 100◦C.

Avec m = 200 g, on obtient

T1
∼= −22.02◦C < 0◦C ,

en contradiction avec l’hypothèse de départ. Par conséquent, toute la glace n’a pas
fondu.

• T1 = Teau,fusion : seule une proportion a (0 ≤ a ≤ 1) de glace a fondu.
L’échange de chaleur dans le système “glace+ récipient” est alors donné par

λeau, fusionam+ ccuivre, solideM(Teau,fusion − Tcuivre,0) = 0

Avec m = 200 g, il vient
a ∼= 0.59 .

Ainsi am ∼= 118 g d’eau se trouvent sous forme liquide et 82 g sous forme solide.

Exercice 7

On considère le bilan énergétique pour chaque étape du processus.
Pour le système formé de la glace (eau solide) et la casserole, l’énergie interne est modifiée
par la plaque chauffante : ∆U = Qext = P ext∆t , P ext étant la puissance de chauffe de la
plaque et ∆t la durée de chauffage.
L’échange entre les deux parties est donné, par absence de travail, par

∆U = ∆Ueau +∆Ucass = Qeau +Qcass = Qext .

Etape 1 : amener le tout à la température de fusion de l’eau Tfusion = 0 ◦C.
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Qext
1 = Qeau +Qcass .

Qext
1 = cglacemeau(Tfusion − Tinit) + cfermfer(Tfusion − Tinit)

= (cglacemeau + cfermfer)(Tfusion − Tinit)

= (2.06 · 103 J kg−1 ◦C−1 · 0.5 kg + 0.44 · 103 J kg−1 ◦C−1 · 1 kg)(0 ◦C− (−10 ◦C))

= 0.147 · 105 J.

La durée du chauffage correspondante est

∆t1 =
Qext

1

P ext
=

0.147 · 105 J
1800W

= 8.17 s.

Etape 2 : faire fondre toute la glace à Tfusion = 0 ◦C.
La transition de phase se faisant à température fixe, l’énergie interne de la casserole ne
change pas.

Qext
2 = Qeau +Qcass = Qeau .

Qext
2 = λfusionmeau

= 3.3 · 105 J kg−1 · 0.5 kg
= 1.65 · 105 J.

La durée du chauffage correspondante est

∆t2 =
Qext

2

P ext
=

1.65 · 105 J
1800W

= 91.67 s.

Etape 3 : amener le tout à la température de vaporisation de l’eau Tvap = 100 ◦C.

Qext
3 = Qeau +Qcass .

Qext
3 = ceaumeau(Tvap − Tfusion) + cfermfer(Tvap − Tfusion)

= (ceaumeau + cfermfer)(Tvap − Tfusion)

= (4.18 · 103 J kg−1 ◦C−1 · 0.5 kg + 0.44 · 103 J kg−1 ◦C−1 · 1 kg)(100 ◦C− 0 ◦C)

= 2.53 · 105 J.

La durée du chauffage correspondante est

∆t3 =
Qext

3

P ext
=

2.53 · 105 J
1800W

= 140.56 s.

Etape 4 : faire évaporer toute l’eau à Tvap = 100 ◦C.
La transition de phase se faisant à température fixe, l’énergie interne de la casserole ne
change pas.

Qext
4 = Qeau +Qcass = Qeau .

Qext
4 = λvapmeau

= 23 · 105 J kg−1 · 0.5 kg
= 11.5 · 105 J.
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La durée du chauffage correspondante est

∆t4 =
Qext

4

P ext
=

11.5 · 105 J
1800W

= 638.89 s.

Exercice 8

Considérant la masse m sur le trajet de A à C (sous l’hypothèse elle ne décolle pas).

D

L

C

B

A

R
α

α

−kd⃗

S⃗

mg⃗

Objet : masse m

Forces : poids (conservatif), force élastique
(conservative), soutien du plan (de travail nul)

Newton :

mg⃗ − kd⃗+ S⃗ = ma⃗ .
Toutes les forces étant conservatives (ou ne travaillant pas), l’énergie mécanique est
conservée :

Eméc(A) = Eméc(C) .

Exprimer l’énergie mécanique aux points (A) et (C).
Prenons comme origine des hauteurs le point de départ de m .
En A :

Eméc(A) =
1

2
kd20 .

En C :

Eméc(C) =
1

2
mv2C +mgR .

La masse m passe en C signifie que vC ≥ 0 (ou 1
2
mv2C ≥ 0) .

Ainsi,

Eméc(A) = Eméc(C) ⇔ 1

2
kd20 =

1

2
mv2C +mgR

⇔ 1

2
mv2C =

1

2
kd20 −mgR ≥ 0 ⇔ d20 ≥

2mgR

k
⇔ d0 ≥

√
2mgR

k
.

Poursuivre par la méthode usuelle.
Considérer les forces exercées sur m durant le trajet C → D .
Considérant la masse m sur le trajet de A à C (sous l’hypothèse elle ne décolle pas).

D

L

C

B

A

R
α

α

f⃗
S⃗

mg⃗

Objet : masse m

Forces : poids (conservatif), soutien du plan (de
travail nul), frottement (non conservatif)

Newton :
mg⃗ + S⃗ + f⃗ = ma⃗ .

Le poids ne travaillant pas, le théorème de l’énergie cinétique entre C et D s’écrit

Ecin(D)− Ecin(C) = WC→D(f⃗)

avec

Ecin(D) = 0 (m s’arrête en D)

Ecin(C) =
1

2
mv2C =

1

2
kd20 −mgR (cf (a))

WC→D(f⃗) = −fL (f constante.)
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Ainsi

0− 1

2
kd20 +mgR = −fL ⇔ f =

1

L

(
1

2
kd20 −mgR

)
.

Si la bille va trop vite lorsqu’elle passe en B , elle décolle : il convient d’appliquer la
condition de non-décrochement en B .
Considérer les forces exercées sur m lorsqu’elle passe en B .

D

L

C

B

A

R
α

S⃗

mg⃗

Objet : masse m

Forces : poids (conservatif), soutien du plan (ne
travaillant pas)

Newton :
mg⃗ + S⃗ = ma⃗ .

La condition de non-décrochement s’écrit S = ||S⃗|| > 0 .
Selon e⃗n (dirigé vers le centre du cercle) :

mg cosα− S = man = m
v2B
R

.

D’autre part, l’énergie mécanique est conservée entre A et B (cf (a)),

Eméc(A) = Eméc(B) ⇔ 1

2
kd20 =

1

2
mv2B +mgR cosα ⇔ mv2B = kd20 − 2mgR cosα .

Ainsi,

S = mg cosα−m
v2B
R

= mg cosα− 1

R
(kd20 − 2mgR cosα) = 3mg cosα− kd20

R
> 0

⇔ 3mg cosα >
kd20
R

⇔ d20 <
3mgR cosα

k
⇔ d0 <

√
3mgR cosα

k
.

Exercice 9

Le système constitué des deux gaz est isolé et son énergie interne U est donc conservée :

U = U1 + U2 = constante .

Les gaz sont monoatomiques et toute l’énergie est sous forme thermique (énergie cinétique).
Initialement,

U1 =
3

2
N1kT1 =

3

2
p1V1 et U2 =

3

2
N2kT2 =

3

2
p2V2 ,

où N1 et N2 désignent respectivemet le nombre d’atomes du premier gaz et du second
gaz. Après le retrait de la cloison, l’équilibre du mélange (un seul gaz) s’écrit

U =
3

2
NkT =

3

2
pV,

avec N = N1 + N2 et V = V1 + V2 . Ainsi, la pression et la température d’équilibre ont
pour expression

p =
p1V1 + p2V2

V1 + V2

et

T =
N1T1 +N2T2

N1 +N2

.
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Exercice 10

On admet que le gaz enfermé sous le piston peut être considéré comme un gaz parfait.
Pour le gaz sous le piston :

p0Sh0 = NkT0 ⇔
2mg

S
Sh0 = NkT0 ⇔ 2mgh0 = NkT0 ⇔ N =

2mgh0

kT0

.

La pression du gaz donne lieu à une force de pression : choisir un objet subissant cette
force.

piston

gaz

h

mg⃗

F⃗sous

Objet : piston

Forces : poids, force de pression

Newton (équilibre) :

mg⃗ + F⃗sous = 0⃗ .

Selon e⃗y ↓ :

mg − pS ⇒ p =
mg

S
.

La loi des gaz parfaits est une relation entre la pression, la température et le volume (et
donc la nouvelle hauteur).
Pour le gaz sous le piston dans la nouvelle situation (la température peut avoir changé) :

pSh = NkT avec p =
mg

S
.

D’autre part (cf (a)),

p0Sh0 = NkT0 avec p0 =
2mg

S
= 2p .

Alors
pSh

p0Sh0

=
NkT

NkT0

⇔ h

2h0

=
T

T0

⇔ hT0 = 2h0T .

Considérer l’énergie totale Etot = Eméc + U du système formé du gaz et du piston.
Le piston s’est-il déplacé vers le haut ou vers le bas ?
La pression initiale du gaz étant supérieure à celle nécessaire à l’équilibre du piston, celui-ci
a été poussé vers le haut et le gaz s’est dilaté.
Le système formé du gaz et du piston ne subit aucune force extérieure et n’échange pas
non plus de chaleur avec son environnement :

Etot = Eméc,piston + Ugaz = cte ⇔ ∆Etot = ∆Eméc,piston +∆Ugaz = 0 .

L’énergie mécanique du piston a augmenté au détriment de l’énergie interne du gaz : sa
température baisse :

∆Ugaz = −∆Eméc,piston < 0 .

Considérer l’énergie interne du gaz mono-atomique.
Pour un gaz mono-atomique, l’énergie interne est donnée par l’énergie cinétique moyenne
de ses molécules qui ne dépend que de la température du gaz, U = 3

2
NkT .

Pour le gaz mono-atomique,
� l’énergie interne initiale est U0 =

3
2
NkT0

� l’énergie interne finale est U = 3
2
NkT .
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Alors

∆Ugaz = −∆Eméc,piston

3

2
Nk∆T = −(mgh−mgh0)

= −
(
mg

2h0T

T0

−mgh0

)
= −2mgh0

(
T

T0

− 1

2

)
= −NkT0

2T − T0

2T0

3(T − T0) = −2T + T0

T =
4

5
T0 .

Exercice 11

Les forces exercées sur la masse m sont son
poids, le soutien et la force de rappel.

(a) à l’équilibre en α0 ,

m−→g +
−→
S +

−→
T =

−→
0 .

Selon la tangente e⃗t :

kRα0 −mg sinα0 = 0

=⇒ m =
kRα0

g sinα0

=
2πRk

3
√
3g

.

Comparer les énergies aux points au plus bas et au plus haut.

(b) toutes les forces étant conservatives, l’énergie mécanique est conservée. Pour l’ori-
gine des hauteurs au niveau du centre du demi-cercle,
� en C :

EC = mgR cosα0 +
1

2
k(Rα0)

2 ,

� en B :

EB =
1

2
mv2B +mgR .

La masse décolle en B : le soutien s’annule.

Selon e⃗n à la verticale :

mg = man = m
v2B
R

=⇒ v2B = gR .

Ainsi

mgR cosα0 +
1

2
k(Rα0)

2 =
1

2
mgR +mgR =⇒ m =

kRα2
0

2g
=

kRπ2

18g
.
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