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Série 10

Exercice 1. Dans l’espace muni d’un repère, on donne :

u⃗

 2

−3

1

 , v⃗

4

1

5

 , w⃗

 5

−4

4

 .

a. Déterminer une équation du plan vectoriel engendré par u⃗ et v⃗.

b. Le vecteur w⃗ est-il combinaison linéaire de u⃗ et v⃗ ? Si oui, déterminer explicitement les coefficients dans cette combinaison.

Solution:

a. Donnons deux méthodes pour trouver une telle équation.

Méthode 1 (élimination des paramètres). Le vecteur de coordonnées
(

x
y
z

)
appartient au plan vectoriel engendré par u⃗

et v⃗ si et seulement si :

∃s, t ∈ R


x = 2s+ 4t

y = −3s+ t

z = s+ 5t

⇔ ∃t ∈ R

{
x− 2z = −6t

y + 3z = 16t
⇔ 16(x− 2z) + 6(y + 3z) = 0 .

Remarquons qu’il s’agit bien d’une suite d’équivalences. En effet, la suite d’implications de gauche à droite est claire, obtenue

simplement en faisons des combinaisons des équations. Pour remonter de droite à gauche, on pose successivement :

t =
x− 2z

−6
puis s = z − 5t .

Simplifions alors l’équation trouvée ci-dessus. On obtient :

16x− 32z + 6y + 18z = 0 ⇔ 16x+ 6y − 14z = 0 ⇔ 8x+ 3y − 7z = 0 .

Méthode 2 (déterminant). Le vecteur de coordonnées
(

x
y
z

)
appartient au plan vectoriel engendré par u⃗ et v⃗ si et seulement

si on a :∣∣∣∣∣∣
2 4 x

−3 1 y

1 5 z

∣∣∣∣∣∣ = 0 ⇔
∣∣∣∣−3 1

1 5

∣∣∣∣x−
∣∣∣∣2 4

1 5

∣∣∣∣ y + ∣∣∣∣ 2 4

−3 1

∣∣∣∣ z = 0 ⇔ −16x− 6y + 14z = 0 ⇔ 8x+ 3y − 7z = 0 .

Voici un dessin illustrant la situation :



b. Les coordonnées de w⃗ vérifient l’équation trouvée au a. :

8 · 5 + 3 · (−4)− 7 · 4 = 40− 12− 28 = 0 .

On peut donc affirmer w⃗ est bien combinaison linéaire de u⃗ et v⃗. Par ailleurs, on a aussi vu ci-dessus (Méthode 1) comment

calculer le s et le t correspondant :

t =
5− 2 · 4

−6
=

−3

−6
=

1

2
puis s = 4− 5 · 1

2
=

3

2
.

On a donc :

w⃗ =
3

2
u⃗+

1

2
v⃗ .

Géométriquement :

Exercice 2. Dans l’espace muni d’un repère, on donne le plan vectoriel ainsi que le vecteur suivant :

V : x+ 3y − 4z = 0 et w⃗

x

y

z

 .

a. Déterminer une base de V , c’est-à-dire deux vecteurs u⃗ et v⃗ tels que V = Vect(u⃗, v⃗).

b. Si w⃗ appartient à V , écrire w⃗ comme su⃗+ tv⃗ où u⃗, v⃗ sont les vecteurs du a. et s et t sont des fonctions de x, y et z.

c. Contrôler votre résultat du b. sur des exemples, c’est-à-dire des choix concrets de vecteur w⃗ appartenant à V .

d. Recommencer le a., b. et c. avec une autre base de V .

Solution:

a. Il suffit de prendre deux vecteurs appartenant à V et non colinéaires, par exemple :

u⃗

 3

−1

0

 et v⃗

4

0

1

 .

b. Avec le choix de u⃗ et v⃗ fait au a. on a :

w⃗ = su⃗+ tv⃗ ⇔


x = 3s+ 4t

y = −s

z = t

⇔


s = −y

t = z

x = −3y + 4z

Dans le dernier système écrit, remarquons que la troisième équation est automatiquement vérifiée puisque w⃗ appartient à V .

On a donc montré :

w⃗ = −yu⃗+ zv⃗ .

Géométriquement, cette décomposition se visualise de la manière suivante :



c. Prenons par exemple x = y = z = 1. On a alors :

w⃗

1

1

1

 ∈ V

︸ ︷︷ ︸
car 1+3−4=0

, w⃗ = −u⃗+ v⃗︸ ︷︷ ︸
−y=−1 et z=1

et

1

1

1

 = −

 3

−1

0

+

4

0

1

 .

Avec x = 5, y = −3 et z = −1 on a :

w⃗

 5

−3

−1

 ∈ V

︸ ︷︷ ︸
car 5−9+4=0

, w⃗ = 3u⃗− v⃗︸ ︷︷ ︸
−y=3 et z=−1

et

 5

−3

−1

 = 3

 3

−1

0

−

4

0

1

 · · ·

d. Prenons par exemple :

u⃗

1

1

1

 et v⃗

 5

−3

−1

 .

On trouve alors :

w⃗ = su⃗+ tv⃗ ⇔


x = s+ 5t

y = s− 3t

z = s− t

⇔


x+ 5z = 6s

y − 3z = −2s

z = s− t

⇔


x+ 5z + 3(y − 3z) = 0

y − 3z = −2s

z = s− t

⇔


x+ 3y − 4z = 0

s =
3z − y

2

t = s− z =
z − y

2

Dans le dernier système écrit, remarquons que la première équation est automatiquement vérifiée puisque w⃗ appartient à V .

On a donc montré :

w⃗ =
3z − y

2
u⃗+

z − y

2
v⃗ .

Géométriquement, cette décomposition se visualise de la manière suivante :

Prenons par exemple x = 3, y = −1 et z = 0. On a alors :

w⃗

 3

−1

0

 ∈ V

︸ ︷︷ ︸
car 3−3−0=0

, w⃗ =
1

2
u⃗+

1

2
v⃗︸ ︷︷ ︸

3z−y
2 = 1

2 et z−y
2 = 1

2

et

 3

−1

0

 =
1

2

1

1

1

+
1

2

 5

−3

−1

 .



Avec x = 0, y = 4 et z = 3 on a :

w⃗

0

4

3

 ∈ V

︸ ︷︷ ︸
car 0+12−12=0

, w⃗ =
5

2
u⃗− 1

2
v⃗︸ ︷︷ ︸

3z−y
2 = 5

2 et z−y
2 =− 1

2

et

0

4

3

 =
5

2

1

1

1

− 1

2

 5

−3

−1

 · · ·

Exercice 3. Dans l’espace muni d’un repère, on donne A(2, 0,−1) et v⃗
(

1
3
4

)
. Dans chacun des cas suivants, dire si le point A

appartient à la droite d et si le vecteur v⃗ est directeur de d.

a. d :
x+ 1

3
=

y + 2

2
=

z + 3

2
b. d :


x = 2− t

y = −1− 3t

z = 1− 4t

, t ∈ R c. d = (BC), où B(3, 3, 3) et C(1,−3,−5).

Solution:

a. Les coordonnées de A satisfont les équations cartésiennes de d car :

2 + 1

3
=

0 + 2

2
=

−1 + 3

2
(= 1).

Par conséquent, le point A se trouve bien sur d. Par ailleurs, le vecteur :

u⃗

3

2

2


est directeur de la droite d (on peut extraire directement ces coordonnées des dénominateurs apparaissant dans les équations

cartésiennes, ou encore produire deux points sur la droite et déterminer le vecteur qui les relie). Comme v⃗ n’est pas colinéaire

à u⃗, on voit que v⃗ n’est pas directeur de la droite d.

b. Pour déterminer si A appartient à d, cherchons s’il y a une valeur du paramètre t qui lui correspond :
2 = 2− t

0 = −1− 3t

−1 = 1− 4t

⇔


t = 0

t = − 1
3

t = 1
4

Comme aucun réel t ne vérifie ces trois équations simultanément, on peut conclure que le point A n’appartient pas à d. Par

ailleurs, le vecteur :

u⃗

−1

−3

−4


est directeur de la droite d (extraction directe de l’équation via les coefficients devant le paramètre). Comme v⃗ = −u⃗ on voit

que v⃗ est bien directeur de d.

c. La droite d = (BC) est dirigée par le vecteur :

−−→
BC

−2

−6

−8


qui n’est autre que −2v⃗. On en déduit que v⃗ est bien directeur de d. Par ailleurs, le vecteur :

−−→
BA

−1

−3

−4


est égal à 1

2

−−→
BC. On voit alors que A est le milieu de BC, ce qui montre en particulier que A appartient à d.

Exercice 4. L’espace est muni d’un repère. Dans chacun des cas suivants, donner les coordonnées d’un point et celles d’un

vecteur directeur non nul de la droite d proposée.

a. d :


x = 1− t

y = 2 + t

z = −3 + 2t

, t ∈ R b. d :
x− 1

2
= y = 4z − 2 c. d :


x = t

y = 3

z = −2 + 3t

, t ∈ R.



Solution:

a. La droite d proposée ici est décrite par des équations paramétriques. Les termes constants dans ces équations fournissent un

point se trouvant sur d (correspondant au paramètre t = 0) :

A(1, 2,−3) .

Remarquons que toute autre valeur de t conviendrait bien sûr également. Par ailleurs, les coefficients devant le paramètre t

dans les équations sont les coordonnées d’un vecteur directeur de d :

v⃗

−1

1

2

 .

Tout vecteur colinéaire à celui-ci conviendrait bien sûr aussi.

b. La droite d proposée ici est décrite par des équations cartésiennes. Tout triplet (x, y, z) satisfaisant ces équations donne donc

les coordonnées d’un point sur d. Par exemple :

A(−3,−2, 0) ∈ d car
−3− 1

2
= −2 = 4 · 0− 2 (= −2).

Pour trouver un vecteur directeur de d, on peut produire un autre point sur d, comme par exemple B(5, 2, 1) et calculer le

vecteur joignant nos deux points :

−−→
AB

8

4

1

 .

On peut aussi extraire directement un vecteur directeur depuis les équations, mais pour cela il faut réécrire d’abord celles-ci

sous ”forme fractionnaire” :

d :
x− 1

2
=

y

1
=

z − 1
2

1
4

Sous cette forme, on peut effectivement affirmer directement que la vecteur :

v⃗

2

1
1
4


(dont les coordonnées sont les dénominateurs dans les équations) est directeur de d.

c. En raisonnant comme en a., on voit que la droite d donnée ici passe par A et est dirigée par v⃗, où :

A(0, 3,−2) et v⃗

1

0

3

 .

Exercice 5. L’espace est muni d’un repère. Dans chacun des cas suivants, écrire des équations paramétriques et cartésiennes

de la droite d définie par les données.

a. A(2, 0, 5) et v⃗

 2

−3

5

 b. A(1, 1,−1) et v⃗

 1

−1

0

 c. A(0, 1, 3) et B(0,−2, 3).

Solution:

a. D’après les données, on peut écrire directement :

d :


x = 2 + 2t

y = −3t

z = 5 + 5t

, t ∈ R.

En éliminant le paramètre t on trouve alors des équations cartésiennes de d :

d :
x− 2

2
=

y

−3
=

z − 5

5
(= t).



b. D’après les données, on peut écrire directement :

d :


x = 1 + t

y = 1− t

z = −1

, t ∈ R.

De même qu’en a. on va maintenant éliminer le paramètre t pour produire des équations cartésiennes de d :

d : x− 1 = 1− y, z = −1.

Rappelons que pour trouver ces équations, on exprime t en fonction de x et y (c’est-à-dire en fonction des variables où il

apparait effectivement) puis on égalise. On conserve par ailleurs la relation z = −1 qui est vérifiée par tout point de d mais

dans laquelle le paramètre n’apparait pas.

c. La droite d est dirigée par le vecteur
−−→
AB

(
0
−3
0

)
et donc aussi par le vecteur de coordonnées

(
0
1
0

)
. Elle admet par conséquent

les équations paramétriques suivantes :

d :


x = 0

y = t

z = 3

, t ∈ R.

Elle a donc pour équations cartésiennes :

d : x = 0, z = 3.

Remarquons qu’ici le paramètre t est déjà absent dans x et z, il n’y a donc rien à faire pour ”l’éliminer”.

Exercice 6. L’espace est muni d’un repère. Dans chacun des cas suivants, déterminer l’intersection de la droite d donnée avec

chacun des plans de coordonnées, puis expliquer comment celle-ci se positionne par rapport aux axes et plans de coordonnées.

a. d : x+ z = 1, y = 0 b. d :


x = t

y = 1

z = 0

, t ∈ R c. d : x = 3, z = 1.

Solution: Rappelons qu’un plan de coordonnée est le lieu où l’une des coordonnées s’annule, et un axe de coordonnées celui où

deux coordonnées s’annulent. Par exemple, le plan (Oxz) est le lieu où y = 0, et l’axe (Oz) celui où x = y = 0.

a. La relation y = 0 est vérifiée par tous les points de la droite. Par conséquent, d est contenue dans le plan (Oxz). Par

ailleurs, elle intersecte le plan (Oxy) au point de coordonnées (1, 0, 0), qui se trouve sur l’axe (Ox) et le plan (Oyz) à celui de

coordonnées (0, 0, 1), qui se trouve sur l’axe (Oz). La droite est donc ici obtenue en reliant les deux points (1, 0, 0) et (0, 0, 1),

qui se trouvent respectivement sur les axes de coordonnées (Ox) et (Oz).



b. La droite d décrite ici est contenue dans le plan (Oxy) (car la relation z = 0 est satisfaite par tous les points de d), n’intersecte

pas le plan (Oxz) (car aucun point sur d ne vérifie y = 0), et rencontre le plan (Oyz) au point de coordonnées (0, 1, 0). Elle

est dirigée par le vecteur de coordonnées
(

1
0
0

)
et est par conséquent parallèle à l’axe (Ox). Elle est donc produite en partant

du point de coordonnés (0, 1, 0), qui se trouve sur (Oy) en se déplaçant parallèlement à (Ox).

c. La droite d n’intersecte ni le plan (Oxy), ni le plan (Oyz). Elle est parallèle à l’axe (Oy) et intersecte le plan (Oxz) au point

de coordonnées (3, 0, 1).

Exercice 7. Dans l’espace muni d’un repère, on donne un vecteur u⃗
( α

β
γ

)
non nul. Montrer que :

w⃗

x

y

z

 colinéaire à u⃗ ⇔
∣∣∣∣x α

y β

∣∣∣∣ = 0 ,

∣∣∣∣x α

z γ

∣∣∣∣ = 0 et

∣∣∣∣y β

z γ

∣∣∣∣ = 0 .

Indication : raisonner par double implication.

Solution: On procède par double implication, en commençant par ” ⇒ ”. On suppose donc que w⃗ est colinéaire à u⃗ et on

souhaite montrer que les trois déterminants 2 × 2 sont nuls. La colinéarité se traduit numériquement par l’existence d’un facteur

de proportionnalité λ entre w⃗ et u⃗ :

w⃗ = λu⃗ ⇔

x

y

z

 = λ

α

β

γ

 .



On en déduit alors par exemple : ∣∣∣∣x α

y β

∣∣∣∣ = xβ − yα = (λα)β − (λβ)α = 0

et de même pour les deux autres déterminants. Passons à ” ⇐ ”. On suppose donc cette fois que les trois déterminants 2×2 donnés

dans l’énoncé sont nuls :

xβ − yα = 0 , xγ − zα = 0 , yγ − zβ = 0 .

Comme u⃗ n’est pas le vecteur nul, on sait que l’un (au moins) des coefficients α, β et γ est non nul. Supposons, pour fixer les idées,

que α est non nul (le raisonnement est analogue avec β ou γ non nul). Les deux premières équations ci-dessus peuvent alors se

réécrire sous la forme :

y =
x

α
β et z =

x

α
γ .

En posant λ = x
α , on a donc : x

y

z

 = λ

α

β

γ

 ⇔ w⃗ = λu⃗

ce qui montre bien que w⃗ est colinéaire à u⃗.

Exercice 8. (Facultatif) Dans l’espace muni d’un repère, on donne u⃗
( α

β
γ

)
et v⃗

(
λ
µ
σ

)
non colinéaires. Montrer que :

w⃗

x

y

z

 ∈ Vect(u⃗, v⃗) ⇔

∣∣∣∣∣∣
α λ x

β µ y

γ σ z

∣∣∣∣∣∣ = 0 .

Indication : procéder par élimination des paramètres. Pour fixer les idées, on supposera que α ̸= 0.

Solution: Le vecteur w⃗ appartient au plan vectoriel engendré par u⃗ et v⃗ si et seulement s’il est combinaison linéaire de ces deux

vecteurs. Autrement dit :

w⃗

x

y

z

 ∈ Vect(u⃗, v⃗) ⇔ ∃s, t ∈ R


x = αs+ λt

y = βs+ µt

z = γs+ σt

.

On va maintenant éliminer les paramètres s et t afin de déterminer une équation cartésienne. Pour cela, on va supposer pour fixer

les idées que α est non nul. Notons alors Eq1, Eq2 et Eq3 les trois équations dans le système ci-dessus et formons les deux équations :

Eq′2 = Eq2 −
β

α
Eq1 et Eq′3 = Eq3 −

γ

α
Eq1

On obtient :

∃s, t ∈ R


x = αs+ λt

y = βs+ µt

z = γs+ σt

⇔ ∃t ∈ R


y − β

α
x = (µ− βλ

α
)t

z − γ

α
x = (σ − γλ

α
)t

En effet, l’implication ” ⇒ ” est claire (si les équations Eq1, Eq2 et Eq3 sont satisfaites alors Eq′2 et Eq′3 le sont aussi). Pour la

réciproque ” ⇐ ” on réintroduit le paramètre s en posant :

s =
x− λt

α
.

A présent, on souhaite éliminer le paramètre t, ce que l’on fait en formant l’équation :

Eq
′′
= (σ − γλ

α
) Eq′2 −(µ− βλ

α
) Eq′3

On obtient alors :

∃t ∈ R


y − β

α
x = (µ− βλ

α
)t

z − γ

α
x = (σ − γλ

α
)t

⇔ (σ − γλ

α
)(y − β

α
x)− (µ− βλ

α
)(z − γ

α
x) = 0

En effet, l’implication ” ⇒ ” est claire (si les équations Eq′2 et Eq′3 sont satisfaites alors Eq
′′
l’est aussi). Pour la réciproque ” ⇐ ”

on réintroduit le paramètre t en posant :

t =



y − β
αx

µ− βλ
α

si µ− βλ

α
̸= 0

i

z − γ
αx

σ − γλ
α

si σ − γλ

α
̸= 0 .



Pour assurer de pouvoit faire cela il faut bien sûr remarquer que l’un (au moins) des coefficients µ− βλ
α et σ − γλ

α est non nul. Or

si les deux étaient nuls, on aurait :

µ =
λ

α
β et σ =

λ

α
γ ⇒

λ

µ

σ

 =
λ

α

α

β

γ


ce qui contredirait le fait que u⃗ et v⃗ sont non colinéaires. Développons alors la dernière équation trouvée. On obtient :

(σ − γλ

α
)(y − β

α
x)− (µ− βλ

α
)(z − γ

α
x) = 0 ⇔ (σ − γλ

α
)y + (−β

α
(σ − γλ

α
) +

γ

α
(µ− βλ

α
))x− (µ− βλ

α
)z = 0 ⇔ · · ·

· · · (
ασ − γλ

α
)y + (

γµ− βσ

α
)x+ (

βλ− αµ

α
)z = 0 ⇔ (βσ − γµ)x− (ασ − γλ)y + (αµ− βλ)z = 0

où la dernière équivalence est obtenue en multipliant par −α (qui est non nul). En réécrivant l’équation à l’aide de déterminants,

on trouve finalement :

w⃗

x

y

z

 ∈ Vect(u⃗, v⃗) ⇔
∣∣∣∣β µ

γ σ

∣∣∣∣x−
∣∣∣∣α λ

γ σ

∣∣∣∣ y + ∣∣∣∣α λ

β µ

∣∣∣∣ z = 0 ⇔

∣∣∣∣∣∣
α λ x

β µ y

γ σ z

∣∣∣∣∣∣ = 0 .


