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5.3 Réduction de l’équation d’une conique dans le cas δ 6= 0 . . . . . . . . . . 13
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1 Produit vectoriel et produit mixte

Dans ce qui suit, les vecteurs considérés sont dans l’espace.

L’espace est muni d’un repère orthonormé noté (O ,−→e1 ,
−→e2 ,
−→e3 ) .

1.1 Le produit vectoriel

• Définition et interprétation géométrique
Définition 1.1.
Soient les vecteurs −→a et

−→
b .

Le produit vectoriel de −→a par
−→
b , noté −→a ×

−→
b , est un vecteur de l’espace défini

ainsi :

1. sa direction est normal au plan (O ,−→a ,
−→
b ) ,

2. son sens est obtenu par le ”sens de rotation d’une vis” de −→a vers
−→
b ,

3. ‖−→a ×
−→
b ‖ = ‖−→a ‖ ‖

−→
b ‖ sinϕ où ϕ = ∠(−→a ,

−→
b ) et 0 ≤ ϕ ≤ π .

Interprétation géométrique :

La norme ‖−→a ×
−→
b ‖ est égale à l’aire du parallélogramme construit sur les vecteurs

−→a et
−→
b .

Remarque.

1. Une base quelconque (−→u ,−→v ,−→w ) est dite directe ou positive si −→w et −→u ×−→v
sont dans le même demi-espace de frontière le plan (O ,−→u ,−→v ) .

2. La base (−→u ,−→v ,−→u ×−→v ) est directe.

3. La base canonique (−→e1 ,
−→e2 ,
−→e3 ) est directe, c’est-à-dire −→e3 = −→e1 ×−→e2 .

• Propriétés

1. −→a ×
−→
b ⊥ −→a et −→a ×

−→
b ⊥

−→
b

(−→a ×
−→
b ) · −→a = 0 et (−→a ×

−→
b ) ·
−→
b = 0

2. −→a ×
−→
b =

−→
0 ⇐⇒ −→a et

−→
b sont linéairement dépendants.

−→a ×−→a =
−→
0

3. −→a ×
−→
b = − (

−→
b ×−→a )

4. −→a × (
−→
b +−→c ) = −→a ×

−→
b +−→a ×−→c

(λ−→a )×
−→
b = λ (−→a ×

−→
b ) = −→a × (λ

−→
b ) , λ ∈ R

Remarque.

Le produit vectoriel n’est, en général, pas associatif : −→a ×(
−→
b ×−→c ) 6= (−→a ×

−→
b )×−→c

• Calcul dans une base orthonormée (directe)

Soient les vecteurs : −→a =

 a1

a2

a3

 et
−→
b =

 b1

b2

b3

 .

Alors :
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−→a ×
−→
b =

 a2b3 − a3b2

−(a1b3 − a3b1)
a1b2 − a2b1


Pour calculer le produit vectoriel, on utilise le déterminant symbolique suivant :

−→a ×
−→
b =

∣∣∣∣∣∣
−→e1
−→e2
−→e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ −→e1 −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ −→e2 +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ −→e3

1.2 Application du produit vectoriel

• Vecteur normal à un plan
Soient les trois points A ,B ,C (non alignés) et le plan α(A ,B ,C) .

Le vecteur
−→
AB ×

−→
AC est un vecteur normal au plan α .

• Intersection de deux plans
Soient les plans α et β de vecteur normal −→n α et −→n β respectivement.
Si d = α ∩ β est une droite
alors
d a pour vecteur directeur −→n α ×−→n β .

• Distance du point P à la droite g(G ,−→v )

dist (P , g) =
‖−→v ×

−→
GP‖

‖−→v ‖

• Distance de deux droites gauches

Soient a et b deux droites gauches de vecteur directeur −→a et
−→
b respectivement,

A′ ∈ a et B′ ∈ b .
Alors

dist (a , b) =
|
−−→
A′B′ · (−→a ×

−→
b ) |

‖−→a ×
−→
b ‖

1.3 Produit mixte

• Définition
Le produit mixte de trois vecteurs −→a ,

−→
b ,−→c , pris dans cet ordre, est le nombre

réel (−→a ×
−→
b ) · −→c .

On le note : [−→a ,
−→
b ,−→c ] .

• Propriétés. Calcul dans une base orthonormée

1. Soit P le parallélépipède construit sur les vecteurs linéairement

indépendants −→a ,
−→
b ,−→c .
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Alors

volume analytique de P = [−→a ,
−→
b ,−→c ]

2. [−→a ,
−→
b ,−→c ] = 0 ⇐⇒ −→a ,

−→
b ,−→c linéairement dépendants.

3. (−→a ×
−→
b ) · −→c = (

−→
b ×−→c ) · −→a = (−→c ×−→a ) ·

−→
b

Une permutation circulaire des vecteurs ne change pas le produit mixte.

4. (−→a ×
−→
b ) · −→c = − (

−→
b ×−→a ) · −→c = − (−→c ×

−→
b ) · −→a

5. Soient les vecteurs

−→a =

 a1

a2

a3

 ,
−→
b =

 b1

b2

b3

 , −→c =

 c1

c2

c3


.

Alors :

(−→a ×
−→
b ) · −→c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
Les propriétés du produit mixte sont donc celles des déterminants.

2 Le cercle

2.1 Equations d’un cercle

Définition 2.1.
Un cercle est l’ensemble des points du plan situés à la distance r (r ≥ 0) d’un point Ω .
Ω est le centre du cercle, r est le rayon du cercle.

On note γ (Ω, r) le cercle de centre Ω et de rayon r .

Propriété.
M ∈ γ (Ω, r)⇔ ‖

−−→
ΩM‖ = r

Considérons le plan muni d’un repère orthonormé. (fig 1)
Soient Ω (α, β) et r ≥ 0 donnés.
L’équation cartésienne de γ (Ω, r) est donnée par :

(x− α)2 + (y − β)2 − r2 = 0

Les équations paramétriques de γ sont données par (fig 2) :(
x
y

)
=

(
α
β

)
+

(
r cos Φ
r sin Φ

)
3



2.2 Tangentes à un cercle

2.2.1 Tangente en un point T du cercle

Soient γ un cercle de centre Ω (α, β) et de rayon r , et t la tangente à γ en
T (xT , yT ) . (fig 3)
Si M est un point courant de t alors l’équation vectorielle de t est la suivante :

t :
−−→
ΩM ·

−→
ΩT = r2

On obtient alors l’équation de la tangente t par la règle du dédoublement :

t : (x− α)(xT − α) + (y − β)(yT − β) = r2

2.2.2 Tangente à γ issues d’un point P extérieur à γ

Par la règle du dédoublement en P (xP , yP ) , on obtient l’équation de la polaire de P
par rapport à γ .

La méthode pour obtenir les tangentes à γ issues de P est alors la suivante (fig 4) :

• Recherche de la polaire p de P par rapport à γ
• p ∩ γ = {A,B}
• tA = (PA) ; tB = (PB) .

3 Etude élémentaire des coniques

3.1 L’ellipse

3.1.1 Définition géométrique de l’ellipse - Equation cartésienne

Définition 3.1. L’ellipse est le lieu des points du plan dont la somme des distances à
deux points fixes F et F ′ est une constante positive notée 2 a ( a > 0 ) .
Les deux points F et F ′ sont appelés les foyers de l’ellipse. Ω point milieu de F F ′

est le centre de l’ellipse.

Soit (O, ~e1, ~e2) un repère orthonormé du plan. Donnons l’équation cartésienne de l’ellipse
de foyers F (c, 0) et F ′ (−c, 0) ; c > 0, c < a . (fig 1)

Soit M (x, y) un point de l’ellipse, l’équation cartésienne est :

x2

a2
+
y2

b2
− 1 = 0 avec a2 = b2 + c2

L’ellipse coupe l’axe des x en A (a, 0) et A′ (−a, 0) et l’axe des y en B (0, b) et
B′ (0, −b) avec a > b .

AA′ est le grand axe de l’ellipse de longueur 2 a .
BB′ est le petit axe de l’ellipse de longueur 2 b .
La distance entre les foyers vaut F F ′ = 2 c .
L’ellipse est symétrique par rapport à son grand axe et son petit axe.

Remarques
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1. Les axes de symétries sont orthogonaux.

2. Les sommets sont les intersections entre l’ellipse et ses axes de symétrie.

3. L’intersection des axes de symétrie nous donne le centre de symétrie, appelé aussi
centre de l’ellipse.

3.1.2 Paramètre et excentricité

Définition 3.2. On appelle paramètre de l’ellipse, noté 2 p , la longueur de la corde
focale perpendiculaire au grand axe. (fig 2)

2 p = 2 b2

a

Définition 3.3. L’excentricité de l’ellipse, notée e , est le rapport de la distance entre
les foyers et de la longueur du grand axe.

e = c
a

Or c < a donc 0 ≤ e < 1 le rapport mesure ”l’aplatissement” de l’ellipse (si e = 0 ,
l’ellipse est un cercle).

Le paramètre et l’excentricité définissent l’ellipse p = b2

a

e = c
a

a2 = b2 + c2

⇒ a = p
1−e2 ; b2 = p2

1−e2

3.1.3 Equation sous forme élémentaire et position de l’ellipse

Soit Ω(α, β) le centre de l’ellipse ( a > b > 0 ) .

Ellipse de grand axe horizontal :

(x− α)2

a2
+

(y − β)2

b2
− 1 = 0

Ellipse de grand axe vertical :

(x− α)2

b2
+

(y − β)2

a2
− 1 = 0

Pour plus d’information, voir la feuille distribuée en cours à ce sujet.

3.1.4 Equations paramétriques de l’ellipse

L’ellipse ε comme image d’un cercle γ par une affinité f de matrice (fig 3)

Mf =

(
1 0
0 b

a

)
Equations paramétriques du cercle γ :

γ :

{
x = a cos t
y = a sin t
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On obtient les équations paramétriques suivantes pour l’ellipse :

ε = f(γ) :

(
x′

y′

)
=

(
1 0
0 b

a

)(
a cos t
a sin t

)
=

(
a cos t
b sin t

)
d’où

ε :

{
x′ = a cos t
y′ = b sin t

3.1.5 Tangentes à l’ellipse - Pôle et polaire

Soit ε une ellipse centrée à l’origine de grand axe horizontal.

1. Equation de la tangente t en T (x0, y0) ∈ ε .

Celle-ci s’obtient par la règle du dédoublement.

t : b2 x x0 + a2 y y0 − a2 b2 = 0.

2. Equation des tangentes tA et tB issues d’un point P (xP , yP ) extérieur à
l’ellipse.

Marche à suivre :
• Recherche de la polaire p de P par rapport à ε
• p ∩ ε = {A,B}
• tA = (PA) ; tB = (PB) .

3. Si P 6= Ω , la polaire de P par rapport à ε est la droite p dont l’équation est
obtenue par la règle du dédoublement.

Les propriétés des pôles et polaires de l’ellipses sont analogues à celles des pôles et
polaires du cercle.

Remarque. Si {I} = (ΩP ) ∩ p , l’angle en I n’est plus droit, mais I est toujours le
milieu de la corde (AB) . (fig 4)

3.1.6 Directrices de l’ellipse

Définition 3.4. On appelle directrices de l’ellipse les polaires des foyers. (fig 5)

Soit ε : b2 x2 + a2 y2 − a2 b2 = 0

F (c, 0) et d : polaire de F .

d : x =
a2

c
=
a

e

F ′ (−c, 0) et d′ : polaire de F ′ .

d′ : x = −a
2

c
= −a

e

Remarque. dist(O, d) = dist(O, d′) = a2

c
et cette propriété est conservée même si le

centre est Ω (α, β) .

6



3.2 L’hyperbole

3.2.1 Définition géométrique de l’hyperbole - Equation cartésienne

Définition 3.5. L’hyperbole est le lieu des points du plan dont la différence des distances
à deux points fixes F et F ′ est une constante positive notée 2 a ( a > 0 ) .
Les deux points F et F ′ sont appelés les foyers de l’hyperbole. Ω point milieu de F F ′

est le centre de l’hyperbole. (fig 1)

Soit (O, ~e1, ~e2) un repère orthonormé du plan. Donnons l’équation cartésienne de l’hy-
perbole de foyers F (c, 0) et F ′ (−c, 0) ; c > a > 0 .

Soit M (x, y) un point de l’hyperbole, l’équation cartésienne est :

x2

a2
− y2

b2
− 1 = 0 avec a2 + b2 = c2

L’hyperbole coupe l’axe des x en A (a, 0) et A′ (−a, 0) ; elle ne coupe pas l’axe des
y .

L’axe des x est appelé l’axe réel, l’axe des y est appelé l’axe imaginaire.

L’hyperbole est symétrique par rapport à son axe réel et son axe imaginaire.

Elle possède deux asymptotes obliques d’équation y = b
a
x et y = − b

a
x .

Remarques

1. Les axes de symétries sont orthogonaux.

2. Les sommets sont les intersections entre l’hyperbole et ses axes de symétrie.

3. L’intersection des axes de symétrie nous donne le centre de symétrie, appelé aussi
centre de l’hyperbole.

3.2.2 Paramètre et excentricité

Comme pour l’ellipse, on définit le paramètre et l’excentricité de l’hyperbole.

Définition 3.6. Le paramètre de l’hyperbole, noté 2 p , est la longueur de la corde focale
perpendiculaire à l’axe réel.

2 p = 2 b2

a

Définition 3.7. L’excentricité de l’hyperbole, notée e , est définie par e = c
a
> 1 .

3.2.3 Equation sous forme élémentaire et position de l’hyperbole

Soit Ω(α, β) le centre de l’hyperbole ( c > a > 0 ) .

Hyperbole d’axe réel horizontal :
(x− α)2

a2
− (y − β)2

b2
− 1 = 0

Hyperbole d’axe réel vertical :

−(x− α)2

b2
+

(y − β)2

a2
− 1 = 0

Pour plus d’information, voir la feuille distribuée en cours à ce sujet.
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3.2.4 Tangentes à l’hyperbole - Pôle et polaire

Soit H une hyperbole centrée à l’origine d’axe réel horizontal.

1. Equation de la tangente t en T (x0, y0) ∈ H .

Celle-ci s’obtient par la règle du dédoublement.

t : b2 x x0 − a2 y y0 − a2 b2 = 0.

2. Equation des tangentes tA et tB issues d’un point P (xP , yP ) extérieur à
l’hyperbole.

Marche à suivre :
• Recherche de la polaire p de P par rapport à H
• p ∩H= {A,B}
• tA = (PA) ; tB = (PB) .

3. Si P 6= Ω , la polaire de P par rapport à H est la droite p dont l’équation est
obtenue par la règle du dédoublement.

Les propriétés des pôles et polaires de l’hyperboles sont analogues à celles des pôles
et polaires du cercle et de l’ellipse.

3.2.5 Directrices de l’hyperbole

Définition 3.8. On appelle directrices de l’hyperbole les polaires des foyers. (fig 2)

Soit H: b2 x2 − a2 y2 − a2 b2 = 0

F (c, 0) et d : polaire de F .

d : x =
a2

c
=
a

e

F ′ (−c, 0) et d′ : polaire de F ′ .

d′ : x = −a
2

c
= −a

e

Remarque. dist(O, d) = dist(O, d′) = a2

c
et cette propriété est conservée même si le

centre est Ω (α, β) .

3.2.6 Equation d’une hyperbole rapportée à ses asymptotes

(fig 3) ~u1 vecteur unitaire de l’asymptote y = − b
a
x , et ~u2 vecteur unitaire de l’asymptote

y = b
a
x .

Par changement de repère de (O, ~e1, ~e2) à (O, ~u1, ~u2) on obtient l’équation de l’hyper-
bole rapportée à ses asymptotes suivante :

x′ y′ =
c2

4

Remarque. Si l’hyperbole a pour centre Ω (α, β) , on obtient :

(x′ − α)(y′ − β) =
c2

4
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3.3 La parabole

3.3.1 Définition géométrique - Equation cartésienne

Définition 3.9. La parabole est le lieu des points du plan équidistants d’un point F et
d’une droite d donnés.

F est le foyer et d la directrice de la parabole.

Cherchons l’équation cartésienne par rapport au repère (O, ~e1, ~e2) suivant :

Soit p = dist(F, d), p > 0

F (p
2
, 0) , d : x = −p

2

Si M (x, y) est un point de la parabole alors dist(M, F ) = dist(M, d) . (fig 1)

Et l’équation cartésienne est :

y2 = 2 p x

L’axe des x est un axe de symétrie de la parabole.
L’origine est le sommet de la parabole, on le note S . Il est caractérisé par le fait que la
tangente à la parabole en ce point est perpendiculaire à l’axe.
Les notions de tangentes, polaires et directrice de la parabole sont analogues à celles de
l’ellipse ou l’hyperbole.

Remarque. La corde focale est de longueur 2 p . (fig 2)

3.4 Définition générale d’une conique d’excentricité e

Définition 3.10. Soient une droite d et un point F du plan, F /∈ d .
Une conique C est l’ensemble des points M du plan dont le rapport des distances à un
point fixe F et à une droite fixe d est une constante e (e > 0) .
F est le foyer, d est la directrice et e l’excentricité.

M ∈ C ⇐⇒ dist(M,F )
dist(M,d)

= e

Si e = 1 : la conique est une parabole.
Si e < 1 : la conique est une ellipse.
Si e > 1 : la conique est une hyperbole.

Pour plus d’information, voir la feuille distribuée en cours à ce sujet.

4 Coordonnées homogènes dans le plan - Points à

l’infini du plan

Soit P un point du plan de coordonnées cartésiennes (x, y) .

Définition 4.1. On appelle coordonnées homogènes du point P tout triplet de nombres
réels (X, Y, T ), solutions non triviales du système d’équations homogènes suivants :
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(∗)
{
xT = X
y T = Y

⇐⇒ x

X
=

y

Y
=

1

T
et (X, Y, T ) 6= (0, 0, 0)

Il est immédiat que :

1. (λX, λ Y, λ T ) , ∀λ ∈ R∗ est aussi solution de (∗) c’est-à-dire les coordonnées
de P sont définies à un facteur λ ( 6= 0) près ;

2. le triplet (x, y, 1) est toujours solution de (∗) , et donc (λx, λ y, λ) , ∀λ ∈ R∗ ,
exprime l’ensemble des solutions de (∗) .

coordonnées cartésiennes coordonnées homogènes
P (x, y) ⇐⇒ P (X, Y, T ) = (x, y, 1) = (λx, λ y, λ) , ∀λ ∈ R∗
uniques non uniques

On considère la droite s = (A , B) de direction ~v et un point M (xM , yM) ∈ s .

On s’intéresse au point à l’infini de la droite s , c’est-à-dire lorsque M tend à l’infini

dans la direction ~v ‖
−→
AB .

1. En coordonnées cartésiennes :

M → ”infini” ⇐⇒ xM →∞ et yM →∞ : les coordonnées cartésiennes ne décrivent

pas les points à l’infini du plan.

2. En coordonnées homogènes :

M → ”infini” ⇐⇒ (XM , YM , TM) = (λ (xA − xB), λ (yA − yB), 0)

M est à l’infini ⇐⇒ TM = 0

De plus
YM
XM

=
yA − yB
xA − xB

= m où m est la pente de (AB) .

Les coordonnées homogènes de M à l’infini peuvent aussi s’écrire :

(XM , YM , 0) =

(
λ , λ

yA − yB
xA − xB

, 0

)
= (λ, λm, 0)

où ~v =

(
1
m

)
est la direction selon laquelle M tend à l’infini.

coordonnées cartésiennes coordonnées homogènes

direction ~v

(
a
b

)
⇐⇒ point à l’infini V∞ tel que

de pente m = b
a

V∞ (λ a , λ b , 0) = (1, m, 0)
ce ”point” représente la direction ~v
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Remarque. Toutes les droites du plan parallèles à la direction ~v

(
1
m

)
ont en commun

le point à l’infini dans la direction ~v , dont les coordonnées homogènes sont (1, m, 0)
ou (λ, λm, 0) , λ 6= 0 .

Inversément, par le point à l’infini V∞ (1, m, 0) ou (λ, λm, 0) , λ 6= 0 , passe toutes

les droites du plan de direction ~v

(
1
m

)
.

Théorème 4.1.

Les points à l’infini sont sur une droite, la droite de l’infini d’équation homogène T = 0 .

5 Etude Générale des coniques

5.1 Généralités

Définition 5.1. On appelle conique une courbe du plan dont les points M (x, y) sont
les zéros d’un polynôme F (x, y) du deuxième degré en x et en y à coefficients réels.

L’équation générale est :

a x2 + 2 b x y + c y2 + 2 d x+ 2 e y + f = F (x, y) = 0

Termes du deuxième degré :


a x2

2 b x y
c y2

Termes du premier degré :

{
2 d x
2 e y

Terme constant : f

On pose :

X =

 x
y
1

 ⇒ X t = (x y 1 )

A =

 a b d
b c e
d e f

 et A = At c’est-à-dire A est symétrique

Alors :

F (x, y) = 0 ⇐⇒ X tAX = 0 avec A symétrique

On décompose A en blocs en posant :

B =

(
a b
b c

)
C =

(
d
e

)
avec

B : coefficients des termes du deuxième degré en x et en y ; B = Bt .

C : demi-coefficients des termes du premier degré en x et en y .
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⇒ A =

(
B C
Ct f

)

Remarque. la matrice X =

 x
y
1

 représente en fait les coordonnées du vecteur

~x =

(
x
y

)
sous forme homogène normalisée (c’est-à-dire T = 1).

Equation de la conique sous forme homogène :

X
T

= x, Y
T

= y

f (X, Y, T ) = aX2 + 2 bX Y + c Y 2 + 2 dX T + 2 e Y T + f T 2 = 0

⇔ X tAX = 0 avec X =

 X
Y
T


But : en effectuant un changement de repère, on va simplifier cette équation afin de
reconnâıtre la conique :

Remarque. Dans le nouveau repère, la matrice associée A′ est diagonale pour l’ellipse et
l’hyperbole.

Changement de repère

1. Translation
−→
OΩ : (O, ~e1, ~e2) (Ω, ~e1, ~e2)

X = X ′ + T où T =

(
α
β

)
=
−→
OΩ

2. Rotation de la base (~e1, ~e2) d’un angle ϕ : (Ω, ~e1, ~e2) (Ω, ~u1, ~u2)

X ′ = P X où P =

(
cosϕ − sinϕ
sinϕ cosϕ

)
et detP = 1 .

3. Translation
−→
OΩ suivie de la rotation d’angle ϕ : (O, ~e1, ~e2) (Ω, ~u1, ~u2)

X = P X + T ⇐⇒
(
x
y

)
=

(
cosϕx− sinϕy + α
sinϕx+ cosϕy + β

)
On pose :

X =

 x
y
1

 X =

 x
y
1

 et U =

 cosϕ − sinϕ α
sinϕ cosϕ β

0 0 1


Alors les relations algébriques entre les anciennes et les nouvelles coordonnées s’écrivent
matriciellement :

X = U X

On décompose U en matrices blocs :

U =

(
P T
O 1

)
Alors :

1. detU = detP = 1
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2. P−1 =

(
cosϕ sinϕ
− sinϕ cosϕ

)
= P t

3. U t =

 cosϕ sinϕ 0
− sinϕ cosϕ 0
α β 1

 =

(
P t O
T t 1

)

5.2 Effet d’un changement de repère sur l’équation d’une co-
nique

Equation de la conique Σ dans (O, ~e1, ~e2) = Re

Σ : X tAX = 0 avec X =

 x
y
1


Nouveau repère (Ω, ~u1, ~u2) = Ru et matrice de passage U telle que :

X = U X avec X =

 x
y
1


Equation de Σ dans Ru :

X
t
A′X = 0 avec A′ = U tAU et A′t = A′ : symétrique.

Remarques

1. Un changement des vecteurs de la base modifie les termes du deuxième degré et
ne modifie pas le terme constant.

2. Un changement d’origine modifie le terme constant et ne modifie pas les termes du
deuxième degré.

Rappel : B =

(
a b
b c

)
. On pose :

∆ = detA , δ = detB , σ = trB = a+ c = trace de B .

Théorème 5.1.

∆, δ et σ sont invariants pour tout changement de base orthonormée, c’est-à-dire :

∆ = detA = detA′

δ = detB = detB′

σ = trB = trB′

5.3 Réduction de l’équation d’une conique dans le cas δ 6= 0

On veut obtenir la forme canonique x2

a2
± y2

b2
− 1 = 0 dans le repère (Ω, ~u1, ~u2) où ~u1 :

direction grand axe de l’ellipse ou axe réel de l’hyperbole et ‖ ~u1‖ = 1, ~u2 tel que ( ~u1, ~u2)
direct et ‖ ~u2‖ = 1 .

a) Elimination des termes du premier degré :
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1. Les termes du premier degré sont éliminés

⇐⇒

T =

(
α
β

)
est la solution du système B T + C = 0

⇐⇒
Ω (α, β) est l’origine du nouveau repère (Ω, ~e1, ~e2)

2. une conique possède un centre ⇐⇒ δ 6= 0

L’équation devient :

X ′tA′X ′ = 0 ⇐⇒ (x′ y′ )B

(
x′

y′

)
+H = 0

b) Elimination du terme en x′ y′ .

On considère le changement de base (Ω, ~e1, ~e2) à (Ω, ~u1, ~u2)

On obtient l’équation dans (Ω, ~u1, ~u2) :

(x y )P tB P

(
x
y

)
+H = 0 où B′ = P tB,P = P−1B P car P t = P−1

B étant symétrique, elle est diagonalisable et il existe une base propre ( ~u1, ~u2) ortho-
normée directe. Soit λ1 et λ2 ses valeurs propres, on peut alors montrer le résultat
suivant : les sous-espaces vectoriels propres de B , E(λ1) et E(λ2) sont parallèles aux
axes de la conique.

Ainsi la base ( ~u1, ~u2) cöıncide avec la base propre orthonormée de B , c’est-à-dire
~u1 ∈ E(λ1) , ~u2 ∈ E(λ2) et P est la matrice de passage.

L’équation de la conique dans le repère (Ω, ~u1, ~u2) devient :

λ1 x
2 + λ2 y

2 +H = 0 : équation réduite de la conique lorsque δ 6= 0 .

On a dans le repère (Ω, ~u1, ~u2) que A′ est diagonale :

A′ =

 λ1 0 0
0 λ2 0
0 0 H

 où H = ∆
δ

On calcule H grâce aux invariants :{
δ = detB = detB′ = λ1 λ2 6= 0
∆ = detA = detA′ = λ1 λ2H

⇒ H =
∆

δ

5.4 Discussion de l’équation réduite dans le cas δ 6= 0

λ1 x
2 + λ2 y

2 +H = 0

A′ =

 λ1 0 0
0 λ2 0
0 0 H

 , B′ =

(
λ1 0
0 λ2

)
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∆ = detA = detA′ = λ1 λ2H

δ = detB = detB′ = λ1 λ2 6= 0

σ = trB = trB′ = λ1 + λ2

1er cas : ∆ 6= 0 ⇐⇒ H 6= 0

On divise par (−H) l’équation réduite :

x2

−H/λ1

+
y2

−H/λ2

− 1 = 0

Discussion :

• si

{
λ1 , λ2 > 0 c’est-à-dire δ > 0
H < 0

ou

si

{
λ1 , λ2 < 0 c’est-à-dire δ > 0
H > 0

alors la conique est une ellipse réelle ; car −H
λ1
> 0 et −H

λ2
> 0 .

Par convention, on choisit λ1 et λ2 tels que −H
λ1
> −H

λ2
.

a2 = −H
λ1

, b2 = −H
λ2

, et par suite : E(λ1) ‖ grand axe et E(λ2) ‖ petit axe

• si λ1 , λ2 et H sont de même signe, alors la conique est une ”ellipse dite imagi-
naire”.

• si λ1 et λ2 sont de signes contraires, c’est-à-dire δ < 0 , alors, quel que soit le
signe de H , −H

λ1
et −H

λ2
sont de signes contraires.

La conique est donc toujours une hyperbole (réelle).
Par convention, on pose λ1 et λ2 tels que −H

λ1
> 0 et −H

λ2
< 0 .

Ainsi : E(λ1) ‖ axe réel et E(λ2) ‖ axe imaginaire .

Remarque. lorsque δ < 0 :

|λ1| = |λ2| ⇔ | Hλ1 |=|
H
λ2
| ⇔ σ = λ1 + λ2 = 0

l’hyperbole est équilatère

2ème cas : H = 0 ⇐⇒ ∆ = 0

L’équation devient : λ1 x
2 + λ2 y

2 = 0 : ce qui, en fonction des signes de λ1 et λ2 ,
représente une paire de droites réelles ou imaginaires. On détermine leurs équations dans
(O, ~e1, ~e2) en résolvant P (x, y) = 0 par rapport à l’une des variables (l’autre étant
considérée comme un paramètre).

On dit alors que la conique est dégénérée.

En résumé :

• ∆ 6= 0 : conique non dégénérée.
δ 6= 0 : conique à centre.
• δ > 0 : ellipse (éventuellement imaginaire).
δ < 0 : hyperbole.
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5.5 Réduction et discussion dans le cas δ = 0

δ = detB = detB′ = λ1 λ2 = 0 ⇔ λ1 = 0 et λ2 6= 0

On veut obtenir la forme canonique y2 = 2 p x dans le repère (S, ~u1, ~u2) , où S est
le sommet de la parabole, ~u1 : direction axe de la parabole, ~u1 dans la concavité et
‖ ~u1‖ = 1 et ~u2 tel que ( ~u1, ~u2) direct, ‖ ~u2‖ = 1 .

Or : δ = 0 ⇔ la conique n’a pas de centre de symétrie permettant d’enlever les termes
du premier degré, donc pas de translation évidente.

B étant symétrique, il existe donc une base orthonormée (O, ~u1, ~u2) formée de vecteurs
propres de B , où ~u1 et ~u2 sont tels que l’angle entre ~e1 et ~u1 est ϕ

⇒ ~u1 =

(
cosϕ
sinϕ

)
, ~u2 =

(
− sinϕ
cosϕ

)
Discussion et réduction

On obtient ∆ = −d′2 · λ2 avec λ2 6= 0 .

1er cas :

d′ = 0 ⇔ detA = detA′ = ∆ = 0

La parabole dégénère en deux droites (parallèle ou confondues, réelles ou imaginaires)

2ème cas : d′ 6= 0 ⇔ ∆ 6= 0

On considère la nouvelle origine S et donc le nouveau repère (S, ~u1, ~u2) et on obtient
l’équation d’une parabole (du type y2 = 2 p x ) dans (S, ~u1, ~u2) .

L’équation obtenue : λ2 y
2 + 2 d′ x = 0 est appelée équation réduite.

Dans ce nouveau repère A′ s’écrit :

A′ =

 0 0 d′

0 λ2 0
d′ 0 0


On peut alors montrer :
• ~u1 ∈ E(0) et est la direction de l’axe (mais il reste à choisir son sens)
• ~u2 ∈ E(λ2) (λ2 6= 0) , ~u2 ⊥ ~u1 , et est la direction de la tangente au sommet
• S est le sommet de la parabole.

On a d′2 = −∆

λ2

Convention :

On choisit le signe de d′ de telle manière que −2 d′

λ2
> 0 pour que ~u1 soit à l’intérieur

de la concavité de la parabole.
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En résumé :{
δ = 0
∆ 6= 0

⇐⇒
{
λ1 = 0 , λ2 6= 0
la conique est une parabole non dégénérée
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