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Série 11

Exercice 1. L’espace est muni d’un repère. Dans chacun des cas suivants, donner les coordonnées d’un point et celles de deux

vecteurs directeurs non colinéaires du plan π proposé.

a. π : 2x+ y − 3z = 7 b. π :


x = t

y = 3 + s

z = −1− t

, s, t ∈ R c. π : 2x+ z = 5.

Exercice 2. Dans l’espace muni d’un repère on considère le plan π passant par les points :

A(3,−1, 2) , B(4,−1,−1) et C(2, 0, 2) .

a. Déterminer des équations paramétriques et cartésiennes de π.

b. Si le repère est orthonormé, quelle distance sépare l’origine du plan π ?

Exercice 3. Dans l’espace muni d’un repère, on donne :

A(−1, 5, 1), d : x− 1 = 3− y = 2z + 1 et π : x− 2z + 3 = 0.

a. Le point A appartient-il à d ? à π ? La droite d est-elle parallèle à π ?

b. Déterminer une équation cartésienne du plan ρ défini par A et d.

Exercice 4. Dans l’espace muni d’un repère orthonormé, on donne :

A(1,−2, 1), π : x− 2y + z − 3 = 0 et ρ : x+ y − z + 2 = 0.

a. Calculer des équations de la droite d = π ∩ ρ.

b. Déterminer une équation cartésienne du plan σ contenant A et perpendiculaire à d.

Exercice 5. Dans l’espace, on donne deux plans π et ρ distincts et un point A vérifiant :

π et ρ non parallèles , A /∈ π et A /∈ ρ .

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier votre réponse.

a. Si une droite est parallèle à π et ρ, alors elle est parallèle à leur intersection.

b. Si une droite intersecte π et ρ, alors elle intersecte π ∩ ρ.

c. Il existe une droite passant par A, intersectant π et n’intersectant pas ρ.

d. Une droite passant par A intersecte forcément π ou ρ.

Exercice 6. Dans l’espace muni d’un repère, on donne le point A(−3,−2, 1), la droite d et le plan π suivant :

d :
x− 6

2
=

y + 2

−1
=

z

3
, π : 3x− 5y + 4z = 12.

Déterminer des équations cartésiennes d’une droite l passant par A, parallèle à π et intersectant d.



Exercice 7. Dans l’espace muni d’un repère, on donne :

A(−1, 2, 1) , B(0, 3, 5
2 ) , ρ : x+ y − z = 1, σ : x− 3y + z + 1 = 0.

Déterminer une équation cartésienne d’un plan π contenant A et B, et tel que l’intersection π ∩ ρ ∩ σ est vide.

Exercice 8. Résoudre les systèmes suivants et interpréter géométriquement (faire un croquis) :

a.

{
x+ y − 2z = 1

2x− 3y + z = 2
b.


x+ y + z = 3

x+ 2y + 3z = 6

2x+ y = 2

c.


x− 3y − 7z = 0

3x+ y + 9z = 10

7x− y + 11z = 20.

Éléments de réponse :

Ex. 2 : a. 3x+ 3y + z = 8, b. 8√
19
.

Ex. 3 : a. non, oui, oui, b. x+ y = 4.

Ex. 4 : b. x+ 2y + 3z = 0.

Ex. 5 : a. vrai, b. faux, c. vrai, d. faux.

Ex. 6 : l : x+3
7 = y + 2 = z−1

−4 .

Ex. 7 : π : x− y + 3 = 0.

Ex. 8 : a. une droite, b. vide, c. une droite.


