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Exercice 1.

a. Déterminer l’équation cartésienne d’un hyperbolöıde à une nappe engendré par la rotation d’une hyperbole

autour de son axe imaginaire.

Prendre une hyperbole γ dans le plan (O, e⃗1, e⃗3), d’axe réel (O, e⃗3)

centrée en O et rotation de γ autour de (O, e⃗1) .

b. Déterminer l’équation cartésienne d’un cône de révolution d’axe a = (O, e⃗2) , engendré par la rotation d’une

droite d passant par O (d ̸= a) . Donner une réponse possible.

Exercice 2.

a. Déterminer la nature de la conique suivante (de plus donner la longueur de ses trois axes (on ne demande

pas l’axe de révolution)) :

Σ : 3x2 + 3y2 + 3z2 − 2xy − 2xz − 2yz − 1 = 0

Et si on a :

Σ : 3x2 + 3y2 + 3z2 − 2xy − 2xz − 2yz − k = 0 , k > 0

que devient la longueur des axes ?

b. Déterminer la nature de la conique suivante, ainsi que les équations paramétriques de son axe de révolution.

Σ : 2xy + 2yz + 2xz + 2 = 0

Exercice 3.

Déterminer le genre de la quadrique suivante en fonction de k paramètre réel.

Σ : 3x2 − 4xy + 4xz + 8yz + k = 0

Exercice 4.

Soient le plan α : z = 0 , un nombre réel a tel que a > 0 et la droite

d :

 x

y

z

 = k

 1

0

1

 , k ∈ R .

sécante à α .

Déterminer le lieu des points M(x, y, z) tels que :

dist2(M,α) + dist2(M,d) = a

Éléments de réponse :

Ex. 1 :

a. Σ : − x̄2

b2 + ȳ2

a2 + z̄2

a2 − 1 = 0

b. Σ : x̄2

b2 − ȳ2

c2 + z̄2

b2 = 0

Ex. 2 :

a. Equation réduite Σ : 4x̄2 + 4ȳ2 + z̄2 − 1 = 0, c’est un ellipsöıde de révolution.

Longueur des axes : 2a = 2 et 2b = 1 ; 2a = 2
√
k et 2b =

√
k



b. Equation réduite : Σ : −x̄2 − ȳ2 + 2z̄2 + 2 = 0

C’est un hyperbolöıde de révolution à 1 nappe.

Son axe de révolution est donné par

 x

y

z

 = k

 1

1

1

 , k ∈ R .

Ex. 3 :

si k = 0 : 4x̄2 + 4ȳ2 − 5z̄2 = 0 : cône de révolution

si k > 0 : hyperbolöıde de révolution à deux nappes

si k < 0 : hyperbolöıde de révolution à une nappe

Ex. 4 :

λ1 = 2 > 0 , λ2 = 2 +
√
2 > 0 , λ3 = 2−

√
2 > 0 et −2a < 0 .

Le lieu des points M est donc un ellipsöıde triaxial.


