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2.4 Fonctions hyperboliques

Le but ici est d’étudier la parité de 1’exponentielle, ce qui nous amenera vers des fonctions,
dites hyperboliques, qui ont des similitudes frappantes avec les fonctions trigonométriques.
Commencons par rappeler ce qu’est une fonction (im)paire :

Définition 2.4.1. Une fonction f : R — R est dite paire (resp. impaire) si

® I & Deff = —T € Deff.
o Vz € Defy, f(—z) = f(z)  (resp. f(—z) = —F(x)).

Exemples.

1. Le cos(x) est une fonction paire : cos(—x) = cos(x) .
2. Le sin(x) et la tangente sont des fonctions impaires : sin(—x) = —sin(x), tg(—x) =
— tg(x) (pour autant que x € Defy).

3. Il y a des fonctions ni paires ni impaires : p- ex . exp(—x) # exp(x), — exp(x).
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Théoreme 2.4.2. Soit f : R — R, telle que ¢ € Def; & —x € Def;. Il existe alors une
fonction paire f, et une fonction impaire f_, telles que

Vo € Defy, f=fr+f.

Plus précisément :

Fr@) = S (f@) + F(-), F-(=) = (F@) — F(~)

Démonstration. Vérifions la parité :
1
fr(=2) = S (F(—2) + f(2) = f+(),

fo(=2) = 5 (F(=2) = (@) = —f_ (o),
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f+(x) est donc paire et f_(x) est impaire. De plus, si @ € Defy :
Fr@) + @) = - (F@) + F(-2) + - (F@) — F(~2))
= 2 (@) + f(—2) + f(@) — f(—=) = f(a).

[

Comme toute fonction peut s’écrire comme une somme de sa partie paire et impaire, on va
maintenant I’appliquer a I’exponentielle :

Définition 2.4.3. On définit les fonctions cosinus hyperbolique et sinus hyperbolique
comme les parties paire et impaire respectivement de I’exponentielle :

1 1
cosh(x) := — (e + e™*), sinh(x) := —(e® — e™®).
2 2
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Graphiquement :

rcosh(x)

N | =t

exp(e)
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Propriétés.

1. |z — sinh(x) est une fonction impaire alors que x +— cosh(x) est paire.

Ceci est vrai par définition de ces deux fonctions.

2. |sinh(0) = 0 et cosh(0) = 1.

1 1
cosh(0) = —(e’+e™° =1, sinh(0) = —(e®—e™° = 0.
2 2

3. |Vx € R, sinh(x) < 3 exp(z) < cosh(x).

1 1 1
sinh(x) = 2 (e*—e™™) < Eew < 2 (e +e ) = cosh(x).
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4. | Vx € R, exp(fxx) = cosh(x) &£ sinh(x).

En effet, la somme de la partie paire et impaire de I’exponentielle redonne I’exponen-
tielle :

cosh(x) + sinh(x) = €%,
cosh(x) — sinh(x) = cosh(—x) + sinh(—x) = e™”.

5. |Vx € R, cosh?(z) — sinh?®(z) = 1.

En effet,

cosh?(xz) — sinh?(x) = (cosh(z) + sinh(z)) (cosh(z) — sinh(x))
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6. |Vx € R, % sinh(z) = cosh(z), -% cosh(x) = sinh(z).

dw
En effet,
% sinh(x) = %% (em — e_m) = % (ew + B_w) = cosh(z),
% cosh(x) = %% (e"” + e_“’) = % (e“’ — e_"’) = sinh(x).
Exemple.

Cet exemple illustre comment résoudre une équation avec des fonctions hyperboliques : ré-
solvons

cosh(x) = 4.

L'ensemble de définition ne pose pas de problemes ici, puisque cosh(x) est définie pour tout
réel x.
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Par définition :

1
4:5(6"‘94—6_"’3) & 8 =e*4 e ”.

substitution X :=e* > 0.
8 T+e ™ & 8=X+ !
—=e e = —
X

& 0=X2%2-—-8X+1.

Discriminant : VA = /82 —4 = 2+/15.

8 + 2415
= Xp=—7 (X+ > 0)
8 £+ 2415
= :B:tZIIl( )

2

Analyse II p.15
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La propriété 5 rappelle la somme des carrés des sinus et cosinus, mais avec un changement
de signe. On a d’ailleurs une autre ressemblance :

Théoreme 2.4.4. Soient x,y € R. Alors :

cosh(x 4+ y) = cosh(x) cosh(y) + sinh(x) sinh(y),
sinh(xz + y) = sinh(x) cosh(y) + sinh(y) cosh(x).

Démonstration. Par parité et les propriétés de 1’exponentielle, on a
cosh(z + y) + sinh(z + y) = e*7Y = e%e
= (cosh(x) + sinh(x)) (cosh(y) + sinh(y))

= cosh(z) cosh(y) + sinh(x) sinh(y)
+ sinh(x) cosh(y) + sinh(y) cosh(x).
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Par la propriété 4., on a aussi
cosh(xz +y) —sinh(zx +y) = e *Y = e e
= (cosh(x) — sinh(x)) (cosh(y) — sinh(y))
= cosh(x) cosh(y) + sinh(x) sinh(y)
— sinh(x) cosh(y) — sinh(y) cosh(x).
En additionnant et en soustrayant ces deux dernieres égalités, on obtient

2 cosh(x 4+ y) = 2 cosh(x) cosh(y) + 2sinh(x) sinh(y),
2 sinh(x 4+ y) = 2 sinh(x) cosh(y) + 2 sinh(y) cosh(x).

On conclut en divisant par 2. ]

Remarque. La ressemblance avec les fonctions cos(x) et sin(x) est donc apparente. Mais
pourquoi ajoute-t-on le terme hyperbolique ?
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Rappelons que le lieu des points
I' := {(cos(t),sin(t)) : t € R}

est le cercle centré en (0, 0) et de rayon 1 (cercle trigonométrique).
Par analogie avec les fonctions trigonométriques, on peut tracer le lieux des points

H := {(cosh(t),sinh(t)) : t € R}.

Par la propriété 5, on a que si P € H, alors

xp = cosh(t) et yp = sinh(¢) pour un certain t € R.
= (xp)? — (yp)? = cosh?®(t) — sinh?*(t) = 1
= P est sur I’hyperbole d’équation =? — y? = 1.
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Réciproquement, si P(x,y) est tel que x> — y? = 1, alors on peut trouver un t € R, tel que
x = cosh(t),y = sinh(t) ou « = — cosh(t),y = sinh(¢).

En effet, montrons-le par des

Exemples.

1. |P(+/10,3) :|on a bien (1/10)? — 32 = 1. On cherche t € R tel que

v10 = cosh(t) et 3 = sinh(t).

on a alors v/10 + 3 = e*. On pose t = In(+/10 + 3).
On obtient alors

1 . &y 1
cosh(t) = 5(6 + e )_ (\/_—|—3—|—\/_+3)
V10 — 3
(V10 + 3)(v/10 — 3)
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81nh(t)=§(e — e _§<v10+3 \/ﬁ—l—S)
1 v10 — 3
- 5('10+3_ (\/E+3)(\/E—3)> =3

2. |P(—+/10,3) :| on a bien (—+/10)? — 32 = 1. Le point est donc bien sur I’hyperbole
H : 2 — y? = 1, mais comme xp < 0, on va chercher t € R tel que

—+/10 = — cosh(t) et 3 = sinh(t).
On pose a nouveau t = In(4/10 + 3) et comme avant, mais avec changement de signes,

xp = —V 10 = —cosh(t), yp = sinh(?).

L’analogie avec les fonctions trigonométriques nous conduit naturellement a poser la
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Définition 2.4.5. On définit les fonctions tangente et cotangente hyperboliques comme

sinh(x)
tanhx: R—+R, ¢ — ——,
cosh(x)
cosh(x)
cothz: R* >R,z — —=.
sinh(x)
Yy
\ coth(x)

tanh
an (x)
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Propriétés.

1. |z — tanh(x) et x — coth(x) sont des fonctions impaires.

En effet, en partant des définitions,

_ sinh(—z)  —sinh(z)
tanh(—e) = cosh(—z)  cosh(z) — tanh(z),
_ cosh(—z)  cosh(z) B
coth(—x) = Snh(—z) ~ —sinh(z) coth(x).

2. |tanh(0) = 0 et lim,_,o, coth(z) = Foo.

En effet, en partant des définitions,

sinh(0) O

tanh(0) = ———~ =—-=0
anh(0) cosh(0) 1 ’
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lim coth(x) = lim ——— = +o0,
z—0+ z—0+ tanh(az)

1

ou la derniére limite est du type "5z "

3. |Vx € R%, tanh(z) < 1 < coth(z).

On se rappelle que x > 0 implique 0 < sinh(x) < %e"" < cosh(x), d’ou le résultat.

4. \Vx € R*, 1 — tanh?(z) = coshlz(:n)'
En effet,
sinh?(x) B cosh?(x) — sinh?(x) B 1

1 — tanh?*(z) = 1 —

cosh?(x) cosh?(x) ~ cosh®(z)’
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5. « +— coth(x),tanh(x) sont continues et dérivables sur leur ensembles de définition
et

¢ tanh(z) ! ¢ coth(x) !
— tanh(x) = coth(z) = ———.
dx cosh?(x)’ dx sinh?(x)
On peut le vérifier directement :
d d sinh(x) cosh?(x) — sinh?(x) 1
— tanh(x) = = > — s
dx dx cosh(x) cosh”(x) cosh”(x)
d d cosh(x) sinh?(x) — cosh?(x) 1
— coth(x) = - = I = T . i2/\"
dx dx sinh(x) sinh”(x) sinh”(x)

On remarque a nouveau les similarités frappantes avec le cas trigonométrique. Passons a des
exemples de résolution :
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Exemples.
1. |Résoudre coth(x) = 3.

Puisque I’équation implique une coth(x), I'’ensemble de définition de cette égalité est
alors Dy = R*.
En suivant les définitions, on a

cosh(z) e’ + e ”

coth(x) = 3 — =
(@) sinh(x) er —e @

& eft+e*=3Ee"—e”) & 0=2e"—4e’"

1
&S 0=e-2 & 2= & ZBIEID(Q).

2. |Résoudre : coth(x)e®/? + e*/% = e=%/2 (1 + Sini(m)).

L'équation implique a nouveau une coth(x), '’ensemble de définition de cette égalité est
donc Dy = R*.
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On peut a nouveau essayer de tout écrire en termes de e*. Mais on peut aussi commencer

par multiplier I’équation en question par sinh(x), ce qui fera disparaitre la coth(x) et le

1 .
terme en sinh(z) °

1
coth(x)e™? 4 /% = e=%/2 <1 - —)
sinh(x)

& cosh(z)e®? + sinh(x)e®? = e~®/2 (sinh(x) + 1)
& €%?(cosh(x) + sinh(z)) = e */? (sinh(z) + 1)
& e%%e® = e */? (1 4+ sinh(z))
& ezmzl—l——(ew—e_m) &S 28 —2—e"+e ™ =0
& 2e3T — 2 _ 2T+ 1 =0.

On pose maintenant X := e” (qui devra donc étre strictement positif). Et on résout
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2X%® - X?—-2X+1=0 (sol évidentes : X = +1)

& (XP—-1)(2X-—-1) =0 (factoriser par (X — 1)(X + 1))

~ Xe{-1,5,1} = z = —In(2).
2 0 #x = 1In(X)
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2.5 Fonctions hyperboliques réciproques

Le but de cette section est I’étude des fonctions réciproques aux fonctions hyperboliques, ren-
forcant les paralleles qui existent avec le cas trigonométrique.

Dans le cas hyperbolique on peut explicitement renverser les relations
sinh(z) =y et cosh(x) =y(>1)

pour trouver une expression concrete aux fonctions réciproques :

1. |sinh(x) =y :

En utilisant les relations hyperboliques on trouve que
sinh(z) =y = cosh?(z) = 1+ sinh®*(z) = 1 +

= cosh(x) = /1 + y2.

On ne retient ici que la solution positive, puisque cosh(x) est toujours positif. On a donc
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sinh(z) =y = sinh(x) + cosh(xz) =y + /1 + y?
& eE=y+/1+1y2 & z=In(y+ 1+ 2.

En invertissant les réles de x et y on trouve alors une formule explicite a la fonction
réciproque au sinh(z), qu’on appelle Arsh :

Arsh(x) = In(x + v x2 + 1).
Cette fonction est définie sur tout R et on peut explicitement vérifier (exercice) que

Ve € R, sinh(Arsh(x)) = Arsh(sinh(z)) = .
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4

, —
o Arsh(x)
[
- &
/f/
// ,, /

2. |cosh(x) =y :

Dans le cas du cosh(x) il faut étre plus précautionneux pour les valeurs de y admises.
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En effet,
cosh(z) > 0 et cosh?(x) = 1 + sinh?(z) > 1 = cosh(z) > 1.

La parité du cosh(x) nous oblige aussi a restreindre le domaine des x pour obtenir une
bijection. La convention est de prendre & > 0.

Ces restrictions prises, on peut résoudre I’équation cosh(x) = y pour x > Oety > 1.
On trouve d’abord que

x>0 et cosh(x)=y = sinh*(z) = cosh?(zx)—1=y*—-1
= sinh(xz) = /y? — 1.

On ne retient ici que la solution positive, puisque sinh(x) est toujours positif pour > 0.
On a donc

x>0 etcosh(r)=y = sinh(xz)+ cosh(xz) = y+vVy>2—1

&S eff=y+vyr—-1 & x=In(y+ vy?2-—-1).
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En invertissant les réles de x et y on trouve alors une formule explicite a la fonction
réciproque au cosh(x), qu’on appelle Arch :

Arch(z) = In(x + Va2 — 1).

Cette fonction est définie pour € [1, oco[ et on peut explicitement vérifier (exercice)
que

Ve € [1,00[, cosh(Arch(x)) = =,

Ve € Ry, Arch(cosh(z)) = x.

(]

A

\ / cosh/ ﬁ:)

\ /// Arch(x)
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Résumons ce qu’on a trouvé par le

Théoreme 2.5.1. x — sinh(x) est une bijection entre R et R, alors que « > cosh(x) est
une bijection entre Ry et [1, oco[. De plus,

Arsh(z) = In(x + v22 + 1), Arch(xz) =In(x + vx? —1).

Ces fonctions sont dérivables et

d d
Ve € R, —Arsh(x) = Ve > 1, —Arch(z) =
dx dx

1
\/a:2—|—1, x2 — 1

Démonstration. Les expressions pour I’Arsh(x) et I’Arch(x) ayant été établies, il ne reste plus
qu’a vérifier les égalités pour les dérivées :

d d
—Arsh(z) = - In(x 4+ Vx2+ 1)
x

dx

1 d 1 1 2x
— Va2 +1) = 14+ -
w—l—\/a:2—|—1dac(m+ =%+ 1) ar—l—\/:cz—l—l( +2\/a:2—|—1)
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B 1 vVl +1+x B 1
r+vVvr2i+1 Vx2+1 - \/azz—l—l.

Similairement, pour * > 1 (on rappelle qu'une dérivée est strictement définie que sur un
voisinage ouvert) :

d d
—Arch(z) = —In(z+ Vx2-1)
dx dx
1 1 2x
- (@ + Va7 = 1) = 1+ )
r+Vxr2—-—1d x + 2 -1 2vx2 —1
B 1 Vi —1+=x B 1
r+vx2—1 xr2 — 1 xr2 — 1
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Exemples.

1. |Calculer le sinh(x) sachant que = Arch(y)

Puisque I’Arch est défini sur [1, co] et donne des valeurs dans Ry, on doit avoir y > 1 et
x = Arch(y) > 0.
On sait qu’alors sinh(x) > 0. Et on peut aussi écrire

cosh?(x) —sinh?(z) = 1 = sinh(z) = \/coshz(a:) —1.

On en conclut que

sinh(Arch(y)) = \/coshz(ArCh(y)) -1 = y? — 1.

2. |Simplifier : Arsh(x\/y?2 + 1+ yvx?>+ 1), x,y €R

Comme sinh(x) est une bijection entre R et R, on peut pour des valeurs données de x et
y, toujours trouver des réels u, v, tels que = sinh(u) et y = sinh(v).
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On a alors

Arsh(xz\/y? 4+ 1+ yvx?2 + 1)

—  Arsh(sinh(u)y/sinh?(v) + 1 + sinh(v)y/sinh?(u) + 1)

=  Arsh(sinh(u) cosh(v) 4 sinh(v) sinh(u))
= Arsh(sinh(u +v)) =u+v
=  Arsh(x) 4 Arsh(y).

2sinh(2 4+ x) + e ¥ = €Y,

3. | Résoudre le systeme :
Arsh(x) 4+ Arsh(y — 2) = Arsh(2zy).

L'ensemble de définition ne pose pas de problemes : toutes les fonctions sont bien défi-
nies. On a donc Dy = R.
La premiere équation peut se réécrire comme

2sinh(24+ ) +e¥ = e« 2sinh(2+x)=¢€—e"?
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1
& sinh(24z) = 5 (e¥ — e7¥) = sinh(y).

La bijectivité de la fonction sinh force alors a avoir
2+ x=uy.
La deuxieme équation devient alors
Arsh(x) + Arsh(y — 2) = Arsh(2zy)
< Arsh(x) + Arsh(xz) = Arsh(2z(x + 2))

< sinh (Arsh(xz) 4+ Arsh(x)) = 2x(x + 2),

ou nous avons a nouveau bénéficié de la bijectivité de sinh.
On pose alors u = Arsh(x), et on résout

sinh(u +u) = 2sinh(u)cosh(u) = 233\/1 + sinh?(u) = 2z+/1 + z2.
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On est alors amené a résoudre

2¢/1 4+ 2% = 2x(x + 2)

On constate que * = 0 et donc y = 2 est une solution. Pour en trouver une autre, on

doit considérer
vV1+ax?2 = (x+ 2)

sur le domaine de positivité Dy, = [—2, 00] :
V1+ 22 = (x+ 2) - (i)[ [ 1+ x> =x*>4+4x+ 4
pos = —2,00

& 0 =4x 4+ 3.

On a donc comme nouvelle solution x = —% € D, et y = 3. L'ensemble solution est

alors

5
4
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Les fonctions tanh(x) et coth(x) possedent elles aussi des fonctions réciproques avec des
expressions explicites :

1. [tanh(x) =y, y €] —1,1[:

sinh(x)
tanh(z) =y & ——L =y
cosh(x)
o £ & et —e” (e® +e™®)
= e —e = e e
er + e * Y Y

<= ez"’—lzy(e%—l—l) &S e(l—y) =14y

1 1
== :B:—ln(ﬁ).
2 11—y

Le fait que cette relation puisse s’inverser et donne a nouveau une fonction montre que
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la tanh(x) est inversible, d’inverse

1 1
Artanh(z) :] — 1,1[2 = — iln( —I—m) .

1—=x

\\ S
N
N
N
N
N

tanh(x)
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2. |[coth(x) =y, x€R*, yeR\[-1,1]:

th(x) - cosh(x)
coth(xz) = — = =
Y sinh(x) Y
e’ + e ”
& —— =y & ete=y(e"—e?)
ea: - e—cc

& e4+l=y(e*-1) < eeF1l-y)=-1-y

1 1
== wz—ln(i).
2 y—1

Le fait que cette relation puisse s’inverser et donne a nouveau une fonction montre que
la coth(x) est inversible, d’inverse

1 1
Arcoth(z) : R\ [-1,1] 2z +— —1In <w+ >
2 r—1
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\ o coth(x)

Z “Krcoth(x)

Résumons par le
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Théoreme 2.5.2. tanh(x) : R —] — 1, 1] est une bijection et

1 d 1
Artanh(z) = — ln( + CB), —Artanh(x) = .
dx 1 — x?
coth(x) : R* — R\ [—1, 1] est une bijection et
xr+1 d 1
Arcoth = l —Arcoth — .
rcoth(x) = n( 1), s (x) _—

Démonstration. On vient d’établir 1’existence et la forme explicite des fonctions réciproques.
Il ne reste que les dérivées a calculer :

d d 1 1
—Artanh(z) = ——In( R
dx dx 2 1—x

1( 1 N 1 ) 11l—z+1+= 1
1+ 1—=x 2(1—2z)(1+x) 1 — a2

1d
) = T (In(1 +x) — In(1 — x))
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Similairement,
d d 1 14+ x 1 d
—Arcoth = —=1 = —— (In(1 —1 —1
dx reoth() dx 2 n(:l:—l) 2d:l:(n( +) = In@ )
_ 1( 1 1 )  lz—-1-1-—x _ 1
- 2\142x =x-—1 o 2x—-1)14+=x) 0 1—ax?

[

Remarque. On constate que ces deux fonctions ont les mémes expressions pour leur déri-
vées. Pourtant ce ne sont pas les mémes fonctions : leur ensembles de définition ne coincident

pas et sont mémes disjoints :

DefArtanh :] - ]-7 1[9 DefArcoth =R \ [_19 ]-]
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2.6 Puissances généralisées

Rappelons-nous que 1’exponentielle et le logarithme nous ont permis de définir des puissances
b?, et cela méme pour des valeurs de I’exposant a non rationnelles :

b® := exp,(a) = exp(In(b)a).

Cette expression est permise pour autant que b > 0. On peut alors utiliser cela pour définir
des puissances ou et I’exposant, et la base sont des fonctions :

Exemple.

Définir et étudier x* :

La premiere chose a faire est donc de bien poser I'’expression x*. En effet, on doit poser

x® = exp,(x) = exp(In(x)x).

Pour que cette expression ait un sens, on doit avoir & > 0. On a donc

Defwm — R:_ B
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(I1 serait encore possible d’inclure 0 dans le domaine de définition en posant 0° = 1. Bien que
possible, cela est généralement omis et on se restreint a R, .)

Pour & > 0 on a en tout cas un objet bien défini. On peut alors s’intéresser aux comportements
aux limites de Def,_= :

1. lim_,_, o+ «” : Par définition on a donc a étudier

li = li 1 .

A = gy o (in()e)

La continuité de I'’exponentielle nous permet de se restreindre a I’étude de 1’exposant
a(x) = In(x)=x.

Comme vu lors des études d’exponentielles, lim,_,+ « In(x) = 0. On peut s’en convaincre
par une application de la regle de Bernoulli :

. . ln(w) . l
lim xIn(z) = lim — = lim %
= lim(—xz) =0.

rz—0t
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On a donc

wlir(ﬁ x mlgglJr exp(ln(x)x) = e><;p(gcll>1r(151Jr zln(x)) =1.

2. lim,_,. ® : Par définition on a donc a étudier

mll_)I{.lo$ = mll_)f{.lo exp(In(x)x).

On peut a nouveau invoquer la continuité de l’exponentielle pour étudier le comporte-
ment de I'exposant :

wll)rgo:cln(:c) = oo.

Par conséquent, par continuité et croissance de I’exponentielle,

||
g

wll_)lr{.lozc = a:li)r{olo exp(In(x)x) = exp(a}Lrgomln(m))

Pour étudier ce qu’il se passe entre ces deux extrémes, on va passer a 1’étude de la dérivée de
x®. Mais a nouveau, la bijectivité et la monotonie de I’exponentielle nous permettent de nous
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restreindre a I’étude de ’exposant :
z” <y’ & exp(ln(x)x) < exp(In(y)y) <«
I1 suffit donc d’étudier le comportement de la fonction
f(z) = zIn(x)

pour connaitre celui de x* par exponentiation.
On vient de trouver

Analyse II p.49

In(z)x < In(y)y .

lim f(x) =0 et li_>m f(x) = oo.

r—0+

En dérivant une fois, on obtient
f'(x) = In(x)+1.

Les signes de cette dérivée sont vite connus :

sgn(f(@)) = {> 0 siln(z)>-—-1,

<0 siln(z)< -1, [<o0
>0

six <

six >

1
o)

Q|-
L]
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La fonction f’(x) passe donc par 0 et change de signes dans un voisinage de ¢ = % On en

conclut que
décroissante quand 0 < = < %,

_ . X
f(z) = zIn(x) est minimale pour r =,
croissante quand x> <.
Yy
/ .
x In(x)
1
e
1 >
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Par monotonie de I’exponentielle, on a ainsi que

x® = exp(xIn(x)) est

décroissante quand 0 < x < %,
minimale pour
croissante quand

|

/

/

Y

\I,/

On peut maintenant généraliser par la

Analyse II p.51
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Définition 2.6.1. Soient f,g : R — R, définies sur un ensemble E C R et telles que
im(f) C R%. Pour z € E, on définit

(f9)(z) = f(2)?® := exp(In(f(x))g(z)).

Tout comme avant, on peut étudier le comportement de la fonction f(x)9® en étudiant celui

de In(f(x))g(x) :

Théoreme 2.6.2. Soient f,g : R — R, définies et dérivables sur un ensemble ouvert
E C R et telles que im(f) C R’ . Alors f9 est dérivable en tout € E et

/

d g — g L "1n T
()@ = (a7 +9' () (@)

De plus,

san (- 7)(@) ) = son (- (u(Fa)(@) ).
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Démonstration. En partant des définitions, on a que

Lra@p® = L exp (n(f(@)g(e)

= exp (n(f())g(®)) — (n(f(@))g(x)

f'(x)
f(x)

— () @) ( ) m(f(sc))g'(w)) .

De plus, puisque (f9)(x) = exp(g(x) In(f(x))), on a que f9(x) > 0 pour tout « € E, ce qui
montre que

san (@) ) = san () (a7, + 9/ W())(@))

= san (o + o m@)@)  =son (L mNI@)).
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Remarque. Sig(x) = n € N* on est bien sir ramené a la définition usuelle

f@)" = f@) ... f(x).

TV
n fois

On n’est alors pas restreint par la condition f(x) > 0. La définition de

f(x)?® = exp(g(z) In(f(x))

s’applique surtout dans le cas ou f et g sont des fonctions a valeurs irrationnelles.
Remarquons quand méme, que pour x > 0,

"™ = exp(nln(z)) et —(z") = nz" !

i = exp(n ln(w))g

La définition exp(g(x) In(f(x))) revient donc a la définition usuelle de la puissance dans le
casou f(x) = x > 0etg(x) = n.
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Exemples.

1.

Résoudre (z2)vV® = N

La présence de la racine et d’'une puissance a exposant a priori irrationnel nous force a
prendre Dy = R*+.
Sur cet ensemble, 1’équation s’écrit donc

@)V =vz"? o exp(valn(a?)) = exp (In(va)(z — 2))
& Vzlhn(z?) =hnh(Vz)(z —2) < z22ln(z) = %ln(m)(m — 2)
& 4z'”In(z) =In(z)(z —2) < 0=In(z) (z—2—4z'/?).
Un produit est nul si et seulement si un des facteurs est nul. On a donc

In(z) =0 x =1
ou ~ ou

r— 2 —4xt/?2 = 0. r — 2 = 4x1/2,
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x=1
N — ou
2_4r+4=16x etz > 2.

La derniere équation est une équation du trindme et se résout par le discriminant :

2 _4r4+4=16x etx>2 & x2—20c+4=0 etz >2

20 + 86
A=202-16=384=6-64 = =z, = 2\/_:10:|:4\/€

Ne retenant que les valeurs x > 2 pour cette équation trinémiale et reprenant la valeur
x = 1 de I’équation logarithmique, on a

S = {1,10 + 4V6}.

2. |Comparer V10 3 1

On a par définition que 7V° = exp(In(7)v/10) et v/10 = exp(In(+/10)7).
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Par la monotonie de I'’exponentielle, on a que

V10> V100 <  In(7)V10 > In(v10)x.

On pose alors la fonction
f(x) = xln(w) — In(x)=w

et on va étudier le comportement de celle-ci.

On constate déja que f(7r) = 0. Puis on la dérive :

Ve >0, f'(x) = ln(ﬂ')—z.
x

Le signe de cette dérivée est donc particulierement simple :

<0 si w<ﬁ,

>0 si m>ﬁ.

sgn(f'(z)) = {



EPFL - CMS

f(x)

est donc

\

minimale pour

N

\ strictement croissante quand

B

In(7)

( strictement décroissante quand 0 < x <

€XTr —

xr >

Analyse II p.58

11’1?-71‘) ’
11’1?-71') ?
In(w)°
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On constate maintenant que

0< T < < vVv10.
In(7r)

En effet,

3<m = 1<In(w) =

<
In(7) "

T<315 = @< (3.15)*=(3+0.15)>=9+2-3.0.15+ (0.15)?

9
= 71'2<9.9—|—m<10 = m < V10.

Résumons :
e La fonction f est strictement croissante sur I'intervalle [ﬁ, oo.

e La fonction f est strictement croissante sur l'intervalle |7, v/10] C [ﬁ, oo.

e f(m)=0.

On peut donc conclure que

V10 In(7) — 7 In(v/10) = £(v/10) > f(w) = 0.
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Donc, v10In(7) > 7 In(+/10), et par conséquent, par exponentiation,

V10 5 /10" |.

3. |Etudier la fonction f(x) = cos®™(x) :

Pour que cette fonction soit bien définie en terme de puissance généralisée, il faut choisir
une base strictement positive, i.e. cos(x) > 0. On a donc

0 0
Def; = Upez] — 5 + 2nm, 5 + 2n|.

Sur cette ensemble la fonction s’écrit comme

f(x) = exp(ln(cos(x))sin(x)).

™ T

Par périodicité, on peut se restreindre a étudier cette fonction sur | — 7, Z|.
On sait que son comportement est semblable a celui de I’exposant. On peut donc étudier

g(x) = In(cos(x)) sin(x).
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Sur ] — 7, 5[ on sait que cette fonction ne possede qu'un seul O :
In(cos(xz)) =0
g(x) = In(cos(x))sin(x) =0 < ou
sin(x) = 0
cos(z) =1
= ou & x=2nwm, n €L’
sin(xz) =0
Si on se restreint a 'intervalle | — 29 g[ on aura plus que = 0 comme unique solution.

Pour comprendre le comportement de g(x) = In(cos(x)) sin(x) en dehors de = 0, on la
dérive une fois :

. 2
— sin“(x
g'(x) (z) + In(cos(x)) cos(x) .
cos(x)
On constate que
o: Sur] — 7,7[ cos(z) > 0 et sin’(x) > 0. Dong, %(2;)%) < 0 avec égalité en x = 0

uniquement.
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o: Sur| — 7,72[, 1 > cos(x) > 0. Donc, In(cos(x)) cos(xz) < 0 avec égalité seulement
quand x = 0.

mw T

On en conclut que g’(x) est toujours négative sur | — 7, 7|, avec un point de dérivée nulle en
x = 0. La fonction g(x) est donc décroissante, avec un plateauen x = 0 :

Yy

A

|
0o

N3

1
1
1
1
1
1
I
1
1
1
1
1
— €
1
1
1
1
1
1
1

ljla(cos(a:)) sin(x)

Etudions encore les limites lim,_,1+ = g(x) :
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On remarque premierement que

lim cos(x) = O.
x—+t7
cos(x) > 0 pour = €] — 7, 7| et ainsi,

lim In(cos(z)) = In ( lim cos(:c)) =

x—+7 r—t 5

Puis, lim, ,4+ = sin(x) = =1, et par conséquent,
lim g(x) = lim_In(cos(x)) sin(x)

r—+7 Tt
— :Foo

type ” —oo X borné ”
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On vient donc de montrer, que g(x) possede deux asymptotes verticales en = :I:%.
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Pour revenir a f(x) = cos®(z) = exp (g(x)) il suffit de prendre 1’exponentielle. La monoto-
nie stricte de celle-ci nous permet donc de conclure que :

e lim,_, - g(x) = oo, donc, lim,_, -« cosi?(z) = oo.

e g(0) = 0 et y posséde un plateau, donc cos*™(0) = 1 ety posséde un plateau.

e lim,_,r g(x) = —oo, donc, lim,_,z cos®*(x) = 0.

Yy

|
2o

A

SE

\

Y

S(m)sin(w)
xr
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Tous ces exemples montrent donc que lorsqu’on étudie une fonction puissance généralisée,
on passe par I’étude de son exposant.

Lorsqu’on compare deux fonctions puissances généralisées, on compare leur exposants.



EPFL - CMS Analyse II p.66

3 Développements Limités

Le but des développements limités est d’approximer des fonctions telles que
sin, cos, exp, In, sinh, ./ 7,...
par des polyndmes. L'idée est ainsi de rendre calculable des valeurs telles que
7, sin(1), e = exp(1), V5

et ainsi de suite.

3.1 Polynomes de Taylor

Une premiere approximation par un polynome d’une fonction telle que la racine carrée serait
par exemple de le faire en tragant la tangente a v/« en o = 1.

Rappelons que la tangente a une fonction f(x) en un point x, fixé se calcul en cherchant une
fonction affine t(x) = ao + a1(x — xo), qui, en xy possede la méme valeur et la méme pente

que f(x).
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Ceci donne donc

f(xo) =t(xo) = f(xo) = ao+ ar(x — wo)‘w:mo = ag = f(xo),
f(zo) =t (o) = f(z0) = C'J1|9[,:,,30 = a1 = f'(x0),
Dans notre cas, avec f(x) = +/x et
o = 1, on obtient f(‘a:) t(x) =1+ L(xz —1)
ap=vV1=1 et f(z) =V
— VT _11 _1 /
a1 = m\wzl—gﬁmzl—g

On obtient ainsi la tangente

t(x) = 1—|—%(:13—1). > T
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Visuellement, la tangente approxime le graphe de la racine carrée autour de &y = 1. Mais
plus on s’éloigne de ¢y = 1, moins ’approximation sera bonne.

Par contre, on peut déja utiliser t(x) pour calculer une valeur approximative du nombre V2.
En effet,

1
t(2) =1+ 5(2 —1) = 1.5.
En comparant avec la "vraie" valeur :

V2 =1.414213562...

La tangente ne prend pas en compte la courbure de la fonction qu’elle approxime. Pour faire
mieux, 1'idée est de rajouter un terme a(x — x¢)? pour obtenir un polynéme de second degré

Py(x) =ag+ a1(x — xg) + az(x — w0)2

On ajuste maintenant les coefficients de ce polynéme de sorte qu’'en x = x¢, il ait les mémes
valeurs que f(x) et les mémes deux premieres dérivées :
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f(xg) = Pa(xg) = f(xo) = ap+ ar1(x — xp) + az(x — :130)2‘

T=x0

f'(xo) = Py(x0) = f'(mo) =a1+2-ax(x— a:o)] =

T=x0

' (xo) = Py (o) = f"(®0) =2 as

T=xg

Dans notre cas, avec f(x) = 4/« et £y = 1, on obtient

/ 11 1

ao=v1=1 alzﬁ!mzlzgﬁmzlzg’
1 11 s 1

et = —V = ——— 2 = ——,
az 2\/_ |a:=1 2 4 ‘:1::1 8

On obtient ainsi, ; )
Py(x) =1+ 5(:13 —1) —g(w —1)>2

()
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= aO:f(wO)a

a; = f’(wo) s

1
az = 5]‘"(:130) .
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f(z)
“ t(z) =1+ i(z—1) IR

P (x)

On peut déja constater une amélioration du calcul du nombre +/2. En effet,

1 1
P(2) =1+ _(2-1) - _(2- 1)?2 = 1.5 — 0.125 = 1.375.

Pour obtenir une valeur encore plus exacte, on essaye d’approximer f(x) en xo par un poly-
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nome d’ordre 4 par exemple :
_ 2 3 4
Py(x) = ag + a1(x — xg) + az(x — xo)* + as(x — x0)° + ays(x — xo)*.
L’idée est a nouveau d’égaler les premieres dérivées en xg :

f(xo) = ao + ar(x — @o) + az(x — x0)? + as(x — x0)® + as(x — xo)?| =  ag = f(xo) ,

r=xg

(o) = a1+ 2+ az(x — xo) + 3 - as(x — @o)* + 4 - as(z — xo)?| = a; = f'(xo) ,

T=x0

f'(xg) =2-a2+ (3-2)az(x — xo) + (4-3) - ag(x — mo)z‘m:mo =  ap = %f”(wo) ,
" (o) = (3-2)as+ (4-3-2) - as(x — )|

1
T=x0 = as = af”,(wo) 9

@) = (43D al, L, S ar= @)
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Remarque. Afin d’alléger I’écriture, on a introduit une nouvelle notation pour les dérivées :

P f@) = f™@),

dx not.

Dans notre cas, avec f(x) = 4/« et £y = 1, on calcule donc les quatre premieres dérivées :

1 1
f@) =22 fO@) =222, fO@) =-—Ja72
3 5 15 7
fO@) =<2, f9@)=-Tah,
ce qui donne donc pour g = 1 les coefficients
1 1 1
ap = f(xzo) =1, a1 = f(l)(wO) = S o Q2= _.f(2)(€130) = —S
2 2! 8
1 1 1 5
— (3) — — (4) —
as = oy To) = ay = — Tog) = ———.
2= g/ (@) 16 0 W= gl (@) 128
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On obtient donc

1 1 1
Py(x) =1+ 5(:13 —1) — g(m —1)? —|—1—6(m —1

f(x)

Py (x)

)% — i(:1: —1)4
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128

w7

_—

/f

R@

P,(x)
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On constate que Py(x) est une meilleure approximation de /x sur l'intervalle |0, 2[ (pour
x > 2, il semble se produire un "décrochage"). Testons avec ’approximation de +/2 par P; :

P(2)—1—|—1 1+1 > o 1.3984375
we 2o 8 '"16 128 ’

qui est en effet une meilleure approximation encore.

Pour résumer ce qu’on a fait :

e On a cherché a approximer /x par un polynéme P(x). Ceci est fait dans l'idée de
calculer ses valeurs, méme approximatives.

e Plus le degré de P(x) est élevé, plus on épousera bien le graphe de /x, en tout cas
dans un voisinage de xy = 1.

e Les coefficient de P(x) sont fixés par les valeurs successives des dérivées de /x en
xo = 1 : le coefficient a;, est donné par

\/E(k)
— k! ‘a::l'

Qg
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e Il n'y rien de particuliers a priori avec la racine carrée : si f est une fonction définie et
n fois dérivable sur un voisinage de xy = 1, le polynome

FO1) FO(1) ()
1! 2!

(x—1)24+...+ T(a}—l)"

Prin(x) = f(1) + (x—1) +

aura les mémes n premieres dérivées que f en xg = 1.

e Il n’y rien de particuliers a priori a choisir ¢g = 1 : si f est une fonction définie et n fois
dérivable sur un voisinage de x = X, le polynome

f(l)(wo)

7 (z0)
1! LT

Ppaom(®) = f(20) + —— (z —@0)® +...+ ( — z0)"

(") (2
(o) 2]

aura les mémes n premieres dérivées que f en x = x.

Ces considérations sont donc tres générales et peuvent étre appliquées a toute fonction f(x)
suffisamment dérivable sur un voisinage de xo. On pose alors la
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Définition 3.1.1. Soient xy € Ret f : R — R une fonction n fois dérivable en xq. Le

polynome de Taylor de f a I’ordre n autour de x est défini par

n

Pragn(@) = 3 £® (x0)

k=0

ot £ (xo) = f(wmo) et Vk € {1,...,n}, F®(20) = (Lef) (o).

(x — xo)*

ko

Propriétés.

1. Py o n(x) est I'unique polynéme de degré n, tel que

k

k

Vk € {O’ 17 e n}a (d—ka,aco,n) (:130) — (%f) (330) :

dx

2. Les premiers termes non nuls et non constants de P, »(x) redonnent I'IPE de f.

3. Pour0 < m < nona
[Pf,wo,n(m)]m — Pfamﬂam(m) 9
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ou [ e ]m signifie qu’on ne retiens que les termes de puissances inférieurs ou égal a m.

4. Si f est un polynéme de degré n, alors

Pfaon(x) = f(z).
Passons maintenant a des exemples :

Exemples.

1. |Informations pour écrire Ps o n() :

I1 suffit de connaitre les dérivées successives d’une fonction en xy pour déterminer son
polynome de Taylor autour de ce point. Par exemple :

f(-1)=1, f(-1)=2, f"(-1)=3, f"(-1)=4,

Pros@ = F-D+ 0@+ D+ D1 T G gy

3 2
= 1—|—2(a:—|—1)—|—§(a:—|—1)2—|—§(:13—|—1)3
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2. | f(x) = exp(x), xo=0:

L’exponentielle est une fonction particulierement simple a développer en polynéme de
Taylor : toutes les dérivées de I’exponentielle égalent exp(z). Donc, Vk > 0, exp®)(0) =
1 et le polynéme de Taylor a I’ordre n s’écrit comme

1, L L
Popon(x) = 14x+ 5:1: + 5:1: + ...+ gw .
| Poos()
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Graphiquement la différence entre la fonction et son polynome de Taylor est indiscer-
nable proche de g = 0. On peut d’ailleurs en profiter pour approximer la valeur numé-
rique de e = exp(1) :

€ — eXp(]‘) ~ Pexp,O,n(]-)

—14+1 1 ! 1 ! 1 — 2.718 05
=l+l+o gttt =2 :

a comparer avec la valeur
e = 2.718 281 82846...

3. | f(x) = cos(x), x9g=0:

Approximons cos(x) autour de o = 0 a ’ordre n.
Par définition, le polynéme de Taylor Peeso,n(x) aura n + 1 coefficients, déterminés par

cos®) (x)
W= K

pour k =0,1,2...,n.
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Il faut donc commencer a calculer les dérivées de cos(x).
Montrons par récurrence que

Vk €N, cos®(x) = cos(x + kg)

Pour k = 0, le résultat est manifeste. On peut donc initialiser la récurrence pour k = 0.
Pour I’héreédité on observe que

d d
cos("’“)(a:) — o cos(k)(:c) hypiéc. — cos(x + kg)
= —sin(z + kg) = —sin(x — g + (k + 1)%)
= sin (g— (w+(k+1)%)) = cos (—w—(k+1)g>

— cos (az—l— (k—l—l)g).

Cela est bien le résultat annoncé pour k + 1.
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Pour xy = 0 les coefficients du polynéme de Taylor sont alors

vk € N cos™(0) _ 1 (0 + k—)
: ap = —————— = — COoS —
¥ k! k! 2
B 0 sik =20+ 1,
(—1)'Gy stk =2l

On en conclut donc que

1 1 1 1
Poon(x) =1 — x4+ —2*— —z2%+ ...+ —1) )
on() T 6! (=1) 0!
ce qu’on peut réécrire comme
Pronon(@) = Y (—1)F——a®
cos,0,n (2’{5)'

0<2k<n
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N\ // \\ Y f&m) — cosx
AN Bodin(®)

Pcos,0,6 (ZIZ‘)

4. | f(x) =In(x), xo=1:

Quand on ne peut pas développer une fonction autour de o = 0, ce qui est le cas du
logarithme naturel par exemple, on choisit une autre valeur pour xy. Dans le cas du lo-
garithme, on peut par exemple prendre xy = 1. Les dérivées successives du logarithme
naturel sont

—3-2

5134

9 o o0

1 —1 2
In® (z) = —, In® (z) = —, In® (z) = —, In® (z) =
x x? a3
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On devine que

n —1)!
ln(")(ac) = (=)™ 1( )
wn
En effet, cette formule est valide pour n = 1,2,3 et 4. Vérifions I'hérédité de cette
relation :
(nt1) d d 1(n—1)' n!
"™ (@) = (@) = ()T — = ()" ;
dx o+l

qui est bien la formule attendue pour n + 1. On conclut par récurrence que

vn >1, In™(x) = (—1)n—1u.

$’n

En évaluant ces dérivées en xo = 1 et en mutlipliant, conformément a la définition, ces
valeurs par (x — 1)", on trouve

In® (1 In® (1
nzv() - ()($—1)3+

Ppin(z) =In(1) + m®(1)(z — 1) + (x —1)%+
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= (x—1)— %(w —1)% + %(w —1)° —...+ (—1)"—1%(:1; —1)".
f(x)
o f(x) =Inx
-

>
\ -F)ln,1,2(m)

\ Pln,1,6(w)

Le dernier exemple pose la question de la convergence des polynomes de Taylor. En effet,
pour le logarithme naturel, il semble que plus on augmente le degré n du polynéme de Taylor
en xg = 1, plus celui-ci approxime bien le graphe du logarithme, mais seulement sur l'inter-
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vall |0, 2[. Au-dela de la valeur x = 2, il semble que ’approximation est moins bonne. Pour
comprendre ce qu’il se passe, il faut passer a une étude de I’erreur d’approximation commise
par les polynome de Taylor.
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3.2 Corrections

La question naturelle qui vient maintenant est a quel point la fonction est-elle bien aproximée
par son polynome de Taylor. Ou encore, peut-on évaluer ’erreur faite ?

Par chance on a le

Théoreme 3.2.1. Soient x, g € Ret f : R — R, une fonction n + 1 fois dérivable sur un
intervalle ouvert contenant [xq, x]. Alors il existe & €|xq, x| tel que

(x — xo)" Tt

(n+1)
RN f (€).

Tf0m(Z) 3= f(Z) = Praon(x) =

T¢.20.n(x) €st appelé le terme de correction et I’écriture

F(x) = Pfogn(®) + 75 20m(T)

est appelé le développement limité de f a I’ordre n autour de x,.
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Démonstration. (facultative) Pour t € [xg, ], posons
F(t) = f(x) — Psyp(x) — (x — )" ———
(1) = (&) = Pron(®) = (@ = " s

avecC

_ (n + 1)!
(x — xo)™t?!

En substituant ¢ par «, on remarque que F'(x) = 0. De plus,

(f(x) = Praomn(®)) -

F(o) = £(@) = Praon(®) = (@ — 20" oo
_ (w_wo)nﬂc_ o gyl €
= (’n—|—1)' ( 0) (’I’L—|—1)' =0

La fonction F'(t) s’annule donc sur les bords de I'intervalle [x¢, ] et est une fois dérivable sur
ce dernier. Ainsi, par le théoréme de Rolle, il existe £ €]xg, x|, tel que F’(£) = 0. Calculons
alors la dérivée de F'(t) :

d d 1
aF(t) — a(f(w) — Pf,t,n(w) — (Q’J _ t) +

)

(n+ 1)!
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= CPpn(@) + @0

dt
(et )ng_% . f(:!(t)(m_t)k
==@—ﬂ%%—;;ﬂﬂno(—¢V+§:é?q;@—ﬂml
=@—W%—Zﬂwxh—ﬁ#2ﬁwwkwwk
| ;L”()

(x —t)" = (@ ;!t)n (c — f(n+1)(t)).

:(m—ﬂnf

F'(¢) = 0 implique alors & _5)n( — f(”+1)(£)> — 0 et puisque £ €]xg, z[,ona (x — &)™ # 0
et donc ¢ — fF("*+1 (&) = 0, ou encore ¢ = Ff(**+1)(¢). Mais par définition de c :
 (n+1)!
(- — mo) L

(.f(m) _ Pf,:co,n(m)) — f(n+1) (5)7
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d’ou le résultat E=20""" £(n+1)(¢) = f(z) — Pj 4y n().

(1)1 =

Remarques :

1. Le terme de correction ressemble au n + 1 — iéme terme du polynéme de Taylor pour f.
La seule différence est que la dérivée f("*1) est évaluée en £ €]z, [ et non en x :

f('"')(mo) (n+1)(5)
x) = f(xo W (zo)(x — g oo+ — S (x — 0" x — xg)" L.
(@) = flao) + V@)@ = w0) +..+ T @ = w0+ o e — o)

-~

Tf,wo,n (w)

~~

Pf,mO 5T (w)

7

2. Le théoreme nous dit rien de treés précis sur £. La seule chose que l'on sait est qu'il

se situe dans l'ouvert |xo, x[. La situation est tout a fait analogue au théoréme des
accroissements finis :

3¢ €], z[ tel que f(x) =  f(wo) + F(§)( — x)

La non plus, rien de plus est connu pour &£. Malgré cela, on pourra utiliser 1’existence
d’un tel £ pour étudier le comportement du terme d’erreur.
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3. Pour x fixé et x qui varie dans I’ensemble de définition de f, on a bien siir que la valeur
de £ peut varier aussi avec celle de x. Puisque & €|xq, [, on a sirement que

lim & = x,.
r—rTQ

C’est une chose qu’on peut affirmer, sans méme connaitre plus précisément &.

4. Le terme de correction change avec le degré du polyné6me de Taylor. On espere mainte-
nant que ce terme de correction tend vers 0 si on augmente ce degré n. Cela signifierait
que la fonction se laisse approcher exactement par son polynéme de Taylor.

Exemples.

1. |Calcul de valeurs non remarquables pour cos(x) :

Comment estimer la valeur de cos(%) ? A l'ordre 2, le développement limité, i.e. le poly-
nome de Taylor de cette fonction pour o = 0 et son terme de correction, est

z? 1
cos(z) = 1-— o + = sin(&)x>.
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Remarquer qu’on peut méme affiner le terme de correction dans ce cas : comme le
polynéme de Taylor pour le cosinus n’implique que des termes de puissances paires, on
a que Peos0,2(€) = Peos,0,3(x). On peut donc écrire

2

T 1
cos(z) = 1-— o - o cos(&)z* pour un £ €]0, x|.

Si on pose x = % onal < &L % La valeur de cos(&) est alors comprise entre 0 et 1.
on obtient alors I’estimation

) 1 /1\2 1 ; 1 /71\%2 1 /1\*
—§(§> < COS(E) < —§<§> +z<§) COS(&)'
<1

On obtient alors I’encadrement

71
+ — = 0,877 604.

7 1
0,875 = — < cos(— < —=
’ 8 (2) 8 384

On peut donc conclure, que le polynéme de Taylor a ’ordre 2 nous donne la valeur de
cos(3) avec deux décimales exactes.
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2. |Déterminer les bonnes décimales pour e :

L’exemple de I'’exponentielle de la section précédente nous a conduit a estimer

1 1 _
e ~ Pexp,0,6(]-) :1—|—1—|—§—|—...—|—a = 2,71805.
Le théoreme précédent nous dit que pour la vraie valeur de e, il faut ajouter le terme de
correction :
1 . _ 1
e = Pepoe(l) —I—; exp(§)(1 — 0) = 2,71805 —l—; exp(§).

Le terme d’erreur se laisse lui-méme estimer. En effet, bien qu’on ne sache pas la valeur
exacte de £, on sait néanmoins que ce nombre se trouve dans |0, 1[ (xg = 0 et x = 1),
et que donc exp(§) < exp(1l) = e < 3.

On arrive alors a encadrer la valeur de e :

_ _ 3
2,71805 < e < 2,71805+ _ =2,718650....

Le terme de correction nous permet alors d’affirmer, que 2, 718 sont les premieres déci-
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males exactes pour e.
On peut d’ailleurs essayer de trouver plus de décimales exactes, en écrivant

1 _ 1 1 exp(&
e = Popos(l)+—exp(§)(1—-0)° =2,71805 +— + — ( )
Pexp,0,6(1)
Apres calculs on trouve
3
2,718278... < e < 2,718278...4+ — =2,7T18287....

9!

On a donc une nouvelle décimale exacte : e = 2,718 2....

Ces exemples semblent indiquer, que plus on augmente I'ordre du polynome de Taylor d’une
fonction, mieux on arrive a approximer les valeurs de f(x) pour une valeur de x donnée. Est-il
possible alors qu’a la limite de 1’ordre tendant vers l'infini, on retrouve exactement la valeur
fx)?

Pour certaines fonctions et certaines valeurs de x, cela est en effet le cas. Etudions certaine
exemples :



EPFL - CMS

Exemples.

1.

f(x) = cos(x), £¢og =0 :

On a déja calculé

Pcos,O,n(w) — Z

0<2k<n

de plus, on a aussi établi le résultat

D’apres le théoreme précédent, rcos,0n(x) =

donc

Vk € N, cos™® (x)

wn—|—1

[7eos,0m (@) = | cos"F(€)]

(n + 1)!
2|+

(n+ 1)!

= cos(x + kg)

(n + 1)!

Analyse 11 p.94

cos(®t1)(¢), avec & € [0,x]. On a

cos(& + (n + 1))

, car cos(x) ne prend que des valeurs entre —1 et 1.
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Pour une valeur de x fixée et pour des valeurs de n grandissantes, on a alors des que n
dépasse la valeur de Ny := |x| + 1:

|w|n-|-1
[Tcos,0,n ()] < m
n-+1 termes Np termes n—+1—Np termes
I N\ I N\ Il N\
B o I o TR e N o B 2 I ol ISR Gl Il el Il
1-2...(n+1) 1-2...Ny (Ng+1)...(n+1)
n-l—l"crermes No I;errmes n+1—NoT:grmes > ||
| - |z|...|z| |z . 0.
1-2...Ng n+1 n—ooo
TV
valeur fixe

Le terme de correction 7¢.s,0,» () tend donc vers 0 avec n, et cela pour chaque valeur
de x fixée. Ainsi, pour toute valeur de € R :

nll_)I{.lo P.os,0n(x) = cos(x).

Le cosinus est donc la valeur limite des polynémes de Taylor, qui approxime donc d’aussi
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proche qu’on veut la valeur de cos(x).

On voit grace a cet exemple, que la connaissance de la valeur exacte de £ n’est pas né-
cessaire pour montrer que le terme de correction tend vers 0. Uniquement son existence
nous a suffit pour conclure.

Le cos(x) est donc une limite de polynéome. Mais attention! : cela ne veut pas dire que
c’est lui-méme un polynome. La situation peut se comparer aux nombres irrationnels :
ils sont tous des limites de nombres rationnels, mais la limite, méme si elle existe dans
R, ne l'est pas.

2. | f(x) = exp(x), g = 0 :

La aussi, on peut reprendre notre calcul précédent :

n mk
Pexp,o’n(w) — E
k=0
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Le théoreme précédent nous dit alors, que le terme de correction est

mn—l—l

reXP,O,n(w) — m exp(ﬁ) , pourun ¢ 6]07 w[

Par la monotonie de ’exponentielle, on a exp(£) < exp(x). A nouveau, fixons une valeur
de x et faisons croitre les valeurs de n :

n—+1 |w|n—|—1

|Texp,0,n(T)| = |m exp(§)| < m exp(x)

D

(gDl = 0 et exp(x) est une valeur fixée si

Comme pour I’exemple précédent, lim,,_,
x 1’est. On a donc la aussi que

Ve € R, lim 7rexpon(x) =0,

n—ro0

= VxR, lim Pypon(x) = exp(x).

n—ro0

On obtient donc une maniere de calculer le nombre e :
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e = exp(1l) = limy ;00 Pexp,0,n(1) = ano %

La aussi, il est a remarquer, que bien que 1I’exponentielle est une limite de polynomes, la
fonction elle-méme n’est pas un polynome.

Tout comme le nombre e, qui est limite de nombres rationnels, mais qui lui est irration-
nel.

3. | f(x) =1In(x), xo=1":

On a montré que

I (2) = (12D

wn

On peut donc a nouveau invoquer le dernier théoreme est écrire le terme de correction :

'rln,l,n(w) — In™+) (s) avec un § 6]17 CC[,

1 (zx—1)"t!
n+1 gntl
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Comme £ > 1 on aura que % < 1 et on a I'’estimation

1
|71n,1,n ()| < mk’? — 1"

Pour montrer que cette estimation tend vers 0 avec n qui augmente, on est obligé de
distinguer deux cas :

e l<x<2:danscecas |z —1| < 1let

1
Iim |(rp.(x)]| < Iim — =0
Nn— 00 | In.1, ( )l - Nn—00 (fn + ]_)

On a donc que

Ve € [1,2], lim Pyuin(x) = In(x).
n—oo

En posant £ = 2 on obtient la fameuse équation

In(2) = lim Py, 1,,(2)
n—0o0
1 1 1 1
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e x > 2:dans ce cas [t — 1| > 1 et on ne peut plus garantir la convergence du
polynome de Taylor vers la valeur du logarithme : dans le terme de correction, le
terme |z — 1|**! diverge vers l'infini avec n.

Ceci explique le "décrochage" observé graphiquement.

Une autre application du terme de correction d’'un développement limité est son utilisation
pour calculer des limites d’une fonction a priori mal définie en un point. Cela completera notre
arsenal d’analyse de ce genre de situation avec le théoreme de I’Hépital.

Exemples.

sin(x)—x
x3

1. |[Calcul de lim__,q

On reprend le développement limité a I’ordre 3 de sin(x) autour de xo = 0 :

1
Psinps(x) = x— 5333 ;

CC4 4

Tsin,0,3(T) = i sin® & = v sin(§)
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4

sin(x) = ¢ — %m + — sm(€)

\ >4

TV
Psln 0 3(33) ’r51n9093(m)

En fait, £, nombre inconnu, satisfait £ €]0, [ ou & €]x.0][, suivant six > 0 ou = < O.
On peut alors réécrire la limite a calculer comme
sin(x) — x

lim
z—0 x3

1 o
b BT 52 + 5sin(§) — x
z—0 x3

: 1 = .
= lim <—§ + Esm({)) .

x—0

On remarque maintenant que sin(§) reste borné et que lim,_,q 41 = 0. On a donc

. sin(x) — =« 1
lim = ——.
z—0 x3 3!
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cos(ar:)—1—|—%.’11¢2—|—:13‘1

x4

2. |Calcul de lim,_,q

On reprend le développement limité a 1’ordre 4 de cos(x) autour de o = 0 :

1 1
Pcos,0,4(w) — 1— 5332 + 5134 ’
25 ) 5
Tcos,0,4(T) = =1 cos' )(f) = ~r sin(§)
_ 1, 1, x|
cos(x) =1 — i -+ a% T sin(§) .
Pcos,:)r,4(w) Tcos;)f4(w)

On rappelle que &, nombre inconnu, satisfait & €]0, [ ou £ €]z, 0, suivant si x > 0 ou
x < 0.
On peut alors réécrire la limite a calculer comme

. cos(x) —1+ %az2 + x4
lim

z—0 x4
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1 1 x®
1— —x*4+ —a*— —sin(¢) — 1+ —z? + 2*
2! 4! !
= lim
z—0 x4
_ 25 xr |
=lim {27~ 55

On remarque maintenant que sin(&) reste borné et que lim,_,o §; = 0. On a donc

. cos(x) —1+4 2% +a* 25
lim = —.
£—0 x4 24

On peut énoncer un résultat général sur le terme de correction :

Théoreme 3.2.2. Soit f : R — R une fonction n + 1 fois continiment dérivable sur un
voisinage ouvert I 5 xq. Alors

. rf,m(),n(w)
lim =
T—>TQ (gc — ajo)'nf
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Démonstration. On sait qu'il existe un £ €]xg, [ (ou £ €]x, xo[) tel que

(x — xo)" Tt

(n+ 1)!

FOrI(E)

r.fam07n(w) -

Puis, on remarque que £ €]xg, z[ (ou & €|z, xo[) implique que lim,_,,, & = xo.
Comme f("*+1)(x) est continue sur I 3 x, on a

. (m _ wo)n—kl
Iim
z—zo (N + 1)!1(x — o)™

I (CB 5130)
= 11m
T—xg (n + ]_)'

— fI(E) =0 fOT(2) = 0.
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3.3 Regles de calcul pour polynomes de Taylor

Le but d’apprendre des regles de calcul pour les polynémes de Taylor est d’économiser des
calculs de dérivées et d’utiliser des résultats déja établis.

Regle d’addition : Si f,g : R — R sont deux fonctions n fois dérivables sur un intervalle
ouvert I 3 x(, alors

Pf+gam09n(m) — Pf9m07n(m) —|_ P awOan(m)'

Exemples.
1. |Calcul de Ptz . ()

Calculer les dérivées d’une fonction rationnelle telle que 7 1te — peuts ‘avérer vite tres labo-
rieux. On va s’aider de la regle d’addition pour 81mp11ﬁer con81derab1ement les calculs :
On remarque d’abord que

1+ x 24+ax—1 2

1—=x 1—=x 1—=x
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On a déja calculé les polynémes de Taylor pour ﬁ :

P 1 O,n(:z:) = 14+zx+z2*+23+...4+2" = ka

1—ax?

On applique maintenant simplement la regle de calcul pour 1’addition :

P}i__:,o,n(w) = Pﬁ_l’o,n(w) — Pﬁ’O,N(w) T Pl’O’n(w)

= 2) (@) -1 = 142z +2z%+...+ 22"
k=0

— 1—|—2imk.
k=1

Puisqu’on sait que Plfw,o,n(“’) converge vers —— quand n tend vers l'infini et quand

1—x
x €] — 1,1] est fixé, il en va de méme pour P}f;,o,n(w)-
En fait, le terme de correction d’'une somme est aussi la somme des termes de correc-
tions.
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2. |Calcul de Piinn,o0.n(x) €t Peosh,o0.n(T)

On sait déja que

2

T T "z
Pem’o,n(m) = 1+$+§+...+H = ZH,
k=0
332 nwn n kmk:
Pecon(z) = 1-a+_ ...+ ()" = ) (-1
k=0
Or, cosh(z) = ;(e® + e ®) et sinh(xz) = ;(e® — e™*). On peut donc additionner, ou

soustraire, les deux polynémes de Taylor pour I’exponentielle croissante et décroissante
pour trouver ceux du cosh(x) et du sinh(x).

Ce faisant, on aura retenu une fois que les puissances paires du polynome de Taylor
pour €%, et une fois les puissances impaires : en effet, en observant les polynomes de
Taylor plus précisément, on constate que les mémes termes apparaissent dans le poly-
nome Pe o ,(x) et P.— o, (x), au signe pres. Les puissances paires apparaissent avec
le méme signe alors que les puissances impaires apparaissent avec un signe opposeé.
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Quand on additionne alors Pez o, () et P.—= g, (x), ne resterons que les termes de puis-
sances paires, alors que si on soustrait ne resterons que les termes en puissance im-

paires :
:132 332k $2k
P.osh.on = 14+ —+4... cel =
0. (@) Tt Tt 2 (2k)!’
0<2k<n

CU3 CU2k:—i—1 :132k+1
Psin n — . °« oo e o0 — .
hon(Z) = + 31 + ...+ 2k + 1)! + Z 2k + 1!

0<2k+1<n
Remarque. On remarque d’ailleurs que la parité des puissances dans les polynémes de Taylor

refletent exactement la parité des deux fonctions, pour autant que xy, = 0.
En effet, si f est paire, sa dérivée sera impaire, et si f est impaire, sa dérivée sera paire :

f@)=F(-2) = F@)= (@ +i(-2)= (F@- )

S f-e) = (e - f@) = —f(-);
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f@)=—f(—x) = f@)=_(f@-fa) = _(F@+F()

> o) = PR+ @) = (o).

Dong, si f est paire, toutes ses dérivées d’orde impaires seront impaires et vont s’annuler en
xo = 0.

Si f est impaire, toutes ses dérivées d’orde paires seront impaires et vont s’annuler en xq = 0.
Par conséquent, on a pour de telles fonctions

f@)=F(=2) = Proa(@) = F(0) + £407x + , FO0)a? +  FOO +...,
f@)=—f(=2) = Pron(e) = £O)+ (02 + _FBO +  fH©0)* + ...

Par conséquent, si f est paire, son polynome de Taylor autour de g = 0 n’aura que des
puissances paires et
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si f est impaire, son polynome de Taylor autour de £y = 0 n’aura que des puissances im-
paires.

Regle de composition : Soit f : R — R une fonction n fois dérivable sur un intervalle
J S yo. Pourxg € I, a € Ret N € N*, posons

g(x) = f(yo+a(x—xzo)").

Alors
Pyaonn(®) = Pryon (Yo + al@ —zo)").

Remarques.

1. La regle de composition dit donc, que pour obtenir le polynome de Taylor P, d'une
fonction g qui est la composition d’'une fonction f avec une fonction puissance, il suffit
de composer le polynome de Taylor Py de f avec cette méme fonction puissance.

2. Attention! Quand cette composition est faite, il faut prendre garde aux points xq et yq
autour desquels on considere les polynomes de Taylor :
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® 1, est le point autour duquel on calcule le polynéme de Taylor de la composition
g(z) = f(yo + a(z — xo)").
® Yo est le point autour duquel on calcule le polynéme de Taylor de f.

e Le lien entre xg et yg est yo = yo + a(-’L‘ — iBo)N’

r=x0"

Exemples.

1.

Calcul de Piy(14a),0,n() :

La fonction In(1+x) est précisément la composition de f(y) = In(y)avec y=x + 1
En posant g = 0, on a bienyg = 1 + wo‘mozo = 1.

La régle de composition nous dit alors qu’il faut évaluer (ou composer) le polynéme de
Taylor Pin,1,»(y) eny = 1+ . Or, on a déja calculé le polyndéme de Taylor du logarithme
enyo=1:

Puan(®) = =1 = =1+ =1+t (D)™ (y = D"
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On peut donc simplement évaluer P, 1,,(y) en y = 1 4+ x pour obtenir Pi,(14x),0,n(T) :

I)ln(l-l—m),O,n(w) — -F)ln,l,n(y) ’yzaz-l—l — I)ln,l,n(]- + ZL‘)

= (1—|—a3—1)—%(1—|—m—1)2—|—...—|—(—1)"_1%(1—|—a3—1)"

1 1 1
= x——x*+ —x3—...+ (—1)"_1—.7;".
2 3 n

On peut conclure que

-Pln(l-l-a:),O,n(w) — Pln,l,n(]- + w) — ZTI;L:l(_l)k_l%wk'

2. |Un calcul faux de Piy(244),0,n(T) :

La fonction In(2+x) est précisément la composition de f(y) = In(1+y)avec y=x +1
Comme on vient de calculer Pln(Hy),o,n(y), la tentation d’évaluer ce polyndéme en y =
1 + x est grande pour obtenir Pi,(24z),0,» (). Mais attention !
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Dans Pin(14+y),0n(¥), Yo = 0 alorsquey =1+ a:]mzo = 1 # yo. On ne peut donc
pas simplement évaluer Pi,(144),0,,(Y) €n y = 1 4 x pour obtenir Py, (244),0,n ().
Regardons d’ailleurs ce que cela donnerait :

1 1 L1
Pln(1+y),0,n(’y) = Y- 5y2—|—§y3— oo+ (—1)" 1529 ’
1 2 1 3 n—l]' n
Pogtpon@,mre = @+ -c@+1) + 0@+ ...+ ()" (@ + 1™

Puisque ceci est une expression en puissances de (z + 1) = (x — (—1)), cela ne peut
étre qu’un polynome de Taylor autour de xg = —1.
Et en effet, (x + 1) |w=_1 = 0 = yo. Ainsi, ce qu’on a obtenu, ce n’est pas Piy(2+x),0,n(T),

mais bien Pln(2—|—:1:),—1,n(m)

3. |Calculde P_1_ 4, () :

14x2°

_1
1+4x2

1

La fonction & +—> peut se voir comme la composition de y +— iy = f(y) avec
y= —x°.
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Ici, g = 0 et yo = 0. Le polynéme de Taylor pour ﬁ en yo = 0 est connu, puisque
c’est la série geomeétrique.

On peut donc a nouveau évaluer un polynéme de Taylor connu en y = —x? :
Pio.(y) = 1+y+y’+...+y" = > o,
Yy
k=0
k. .2k
= P1+1m2 o02n(T) = Pﬁ,o,n y——z? Z(—l) x2k,
k=0

Ici la composition des deux polynomes de Taylor nous donne un polyndome de degré 2n.

On peut se demander dans ce cas, ce que devient le terme de correction.

En fait, le polynome de Taylor pour
2,

T +1w2 est a nouveau une série géométrique, mais pour

une raison de —x

1 _ 1
1+22 11— (—x2?)




EPFL - CMS Analyse Il p.115

2n+2
: et D )M
P '
1+ 2 50, 2n(w) ’r’l+ = ,0, 2n(w)

1

Remarque. On remarque que le polynome de Taylor pour - 27

sances pairs. C’est pour cette raison que I’'on a

ne comporte que des puis-

P+ 5,0,2n (%) _P+2,02n+1(w) et

T2, am(T) =7

0 2n-|—1(m)

1
1+a2’
Ceci est en général vrai pour une fonction f paire ou impaire. Pour une telle fonction ona en
effet

Pf70,2n(w) — Pf9032n+1(w) et

70,20 (T) = Tf0,2n41(T)-



EPFL - CMS Analyse II p.116

Regle de dérivation : Soit f : R — R une fonction n + 1 fois dérivable sur un voisinage
ouvert de xg. Alors

d
—P To,Mn r) = P 1) 2q.n\L)e.
T tz0m+1(ZT) = Ppa) zo.n ()
Exemple.
1. |Calcul de P, () :
: d 1 : : A

On sait que - In(xz) = — . On connait aussi le polyndme de Taylor de In(x) autour
x

de g = 1:

Poingi(x) = (x—1) — 1(:1: — 1)+ 1(:13 — 1) — ..+ (=D)" (z — 1),
mbnt 2 3 n+1

La dérivée de ce polynéme de Taylor nous donne donc celui de i autour de g = 1 :

Pi,, = 1l—(z-1)+(z-1)°"—=(xz—-1)°+...+(=1)"(z—-1)"
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Si la dérivation donne une regle, on paut tout aussi bien faire le chemin "inverse" et trouver
des polynomes de Taylor par intégration :

Regle de l'intégration : Soit f : R — R une fonction n+ 1 fois dérivable sur un voisinage
ouvert de xy. Alors

Py oo mt1(x) = f(20) —I—/ Pty gy (t)dE.
Lo

Exemples.
1. |Calcul de Pyrctan,0,n() :

d 1 1

On sait que - arctan(x) = el On connait aussi le polynome de Taylor de T2 autour
de g = 0:
P oo.(x) = 1—xz?+z*—...+ (—=1)"z*".
1422’7

L'ntégration de ce polynéme de Taylor nous donne donc celui de arctan(x) autour de
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g = 0:

Parctan(m),0,2n—|—1 (ZB) — M“" / Pﬁ,l,Zn(t)dt
0 x

= /(1—t2—|-t4—...—|—(—1)"t2”)dt
0
_ 1 1 n 2n—|—1
= T 3:13 —1—5:13 =+ ( )2 +1 .

Comme seuls des puissances impaires apparaissent dans ce polynéme, cela peut se ré-
écrire pour un n quelconque comme

2k:-|—1

Parctan(a:),O,n(w) — Z ( 1)k

0<2k+1<n +1

Il1 est d’ailleurs méme possible de donner dans ce cas une expression pour le terme de
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correction. En effet, puisque 5 est le résultat d’'une série géométrique, on peut écrire

_|_ 2
1 1
(1) — —
arctan‘”/(x) = T+22 1= (—a?)
_ 1 — (_w2)n—i—1 _|_ (_wZ)n—l—l _ En:(_wz)k _|_ (_w2)n—|—1
1 — (—x?) — 1+ a2

On a alors

arctan(x) :/ (Z( —t2)k )dt_|_/ <(_ j_)::l)dt

= [a-f+sorena + o /:((tz)nﬂ)dt

1+ t2
1 s 1 2n+1 1 [ e

= — — —1)"—x" —1)" dt
v 333 + +(=1) 2n + 1 +(=1) /0 1+ t2

7

\ J/ ~

~
rarctan,0,2n+1(w)

Parctan(cc),O,2'n,+1 (m)
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On va estimer ce terme de reste. En notant que Vt € R, < 1, on trouve

1—|—t2

2n+-2

Tarctan,0,2n x) = |(—1 n-|-1/ dt‘
Facetanoan41(2)] = | (=)™ |1

$2n+2 || g2n+2
— ) / | — / dt
1+ ¢2 o 14t

< /|£U| t2n+2dt _ |gc|2n-|-3
—Jo

2n—|—3.

Pour une valeur de x fixée avec |x| < 1, on a donc clairement que

llm rarctan 0 2n+1(m) = 0.
n—oo

Par conséquent :

Ve € [—1,1], lim Pprctan,0,2n+1(x) = arctan(z).
n—00
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Si on choisit alors x = 1, on a

" _ arctan(1) = lim P 1
Z = arc an( ) = nl_{l;.lo arctan,0,2n—|-1( )

1 1
= lim (. — —x23+... S | | CO— O
n— oo ( 3 t +(=1) 2n 4+ 1

)

. (1 1_F 1 1_F L (—1) 1 )
n-voo 3 5 7 o2n+1)/°

On a donc (enfin!) une formule pour calculer la valeur de = :

T=4—S4+2—-2+S+....

Calcul de Piin,o,n() : €t Peos,0,n(T) :

Bien qu’on connaisse déja ces polynémes de Taylor, il est instructif d’appliquer la regle
d’intégration pour illustrer cette derniere :
en effet, on peut simplement commencer par noter que

Psin,O,O(w) — 07 et Pcos,O,O(m) — 1.
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A partir de la on applique itérativement la reégle d’intégration pour obtenir

Panoa(®) = sin®)+ [ Puo oot

= 0 -+ / cosOO(t)dt = / dt = xZ.
0

Puis, en intégrant une deuxieme fois, on obtient

Pucos(@) = o5+ [ Pun oa(t)dt
x x2
— 1+/ —s1n01(t)dt — ]_—/ tdt — 1 - —.
0 2
Une troisieme intégration donne
Pinoa(@) = sin(0)+ [ P ga(t)dt
0

x x t2
= 0+ Peosp2(t)dt = / (1 — 5) dt
0



Analyse 11 p.123
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3
= xr— —.
6
Une quatrieme intégration donne
P.ospa(x) = cos(0) —I—/ P, ) o3(t)dt
0
@x x t3
—  cos(0) + / P onos(®dt = 1-— / (t——) dt
2 ozt
= 1-4 =,
2 + 4!

En continuant ainsi, on voit que, par pas d’intégrations successifs, on reconstruit les po-

lynémes de Taylor de sin(x) et de cos(x).
Il est a noter, que de maniere tout a fait similaire, on peut reconstituer les polynéomes de
Taylor de sinh(x) et de cosh(x) en intégrant itérativement, commencant par

Psinh,O,O(w) — 07 et Pcosh,O,O(w) — 1.
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4 Nombres Complexes

L'intérét des nombres complexes est de trouver des solutions a des équations qui n’en ont
pas dans R. Cela nous permettra ensuite de faire une étonnante synthese entre les fonctions
trigonométrique, hyperboliques et I’exponentiel.

4.1 Construction des nombres complexes

La considération des nombres réels se justifie par la recherche de solutions a des équations
non solubles dans I’ensemble des nombres rationnels. En effet, 2 = 2 n’a pas de solutions
dans Q. Il faut donc "élargir" I’ensemble des nombres rationnels pour que x? = 2 ait une
solution. Ceci est possible dans R. On a en fait la méme situation en ce qui concerne les
nombres naturel, entiers et rationnels :

N, ¢ 2z ¢ Q ¢ R
~— ~— —_— ~—
z+1=0 2c4+1=0 22 _2—=0 x24+1=0

n’ lution n’ lution , . ’ i
a pas de solutio a pas de solutio n’a pas de solution n’a pas de solution
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I1 faut donc trouver un ensemble de nombres encore plus grand que R pour inclure des solu-
tions a £? + 1 = 0. Comment trouver un tel ensemble ?

On va s’inspirer de ce qu’on a déja fait pour passer de Q a R. Pour trouver une solution a
’équation 2 — 2 = 0 on a introduit un nouveau symbole, v/2, et on a donné une signification
a ce symbole en imposant que

(V2)2=2 et Vv2>0.

On a fait de méme en introduisant des symboles 7, e et ainsi de suite. On a par la suite gardé
les regles de calculs usuels :

2vV2 =vV24+V2, e2=e-e, (€—|—7T)\/§:€\/§—|—7T\/§, O-w=0,...

On va donc faire de méme et introduire un nouveau symbole, 2, et imposer la relation

12 = —1

On considere ensuite formellement toutes les combinaisons linéaires a coefficients réels de
ce symbole 17 :
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Définition 4.1.1. 'ensemble des nombres complexes C est défini par

C:={a—+1b: a,becR}.

Propriétés.

e Ce nouveau symbole © représente une nouvelle constante, non réelle. Tout comme —1
était un nouveau nombre non naturel ou v/2 était un nouveau symbol non rationnel.

e On note z € C pour dire que z = a + b, avec a, b € R,

e Pourz € R etz = a+ b, on dit que a est la partie réelle de z, alors que b est la partie
imaginaire de z. On note aussi

a = Re(z), b= Im(z).

A noter que et Re(z), et Im(z) sont des nombres réels.

e Le fait qu’'un z € C soit constitué d’une partie réelle et d’une partie imaginaire est
I’origine du mot "complexe".
Ce mot ne signifie pas que ces nombres sont compliqués (au contraire!) mais signifie
"fait de plusieurs parties".
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e On note que0,1,2 € C :
0=0+0:-2, 1=140-2, 2=0+4+1-2.
e Plus généralement, R C C. En effet, si x € R, on peut toujours écrire
r= x+0-2 € C.

Sur C, on impose formellement les relations algébriques suivantes :

Définition 4.1.2. Soient z, w € C ou
z=a+1b, w=c+1d et a,b,c,dER.
Alors

e z+w=(a+1)+ (c+1id):=(a+c)+ib+d),

e z-w=(a+1b):(c+id) := (ac — bd) + i(ad + bc).
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Remarques.

e Comme dans R, 'ordre dans lequel ces opérations algébriques sont faites n’a pas d’im-
portance. En effet, si

z = a+1tb et w =-c+1d,
alors
z+w = (a4+ib)+(c+id) = (a+c)+i(b+d)
= (c+a)+i(d+b) = (c+id)+(a+ib) = w+ z,
et
zow = (a+ib)-(c+id) = (ac— bd)+ i(ad + be)
— (ca—db)+i(datcb) = (ctid)-i(a+ib) = w-z.

En particuliers, tb = bs.

e La regle pour la multiplication n’est rien d’autre qu’une conséquence de la distribution
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d’'une somme sur un produit. En effet, par distribution on a
(a+1ib)-(c+1id) = a-(c+id) + 1ib(c—H+ id)
= a-c+a-td+1b-c+ 1b-1d
= a-c—l—ia-d—|—ib-c—|—(i)2b-d
= ac—bd+ i(ad+ be) .

On retombe bien sur la formule qui définit le produit de deux nombres complexes.

On peut maintenant manipuler les lois algébriques sur C comme celles dans R :

Exemples.
1. |Résoudre 2z + 271 =3 + 7 :

Comme dans le cas réel, z joue le role de I'inconnue. On isole les termes qui la contiennent :

2z2+21=34+1 & 2z = 3+4+1—21 = 33—z
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En divisant par 2 on trouve la solution

3 1
z = ——=-1t €C
2
_ 1
2. |Calculer z = /- :
On cherche donc un nombre z € C, tel que z(1 + 2¢) = 1. Pour ce faire, on pose

z = a -+ bt et on calcule
z14+2) =1 & (a+b)(1+2¢1)=1 < a—2b+2a+dbi=1

. ) a—2b=1
& a—2b4+(2a+bi=140-7 << ,
2 +b =0

ou pour la derniere équivalence on égalise les parties réelles et imaginaires des deux
cotés de I'égalité : deux nombres complexes sont égaux ssi leur parties réels et
imaginaires le sont séparément.

On est donc ramené a résoudre un systéme de deux équations a deux inconnues réelles.
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Si on 6te deux fois la premiere ligne a la deuxieme, on trouve

a—2b=1 a—2b=1 —2 1
= & b=—,a=—.
20 +b=0 5b = —2 5% 53
Ainsi,
1
= Z(1-2i)
1+ 212

3. |Calculer 7, z #0:

Pour des nombres complexes, tout nombre non nul peut s’inverser, comme on va le voir
maintenant. Similairement a ce qu’on vient de faire, on pose z = a + b et i = x + 1y.
Puis on veut que

1
z—=1 & (a+bi)(x+yi)=1 & axr—by+ (ay+dbx)i=1
z

ar —by =1 (a —b) (w) (1)
<~ = = .
ay +bxr =0 b a Y 0



EPFL - CMS Analyse II p.132

Sia? 4+ b? # 0 (i.e. z # 0), on peut inverser cette matrice :

a —b\ ' _ 1 a b
b a a2+ b2 \-b a)’
On obtient alors

G=arw () b = aw(S)

Résumons : si z = (a + tb) # 0, on a

1 1 1 |
— = — = ———(a —1b).
z a + b a? + b2
L’exemple précédent qui était z = 1 4 2¢ redonne donc notre résultat ——- 4:21: = 112;22’32 =
1=2¢ On a d’autres exemples comme

1 3—14 1 V2 + /3
3+ 10 V2—+3i 5 ’
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2+ 1+ 72 —5 + 152 31— 1
. = (2479 = = :
1 — 171 50 50 10

Ce dernier exemple suggeére I'importance de a — b et de a® + b? pour un nombre complexe
a + b donné. On pose alors la

Définition 4.1.3. Soit z = a + tb € C, a,b € R. On définit le complexe conjugué, z, et
le module, |z| du nombre z comme

zZ:=a—1b, |z|:=+a?+ b2

Remarques.
e Le complexe conjugué d’'un complexe est encore un nombre complexe.

e Le module d’'un nombre complexe est toujours un nombre réel positif. En fait, si z € R,
alors le module de z, |z|, n’est autre que sa valeur absolue.

z

Résumons les propriétés les plus importantes dans le
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Théoreme 4.1.4. Soient z, 2z’ € C. On a alors

1. z=0<% |z| = 0. 5. |z 2| = |z]| - |Z']. 9, 2 A =
2. |Z|:|E| -1 __ 1 — —
3. |22 = 2 %. 6. 270 = 27" = 5% 9. z + 2z = 2Re(2).

i s =7 . 7. 2# 0= |27 = +. 10. z — z = 2ilm(2).

1.
z2=0 & 2z= 0 +i- 0 & a*+b=0 < |[z]*°=0.
Y
2.
2= Va2+b = a2+ (=b)?* =z
3.

zz= (a+ib)(a—1ib) = a*—(ib)? = a*+b*® =|z|°
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4. D’une part

z-z' = (a+ib)(c + id) = ac — bd + i(ad + bc) = ac — bd — i(ad + bc).

D’autre part

z-2' = (a+1b) - (c+1d) = (a — ib)(c — id) = ac — bd — i(ad + be).
Les points 5. a 10. sont laissés en exercices. ]
Comme pour les nombre réels, on a les identités telles que
(z2—w))=(z—w)(z4+w) ou (z4+w)? =2+ 22w+ w

On aura donc aussi des techniques comme compléter des carrés ou calculer des discrimi-
nants :

Exemples.
1. |Résoudre z2 +2z2+2=0:
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Le discriminant de cette équation est A = 22 —2.4 = —4. [1 n’y a donc pas de solutions
réelle a cette équation. Par contre, on trouve des solutions complexes :

2°4+2242=0 & (2+1)>+1=0
&S (z4+1)P=-1 & (z2+1)=2i
& z=—1=1.

On remarque d’ailleurs, que la formule avec discriminant donne le méme résultat :

—2%v—d_ 2% V@) _ .
) .

2

<L =

Il est a remarquer qu'un léger abus de notation a été commis : la racine v/—4 n’est a
strictement parler pas une fonction, puisque dans le cas complexe, il n’est pas possible
de choisir la solution "positive" entre —2z et 22 a I’équation

22 = 4.

En effet, I’ordre total et compatible avec les opérations algébriques de R est perdu dans
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C. Il n’est pas possible de décider, en accord avec les opérations algébriques, si 22 > 0
ousi —2z > 0.

Si on veut que le produit avec un nombre positif ne renverse pas une inéquation, alors
22 > 0 impliquerait —4 > 0 et —22 > 0 impliquerait —4 > 0 aussi.

2. |Résoudre z3 + 192 — 20 =0 :

On peut, comme pour le cas réel, identifier une solution manifeste. On trouve z = 1.

(astuce : si les coefficients d’un polyndéme s’additionnent a 0, alors z = 1 est une racine
de ce polynome.)

On factorise alors ce polynéme par (z — 1) :

(z —1)(az? + bz +c) = z° + 192 — 20
= a=1,c=20 encomparant les termes z* et constantes
(z — 1)(2* + bz + 20) = 2° + 192 — 20.

= b=1 en comparant les termes z
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(z — 1)(22 4+ z + 20) = 2% + 192 — 20.

Il reste a calculer les racines de z? 4+ z + 20. Le discriminant est A = 1 — 80 = —79,
d’ou on tire les racines
—1 4+ 2/79
zZ4+ = 2

Les solutions sont donc les éléments de I’ensemble

—1+:v79 —1 —21V/79
9

S ={1
i, 2 2

}.

3. |Calculer 1 + (1 4+ 22) + (1 + 24)? + (1 + 27)3 :

On peut évidemment tout développer et additionner. Ou alors, on remarque une série
géomeétrique de raison (1 + 22) :

1— (1+2i)*

14+ (1+23) + (1 +28)°+ (14 24)° = =
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1 — (=3 + 43)? 1 — (=7 — 241) 8 + 24i

: : —_— = —12 4 41.
—27 —21 —27

4. |Résoudre |z]|? (22 — 4) = 2(2 + 2) :

A nouveau, on peut poser z = a + b, tout développer et essayer de résoudre. Ce n’est
pas la meilleure méthode!

Ou alors on essaye avant de simplifier au maximum :
1z|? (2% —4) = z(2 + 2)
&S zzZ(z2—2)(z4+2) = z(z+4+2)
< z(z+42)(Z2(z—-2)—-1) = 0
Il y a donc comme solutions déja

z=0 et 2z=-2.
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On résout maintenant le dernier facteur en posant z = a + b :
(Z(z—2)—1)=0
& |z|P—22—-1=0
& a?+b%2—2(a—1ib) —1=0
& a*+b*—-1—2a+1i2b=0
{ﬁ+w—4—aa:0, <${ﬁ—aa—1:m
2b=0 b=0

On résout 1’équation avec a comme une équation réelle usuelle. Le discriminant est
A = (—2)%? 4+ 4 = 8 et ainsi,
24 /8

a
= 2

L’ensemble solution est donc

S =1{0,-2,1—+v2,1+v2}.
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Une curiosité des nombres complexes a été remarquée par Gauss : certains nombres premiers
dans N ne le sont plus si on considere des nombres complexes dont les coefficients sont des
entiers.

Plus précisément, Il posa la définition suivante :

Définition 4.1.5. Un nombre entier de Gauss est un nombre qui s’écrit comme
z =a-+1wb oua,be’Z

I’ensemble des nombres de Gauss s’écrit comme

Z[i] := {a-+1ib,: a,beZ}.

Clairement, une somme ou un produit de deux nombres de Gauss est encore un nombre de
Gauss. On peut maintenant se poser la question de la factorisation de nombres du type

p = p—+1i-0€Z[i], avecp € N premier.
On cherche donc des entiers de Gauss a + ib, ¢ + id € Z[i], tels que

p = (a+1ib)(c+ id).
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Une premiere chose a remarquer dans cette recherche, est que
p = (a+1ib)(c+1id)= ac— bd+ i(ad+ be)
= ad+bc =0 = (¢c,d) = (ka,—kb) aveck € Z.
On est donc ramené a chercher des entiers a, b et k, tels que
p = (a+ib)k(a—1ib) = k(a®+b?).

Comme p est premier, et k est entier, et a? + b? est naturel, on a comme solutions possibles
o k=1etp=a?+ b?
e k=peta==41,b=0,
e k=peta=0, b= 41.
Les deux dernieres possibilités ne sont pas vraiment nouvelles, puisqu’on aurait comme fac-
torisation
p = 1l:p =i-(—ip) =(-i)-ip = (1) (-p),
qui sont des factorisations "triviales".
Reste la premiere possibilité. Pour p = 2 on a en effet comme factorisation sur les entiers de
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Gauss
2 = 1A+ —-12) = (—1412)(—-1—19)

Il y a donc deux factorisations possibles de 2 sur les entiers de Gauss. 2 n’est plus un nombre
premier dans Z[z].

Prenons I’exemple du prochain nombre premier, a savoir p = 3. D’apres la discussion précé-
dente, pour trouver une factorisation non-triviale de 3 sur Z[z], il faut trouver deux nombres
entiers a et b, tels que a? + b? = 3. En essayant successivementa = 0 oua = 1 (a = 2 serait
déja trop grand), on voit qu’il n’est pas possible d’en trouver. Donc, 3 reste premier, méme
dans Z[z]. C’est ce qu’on appelle alors un nombre premier de Gauss.

Essayons le nombre premier p = 5. Cette fois-ci il est possible de trouver a,b € Z tels que
a? 4+ b? = 5. En effet, on peut prendre a = 1 et b = 2, ou symétriquement, a = 2 et b = 1.
On a donc comme factorisation de p = 5 sur Z[¢] :

5 = (2449)(2—14) = (=14 2i)(=1— 2i)
= (=2—9)(=244) = (1— 21+ 2i)
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5 n’est donc pas un nombre premier de Gauss puisqu’il possede 4 factorisations distinctes et
non triviales.

Pour p = 7 il est a nouveau pas possible de trouver des entiers a et b, tels que 7 = a2+ b?. En
effet, nia = 0,nia = 1, nia = 2 (a = 3 est déja trop grand) ne nous permettent de trouver
un nombre b entier, dont les carrés en somme donnerait 7. C’est donc un nombre premier de
Gauss.

En fait la situation est la suivante : un nombre premier p se factorise sur Z[z] ssi il est la
somme de deux carrés d’entiers, a? + b? = p.
On a vu que 2 et 5 étaient factorisables, alors que 3 ou 7 ne I’étaient pas. On sait que d’apres
un théoreme en théorie des nombres, que tout nombre premier p qui s’écrit comme p = 4k+1
peut étre écrit comme somme de deux carrés d’entiers, alors que si p = 4k + 3 cela est
impossible.
Dongc,

3, 711, 19, 23,...
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sont des premiers de Gauss alors que
2,5,13, 17,...

ne sont plus des premiers dans Z|[z].
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4.2 Représentations

Le but de ce paragraphe est d’améliorer notre intuition des nombres complexes en les repré-
sentant de différentes manieres. Ces représentations simplifieront aussi certains calculs.

Il1 existe des manieres de se représenter géométriquement un nombre complexe. En effet,
puisque un tel nombre s’écrit comme

z=a-+ b, aveca,beER,

on voit qu'un nombre complexe est la donnée de deux nombres réels a e b. Comme en plus
on additionne des nombres complexes en additionnant séparément leur parties réels et ima-
ginaires, il est naturel de voir z comme un point du plan :

Définition 4.2.1. La représentation de Gauss est l’identification de C avec R?, donnée
par
Co>z=a+1ib +— M(2):=(a,b) €R%

Réciproquement, I’affixe d’un point P(x,y) € R? est le nombre complexe zp := = + 1y.

Dans la représentation de Gauss les nombres complexes sont donc représentés par des points



EPFL - CMS Analyse 11 p.147

du plan, 1’addition de deux nombres complexes revient a additionner les coordonnées carté-
siennes de ces points et la conjugaison complexe n’est autre qu’'une symétrie d’axe (Ox) :

y = Im(z). Im(z)
= 1m(z).
(2,2)=M (3+i+i—1) y
2+4+21=2(3,1)+2(-1,1)
4".\\
4””’ \\\ !
-~ . |
-7 N |
|
x = Re(2)

> I
x = Re(2) |

Dans la représentation de Gauss, le module d'un nombre z = a + b, a savoir |z| = va? + b?,
n’est donc autre que la norme du vecteur OM (z) :

|1z| +— ||OM(z;||.
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De plus, la multiplication 7 - 2 correspond a la rotation par 7 du vecteur OM (z). En effet,

t(a+1tb) = —b-+1ia :
y = Im(z),
y = Im(2),
1 (24 1)
‘ - = Re(2)
x = Re(z)
Puisque le module |z| = v/a? + b? d’'un nombre complexe z = a + tb correspond a la norme

du vecteur OM (z) et que les normes vectoriels dans le plan obéissent a I'inégalité du triangle,
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il en va de méme pour le module :

|z +w| < |z + |wl.

On peut d’ailleurs le montrer algébriquement : souvenons-nous que |z|?> = Z - z. On a alors

z+w)? = (EF+w) z+w) = EF+w)-(z+w)
= zZzdzZwtzwt+ww = zZz4+zZw -+ zZw + ww
= |z2|° 4+ 2Re(Zw) + |w|* < |2|® + 2|Zw| + |w|?
= 2P+ 21z |lw] + |w* = 2]+ 22| |w] + [w]* = (]z] + |w])®

On extrait maintenant la racine des deux cotés de cette inégalité et on retrouve l'inégalité
triangulaire.

Venons maintenant a ce qu’on appelle la représentation triginométrique d’'un nombre com-
plexe.
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y = Im(2),

Pour définir un nombre complexe z = a +
tb, il suffit de connaitre son module |z| =
va? + b2 et l'angle ¢, formé par (Oz) et S
(0M(z)). La trigonométrie nous apprend P1+2i
alors que

} \

| ‘.

z = a+1ib = |z| (cos(p.) + isin(p,)). r = =Re(z)

L’angle ¢, peut d’ailleurs se calculer grace a la trigonométrie.

e Siz=a+tbetb > 0, on asimplement ¢, = arcos(————).

a2+b2
e Siz=a+ibetb <0, on asimplement ¢, = —arcos( ‘2"+b2).
(b)arcos(———) € | |
. = sgn(b)arcos — T,
’ J JaZ 1 b2 7T
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pour autant que l'on choisisse la convention que sgn(0) = 1.

y = Im(z)

A

v

N

N

N

arcos( =)

y = Im(2),
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\
1
1
1

xr = VRe(z)

On peut d’ailleurs maintenant utiliser les développement limités pour simplifier encore cette
écriture. En effet, I’étude des polynomes de Taylor nous a montré, que pour un nombre réel

X, Oon a avait

noxk
R

Notons donc, que pour calculer une valeur pour I’exponentielle d’un objet x, il suffit en fait
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de savoir élever a une puissance naturelle cet objet x, faire une somme de ces puissances et
faire une limite.

Toutes ces opérations peuvent se faire avec des nombres complexes. Voyons donc ce que
donnerait la limite des polynomes de Taylor pour I’exponentielle, si on substitue x par 2y :

i (iy)* 5 (iy)2* S (i) 2+
k=0 k! 0<2k<n (2k)! 0<2k+1<n (2k + 1)!
S (4)*Fy* + Y (3)%F+ 1yttt
0<2k<n (2k)! 0<2k+1<n (2k + 1)!
@i
o<zicn  (2k)! o<oeri<n (k1!
gD D
oiren GRL e, @R

TV TV

PCOS,(),n(y) Psin,O,'n(y)
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On voit donc apparaitre les polynomes de Taylor pour les fonctions trigonométriques cos et
sin. Or, on sait que ces fonctions sont elles aussi les limites de leur polynomes de Taylor.
Donc,

n Y
. zy . L
lim kE_O ( k:!) = cos(y) + ¢sin(y).

Autrement dit, on peut définir I’exponentielle d’un nombre imaginaire par les polynomes de
Taylor et le résultat est

exp(iy) = cos(y) + ¢sin(y) |

Remarques.

e Cette derniere formule est une syntheése remarquable entre les fonctions exponentielles
et trigonométriques. Les fonctions cos et sin peuvent donc étre vues comme la partie
réelle et imaginaire respectivement de I’exponentielle pour une variable imaginaire zy.

e Pour obtenir de résultat il était nécessaire de passer par les polynémes de Taylor et par
leur termes de corrections. Il est bien s{ir nécessaire aussi d’avoir introduit les nombres
complexes. Mais maintenant, grace a tout ce travail, on est en mesure de comprendre
cette formule et de donner un sens a exp(zy).

On peut donc poser la
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Définition 4.2.2. Soit z € C*. Alors la représentation polaire de z est 1’écriture :

z = |z] exp(ip)
ou =
¢ = sgn(Im(z))arcos( TZ(T)) € | —m,m|

est 'argument principal de z.

Remarque.
L’argument principal d’'un nombre complexe non nul z est donc lI'unique angle dans ¢ €
| — m, m| tel que

z = |z[(cos(yp) + isin(yp)).
I1 est bien siir possible d’avoir d’autres angles que 1’argument principal. Comme en trigono-
meétrie, on peut toujours ajouter des multiples de 27 :

z = |z|(cos(p + 2km) 4+ isin(p + 2k7)) .
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Par conséquent, I’exponentielle a une periodicité de 27z :
exp(iy) = exp(iy + i2kw), k € Z.

On peut méme pousser plus loin encore les paralleles avec I’exponentielle réelle :

Propriétés.

1. |Ve,0 € R, exp(i(¢ + 0)) = exp(ip) exp(ib)

En effet, par définition, on a

exp(i(p +6)) = cos(p+ 0)+ isin(p + 0)
o cos(0) cos(p) — sin(0) sin(yp) + i(cos(cp) sin(0) + sin(yp) cos(H))
loi de mu]tipﬁation dans C ( COS(SO) + v SlIl(QO)) ( COS(H) + v sm(O))

= exp(ip) exp(if)
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Donc, la loi d’addition de I’exponentielle

et(P+0) — ip b
implémente de maniére directe et synthétisée les deux lois d’addition trigonométriques

Exemples.
1. |exp(i0) =1, exp(i5) =14, exp(im) =—1, exp(iZ)= —i.

Suivant la définition :

exp(¢0) = cos(0)+¢sin(0) = 1
exp(ig) = cos(g) + isin(g) = 1 ,
exp(iw) = cos(w)+isin(wr) = -1 |,

iy T T
exp(13— = cos(3— 2 sin(3— = —1
p(i3) (37) +isin(37)
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La troisieme équation nous donne d’ailleurs la splendide relation

e +1=0.

Cette derniere équation permet de placer en une seule équation simple les nombres
fondamentaux 0, 1 7, 2 et e. Elle témoigne donc de la synthese qu’on est arrrivé a faire
entre la trigonométrie, 1’exponentielle, les polynéomes de Taylor et les nombres com-
plexes.

2. |La multiplication de z par e® est une rotation de z autour de 'origine d’un angle 0 :

On commence par exprimer z en représentation polaire :

z = |z|e¥, pe€l—m,mn].
On multiplie ensuite par e® :
ez = eYz|e¥ = |z]e®F¥),

L’argument de z a été augmenté d’'un angle @ alors que son module n’a pas changé :
c’est bien une rotation de z autour de l'origine d’un angle 6.
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x = ke(z)

3. |Calculer les racines n'*™ d’un nombre complexe z :

La représentation polaire est particulierement adaptée pour calculer les racines. Par
exemple, trouvons w € C tel que
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En effet, en représentation polaire, cette équation s’écrit comme

. 5 . . .
(rwe¥)” =€ & rlev =0
r5 =1 Ty = 1
< v = .
5¢. = 0 mod 2k ow =25, £=0,1,2,3,4
i} y = Im(z),
le nombre 1 possede donc 5 racines 5™
dans C : T e
» .
2T iAr i 87 i 8T s \
{1’85,65,65,85}u I/ \\

L’'écriture v/1 n’est donc plus celle d’une 3 .

fonction dans C. Il n’est en effet pas possible ' x'= Re(z)
de décider laquelle de ces cinq solutions est \\ /

la solution "positive". e

Dans C, v/1 est un plutét un ensemble de

cinq nombres complexes. ~~.__»€
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4. | Tourner P(3,3) autour de §2(2, 1) d'un angle de 7.

On a déja vu comment faire tourner un point autour de l’origine dans I’exemple 2. On va
donc se ramener a ce cas par translation du plan :

y = Im(2),

e /
. 7r ~

, iR ~

i /4 4

/

x = VRe(z) x = VRe(z)

On va ramener le centre de rotation €2(2,1) vers l'origine des coordonnées par une

y = Im(2),

ZQ/ =e ZQ

translation des points du plan grace au vecteur @
En terme d’affixe des points, cela revient a soustraire 1’affixe zq a 1’affixe zp pour obtenir
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I'affixe z¢g du point translaté Q :

ZQ = Zp — Z2Q

Ce nouveau point () va maintenant subir une rotation de %

obtenir un point Q"' :
1

V2

Pour trouver l’'affixe de P, il suffit mainte-
nant de faire la translation inverse par Of2 :

Zpr = ZQ’ —|— 4e)

1( 14+3i)+2+14
= —\— 1 1
V2

(1+4)(1+2i) =

= 14+ 22

T
4

y = Im(2),
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autour de l'origine pour

1

V2

(—1 + 39)

r = he(z)
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Cette maniere de faire est tres générale : pour trouver l'affixe zp, d’un point P qu’on
fait tourner d’un angle ¢ autour d’un point €2 # (0, 0), on calcule

zpr = zo+ e¥ - (zp — zq)

~"

translation de Sﬁ

- -
~

rotation autour de 1'origine

A\ - 4
~"

translation de ﬁi

5. | Trouver les sommets d’un hexagone régulier, sachant que zg, = 0 et que zg, = v/6(1 + 1)

Pour résoudre ce probleme, on va utiliser
les symétries de ’hexagone. On pourra aussi
utiliser la formule pour les rotations qu’on
vient de trouver au probleme précédent.
Pour bien débuter un probléeme géomé-
trique, on peut toujours commencer par un
dessin pour bien visualiser la situation pré-
sente :

y =Im(2),

| x = VRe(z)
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Géométriquement, il est clair, que les sommets S;, S3 et S5 forment un triangle équila-

téral orienté positivement.

Or, le cOté S; est obtenu par une rotation de ¥y = Im(z),
g de S; autour de Sj :

ZSl

= S

- 1
e'szg, = (5 + 2

(1-Vv3+i(1+v3))

P

¥

?)\/5(1 + 1)

r = he(z)

On remarque ensuite que les sommets S,, S; et Sy forment eux aussi un triangle équi-
latéral. Celui-ci est d’ailleurs tout simplement le triangle formé par S;, S3 et S5, tourné
d'un angle 3 autour du centre (2 de I'hexagone.
Mais le centre de cet hexagone est le méme que le centre du triangle formé par S;, Ss
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et S5, qui se calcule donc comme

1 1 V3 -3 vV3+3
= - — 61+ivV6 4+ — g
F29) 3(Zsl+zss+zS5) 3<\/_+z\/_+ /3 + 2 73 )
\/§—1+,\/§+1 V6 V3
= —F— t 11— = .

V2 V2 2 V2
y = Im(z)

A ,4
Q
é

¢
\\\7.R /J
SEN
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Il reste donc a calculer

ZSo — 2ZQ = \/_— \/§+Z(\/6—|— \/5),

zs, = za+e 's(zs;—2za) = za(l—e's)
- () e
:%(—44—@'4) = V2(i — 1),
zs, = Zza+es(zs;—2a) = za(l—e€s)
_ (ﬁ\/;lJr \/:/J_rl)(__ £)
7(2(1+\/_)+7,2(\/§—1)) — ﬁ£1+iﬁ\/;l.
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4.3 Division euclidienne

Le but des deux derniers paragraphes est de trouver des solutions dans C pour des équations
polynomiales. Ces solutions peuvent ensuite étre utilisées pour écrire ce méme polynéme en
produit de facteurs simples, comme dans le cas de la factorisation de nombres naturels en
facteurs premiers.

On a donc introduit ce nombre %, solution de £? + 1 = 0. La question maintenant est de
savoir : reste-t-il des équations sans solution dans C? On peut en effet trouver facilement de
telles équations :

e zz — —1 n’a pas de solutions dans C, car
zz = |z|* >o0.
° i — 0 n’a pas de solutions dans C, car

1
—-=0 & 1=0.-2=0.
z

Par contre, les équations polynémiales ont toujours une solution dans C. Pour un polynoéme
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P(X) de degré n, notons
P(X)=ao+aX+...+a,X"= ) apX".
k=0

On classifie les polynomes par leur type de coefficients :

Définition 4.3.1. 'ensemble des polynémes a coefficients ag, a1, ...,a, € R et de degré
n € N est dénoté par R[ X] :

R[X] := {Zaka :n € Net ag,a1,...,0a, € R}.
k=0

L’ensemble des polynomes a coefficients ag,a1,...,a, € C et de degré n € N est dénoté
par C[X] :

C[X] := {ZakX’“ :n € Net ag,a1,...,a, EC}.
k=0

On a bien sur R[ X ] C C[X].
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Deux polynomes P(X) et Q(X) peuvent s’additionner et se multiplier. Pour ces opérations,
on va s’intéresser au comportement du degré des polynémes, c’est-a-dire de 1’exposant le
plus élevé qui apparait dans I’expression polynomiale :

deg=>5

Le fieg,re de I’addition de deufc polynomes est 6 X5 _9X%i X 4 g
majore par le plus haut degre des deux poly- . . ,

némes additionnés : + 4X" —-6X" 42X )

degr:4

deg(P + Q) < max{deg(P),deg(Q)}. -
deg=2

Le degré du prodult,de deux polynomeAs est ~ _9XZi X 4 ?:

la somme des degrés des deux polynomes

multipliés : X —3X° 4 2X* +1
dear:3

deg(P X Q) = deg(P) + deg(Q). -

( ) (P) (@) 6X° —7X*—9X°®+4X*+ X +3
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Comme pour dans le cas des nombres naturels, on peut procéder a une division avec reste
entre deux polynomes. On parle de division euclidienne. Illustrons cela par un exemple, ou
nous allons procéder a la division euclidienne de

P(X)=6X®—-2X?4+X+3 par Q(X)=X?>-X+1.

Pour ce faire, on commence par diviser le terme de plus haut degré de P(X), a savoir 6 X3,
par le terme de plus haut degré de Q(X), a savoir X 2. Le résultat, qui est 6X  est alors
a reporter sur une ligne de résultat :

P(X) QX)

6X® —2X2+ X +3|X2— X+1

6.X

. J
I "~

résultat

La deuxieme étape consiste a multiplier ce résultat, 6 X, par Q(X). Le résultat de ce produit,

a savoir 6X°® —6X? 46X est ensuite reporté sur une ligne en dessous de P(X), pour
étre prét a étre soustrait :
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P(X) Q(X)
6X3—2X%?24+ X +3|/X%?—-— X+1

. 6X3—-6X%2+6X

\ . 7

Q(X‘)rx 6X

6.X

Cette soustraction est ensuite effectuée et le résultat, a savoir 4X2? —5X + 3

sur une nouvelle ligne :

P(X) Q(X)
6X3—-2X%?24+ X +3|/X%?—- X+1

_ 6X3—-—6X2%2+6X

4X? —-5X +3

\

P(X)—6XxQ(X)

6.X

, est placé
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On divise le terme de plus haut degré de ce
polyndéme, a savoir 4X 2, par le terme de plus
haut degré de Q(X), toujours X2, pour ob-
tenir 4 . Cela est reporté sur la ligne ré-
sultat :

[’ étape suivante consiste a multiplier ce ré-
sultat, 4, par Q(X). Le résultat de ce pro-
duit, & savoir 4X? —4X +4  est en-
suite reporté sur une ligne en dessous de

Analyse 11 p.171

P(X) Q(x)
6X%—2X2+ X4+3|X2— X+1
6X3—-—6X2%2+6X 6X +4

4X2 _5X + 3

P(X) Q(x)
6X%>—2X%2+ X +3|X2— X+1
6X3 —6X24+6X 6X +4

4X?2 —-5X +3
_4X?2—4X + 4

4X? — 5X + 3, pour étre prét a étre sous- 1xQ(X)
trait :
Cette soustraction est ensuite effectuée et le résultat, a savoir —X — 1

une nouvelle ligne :

, est placé sur
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P(X) Q(X)

6X3—2X24+ X 4+3|X2— X+1

_ 6X3 —6X%2+6X 6X +4

4X? —-5X + 3
— 4X2 —4X + 4
- X -1

Ce dernier polynéme est de degré inférieure a Q(X) et ne peut pas étre divisé plus. On dit
que c’est le reste de la division euclidienne de P(X) par Q(X) :

P(X) = (6X+4)Q(X) + —-X—1.
——— ——
division D(X) reste R(X)

Ce procédé est toujours possible pour tout polynéme P(X) qu’on souhaiterai diviser par

Q(X).

La division euclidienne fonctionne bien stir aussi pour des polynomes a coefficients complexes.
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Exemple.

1. |Diviser P(Z) = 2¢Z° + 4Z® —iZ + 1 par Q(Z) = 2Z3 — 8.

Dans cet exemple on a le degré de P(Z) égal a5 et le degré de Q(Z) égal a 3. On
devra donc avoir un diviseur (a coefficients complexes) de degré 2 et un reste R(X) (a
coefficients complexes) de degré 2 au plus.

P&Z) QS\Z)
217° + 473 —iZ4+1| 223 —8
. 2Z° — 8iZ?2 172 4+ 2

473 + 81Z% —iZ + 1
— 473 — 16

i872% — 1 Z + 17

Se dernier polynéme obtenu, a savoir 8222 — ¢Z — 17, ne peut plus étre divisé plus
par 2¢Z3 — 8, puisqu’il est de degré inférieur a 3. C’est donc le reste de notre division
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euclidienne qui s’écrit comme

202°+4Z° —iZ +1 = (iZ*+2)(22° —8)+1i8Z° —iZ +17.
P(z) D(2) Q(2) R(2)

On peut résumer par le

Théoreme 4.3.2. Soient P(X), Q(X) € C[X], deux polynomes de degrés n et m res-
pectivement, avec n > m > 0. Il existe alors

e un unique polynéome D(X) de degré n — m et
e un unique polynéome R(X) de degré strictement inférieur a m,

tels que

P(X) = D(X)xQ(X) + R(X).

Démonstration. L'existence des polynémes D(X) et R(X) avec deg(R) < deg(Q) est garan-
tie par la division euclidienne.
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Montrons alors 1'unicité. Supposons que

P(X) = Di(X)Q(X)+ Ri(X) etdeg(R;) < deg(Q),
P(X) = D)(X)Q(X)+ R2(X) etdeg(Rz) < deg(Q).
Alors,
0 = PX)—PX) = (Di(X)—D:(X))Q(X) + R1(X) — R2(X)

Si Dy(X) — Dy(X) # 0, alors  deg((D1(X) — D2(X))Q(X)) = deg(Q)

Comme deg(R; — R») < max{deg(R;),deg(R2)} < deg(Q), on a que
deg((D1(X) — D2(X))Q(X) + R.(X) — R2(X)) #O0.

Ce dernier polynéme ne peut donc étre égal a 0. On doit donc avoir D;(X) = Dy(X).
Si tel est le cas,

0 = PX)-PX) = (Di(X)—=Dy(X))Q(X) + Ri(X) — Ry(X)
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=  Ri(X) — Ry(X)
et on a donc aussi R;(X) = Ry(X). O

Le reste d’une division euclidienne est donc toujours de degré inférieur au diviseur. Si ce di-
viseur est de degré 1, c’est-a-dire que si on divise par un polynome du type X — a, alors le
reste sera un nombre. Que représente ce nombre ?

Posons les choses : supposons qu’on Divise un polynéme P(X) de degré n par (X — a). La
division euclidienne nous donnera alors quelque chose du type

P(X) = (X-—a) D(X) + R .
—— —— N — \(
degré n degré 1 degré n—1 cste

Si on substitue maintenant X par la valeur a on obtient
Pa) = (a—a)Q(a)+ R = R, = R=P(a)

On a donc le
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Théoréeme 4.3.3. Soit P(X) € C[X]. Alors le reste de la division euclidienne de P(X)
par (X — a) est la valeur que prends P(X)en X = a :

P(X) = (X —a)D(X)+ P(a).

[

Autrement dit, a est une racine du polynéme P(X) ssi (X — a) divise P(X) sans reste.
C’est un résultat qu’on a déja utilisé plusieurs fois lors de factorisations d’expressions dont
on cherchait les racines. La division euclidienne nous justifie pleinement dans cette approche.

Exemples.

1. |Utiliser les valeurs P(a) et P(b) comme informations sur R(X) :

Etant donné un polynéme P(X) dont on sait, que le reste de la division euclidienne par
(X — a) est 1 et le reste de la division euclidienne de P(X) par (X — b) est 2. Que
peut-on dire du reste de la division de P(X) par (X — a)(X — b)?

On sait déja que ce reste doit étre de degré au plus 1, puisque (X — a)(X — b) est de
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degré 2. Le reste qu’on cherche est donc du type
R(X) = CL1X + ag.

Puis, on sait que le reste de la division de P(X) par (X —a) est 1. Donc, P(a) =1

et similairement, P(b) = 2

Puisque
P(X) = DX)(X—a)X—-0b)+ R(X)
on sait aussi que P(a) = R(a) = 1 et P(b) = R(b) = 2. Par consé-
quent,
R(a) =1, - aia+ag=1 |, - ai(b—a)=1 |,
R(b):2 a1b+a0:2 alb—l—a0:2
( 1
a; = s
b — 1
& “ -~ RX)=—— X+2— .
b b—a b—a
ag = 2 —
\ b—a
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On peut aussi réécrire ce résultat comme

R(b)—R(a)
1
X = - (X —
R(X) (X —a)+ 1,
R(a)
Oou encore comme
R(a)—R(b)
=
R(b)

Ces deux dernieres écritures pourront étre vérifiées en exercices.

2. | Utiliser les valeurs P(a) et P’(a) comme informations sur R(X) :

Si on sait que P(a) = 1 et P’(a) = 2, que peut-on dire sur le reste R(X) de la division
de P(X) par (X — a)??

A nouveau, ce reste doit étre de degré au plus 1, puisque le degré du quotient Q(X) =



EPFL - CMS Analyse II p.180

(X — a)? est de 2. On a donc
P(X) = D(X)(X —a)®+ R(X),
P'(X) = D/(X)(X—a)?+ D(X)2(X —a)+ R (X),
= R(a) = Pa)=1 et Pl(a) = R(a)=2.
On cherche donc

R(X) = a1 X+4+ay tq R(a)=1letR'(a)=2

o a;a + ag = 1, N ag = 1 — 2a,
0,1:2 CL1:2

& R(X)=2X 41— 2a.
On peut réécrire cela comme

R(X) = \2/(X — a) —|—\1/
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On remarquera que cela n’est rien d’autre que le polynome de Taylor de R(X) autour
de X() = a.

3. |Reste de la division de P(X) = (X +1)" — X™ — 1 par X? — 3X + 2.

Ici la difficulté réside dans le fait que le degré du polynome P(X) est inconnu. On ne
peut donc procéder a une division euclidienne.
Par contre, on sait que

X?-3X+2 = (X-1)(X-2).
De plus,

le reste de la division de P(X) par (X —1)est P(1) = 2" -2 |,
le reste de la division de P(X) par (X —2)est P(2) = 3" —2" —1.
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Le reste qu’on cherche est de degré 1 et on sait par le premier exemple, que

rx) = PO x 1)1 pq)
R(2) — R(1)

_ o (X —1)+R()
= (B"—2"—-1-2"42)(X —1) 42" —2

= (3" —=2""1 1) (X —1) 42" —2.

Comme pour les nombres entiers, on peut alors poser la

Définition 4.3.4. Soient P(X), Q(X) € R[X] (ou € C[X]). On dit alors que Q(X)
divise P(X), et on note A|B, si le reste de la division euclidienne de P(X) par Q(X)
est nul.

On sait alors déja qu’'un polynéme de degré un Q(X) = (X — a) divise un polynéme P(X)
si et seulement si P(a) = 0. On peut utiliser ce résultat itérativement pour déterminer la

------
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Exemples.
1. |Utiliser les racines de Q(X) pour diviser P(X).

Est-ce que le polyn6me
P(X)=X*>—X*—4X®+5X?—-3X +2

est divisible par
Q(X) = X?*-3X+42?

On va utiliser les racines de Q(X) pour déterminer cela. En effet,
QX) = X-1)(X=-2)
Les racines de Q(X) sont donc {1, 2}. Mais

P1l) = 1—-1—-445-34+2=0 |,
P(2) = 32-16—32+20—6+2=0
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On sait alors que P(X) est divisible par (X — 2) et par (X — 1). Mais alors,
P(X) = DX)(X —1).

Comme P(2) = 0 et que (X —1)|x—2 # 0, il fautque D(2) =0 . Donc (X — 2)
divise D(X) et

P(X) = EX)(X-2)(X-1) = EX)(X?-3X+2)

D(X)

On a donc bien que Q(X) = X? — 3X + 2 divise P(X).

2. [(X —1)? divisetil P(X) = X" — X2+ (1 —n)X +n — 17

On vérifie facilement que P(1) = 0. On en conclut que (X — 1) divise P(X). Mais
comment savoir, si (X — 1)? divise P(X)?

En fait, la réponse nous est donnée par les polyndomes de Taylor, dont notre connaissance
va nous étre utile méme ici. P(X) étant un polynéme de degré n, on sait que son poly-
nome de Taylor autour de tout X, et de degré n lui sera égal.
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L'astuce est maintenant de considérer le polynéme de Taylor de P(X) autour de X, =
1:

P™ (1) P®)(1)

P(X) = X -

(X —1)?*4+P)(X—-1)+ P(1).
Le reste de la division de P(X) par (X — 1)? estdonc P’(1)(X — 1)+ P(1) .La
division sera alors possible si P(1) = 0 et P/(1) = 0. Dérivons alors P(X) :

P(X) = (n+1)X"—-2X+1—n

On voit alors maintenant qu’en effet, P’(1) = 0. On conclut alors que (X — 1)? divise
bel et bien P(X).
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4.4 Factorisation

La question de savoir si toute équation polynémiale dans C possede une solution a été soulevée
mais pas completement résolue au paragraphe précédent.
La bonne nouvelle vient maintenant sous la forme du théoreme fondamental de 1’algebre :

Théoréme 4.4.1. Soit P(X) € C[X] un polynéme de degré plus grand que 1. Alors
I’équation P(X) = 0 posséde au moins une solution dans C. O

Remarques.

e Le théoreme fondamental de I’algebre n’est pas vrai si on remplace C par R : on a déja
vu que X2 + 1 = 0 n’a pas de solution dans R.
Par contre, X2 + 1 = 0 a les solutions X = 4<. Un polynoéme a coefficients réels peut
donc avoir des solutions dans C.

e La preuve de ce théoreme est laissé dans une note séparée et est donc facultative.

Comme nous assure la division euclidienne, on peut procéder a une division d’'un polynéme
P(X) par un facteur X — w, pour autant que P(w) = 0. En effet, le reste R de la division
euclidienne par X — w représente la valeur P(w), qui est donc nul.
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Exemples.
1. |Divisionde P(X) = X® +2X? — 42X +ipar X — ¢ :

On commence par constater que
P(i) = #©+2°—i2i+1 = —i1—2+2+13i =0,

On peut donc diviser P(X) par X — 4. Le tableau de la division euclidienne donne

P(X) Q(X)
. 3 2_ . o o
X3+ 2X 21X + 1 X —
_ X% — iX? X?+(24+9)X -1
(2 +1)X? — 2i1X +1
—(2+9)X*+(1—-2i)X
—X +1
— —X +1i
0
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On obtient donc
X?+2X?2—-i2X +i=(X?+(24+9)X —1)(X —1).

On remarque que le reste est effectivement nul.
2. |Factoriser complétement P(X) = 2X3 4+ (2¢ —4)X? 4+ (6 — 67) X + 41 — 4 :

On remarque premierement qu’on peut factoriser le polynéme par 2 :
P(X)=2X%+ (2t —4)X?+ (6 —61)X +4i — 4
=2 (X°4+(@—-2)X*+(3—-30)X +2i—2)

Les racines de P(X) seront donc les mémes que celles de
N(X)=X*+(1—2)X?+(3—31)X + 21 — 2.

On dit que IN(X) est le polynome P(X ) normalisé.

Puis on cherche une racine apparente. Dans ce cas, X = 1 en est une (astuce : si la
somme des coefficients d’'un polynome est nulle, X = 1 en est une racine).



EPFL - CMS

On passe donc a une division par X — 1:

N(X)

X34 (6 —2)X2+(3—3i)X —2+2i

_ X% - X?

Analyse II p.189

Q(X)
—
X —1

(1—1)X*4+(3—3i)X — 2+ 2i
— —-1DX*+(1—-9)X

(2—2i)X — 2+ 2
— (2—2i)X — 2+ 2

0

On obtient ainsi

X4+ (—1)X +2—21

N(X)=(X —1)(X?+ (1 —1)X + 2 — 2i).

Les racine du deuxieme facteur peuvent se calculer soit par discriminant, soit on re-
marque encore une solution par tatonnement : on peut remarquer que X = —217 en est
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une. On divise alors par (X + 22) :
X+ @ —-1DX+2-2i=(X+2i) (X —i—1).
On obtient alors

N(X) = (X —1)(X + 2i)(X —i — 1),
= P(X) = 2(X—-1)(X+2i)(X —i—i).

Ces exemples montrent donc qu’on peut factoriser un Polynome a coefficients complexes en
produits de facteurs de degré 1. Il semble que ce processus puisse se généraliser pour des
polynomes a coefficients complexes de n’importe quel degré.

En fait, on se retrouve dans une situation tres similaire aux nombres entiers, qu’on peut écrire
comme produit de leur facteurs premiers. Cette état de faite est précisé par la deuxieme ver-
sion du TFA :
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Théoreme 4.4.2. Soit P(X) = a¢p+ a1 X + ...+ a,X" € C[X], un polynome de degré
n > 1. Il existe alors des nombres complexes wi,...,w, (pas toujours tous distincts),
tels que

P(X) = a, H(X — wg).

k=1

Démonstration. On peut procéder par récurrence sur le degré de P(X) € C[X] :
si deg(P) = 1, on peut écrire

P(X) = CL1X -+ ag, et aq # 0.
On a donc
0
P(X) = ai(X+ — )s
L
= —wl

qui est exactement la forme annoncée par le théoreme.
Supposons maintenant le théoréme prouvé pour tous les polynémes de degré n et soit P(X) €
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C[X] un polynéme de degré n + 1. On peut alors écrire
P(X) = CLO—|—CL1X—|—...—|—CLn_|_1Xn+1.

La premiere version du théoreme fondamental de 1’algebre nous dit qu’il existe au moins une
racine pour P(X), disons wy : P(wg) = O.
La division euclidienne nous permet alors de dire, que X — wy divise le polynéme P(X) :

P(X) = (X —wo)D(X), deg(D) = mn,
D(X) = b, X"+...+bX +bg
~—
= Qnp+41

Par hypothese de récurrence, D(X), étant de degré n, peut se factoriser complétement sur
ses racines. Il existe donc des nombres complexes wq, ..., w, (pas tous distincts), tels que

D(X) = an(X—wk,) = an+1H(X—wk),
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= P(X) = (X-wo)D(X) = an |[(X—wp),

qui est exactement la forme annoncée par le théoreme. ]

Exemples.

1. |Déterminer un polynome a partir de propriétés :

On va chercher un polynome P(X) € C[X], de degré 3, qui satisfait
e P(z) =0,
e P(1) =2,
e La somme des racines de P(X) égale 2 + q.
e Le produit des racines de P(X) égale 2z.

D’apres le Théoreme fondamental de 1’algebre, il doit exister un nombre complexe a3 et
trois racines w;, ws et ws qui nous permettent d’écrire

P(X) = a3(X —w)(X —w)(X — ws)

= a3(X3 -+ X2 (—w1 — Wy — ’lU3) -+ X (101’11)2 —+ w1 Ws -+ 'UJ2'U)3) — W1Wa2Ws ).
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D’apres la premiere condition on peut poser w; = ¢. Les deux dernieres conditions nous
disent alors que

{2+i= 1+ wy +wz N {2= wy + w3,

21 = 7 - WoW3g 2 = Wo2W3

On pose alors wsz = 2 — w, qu’on insere dans la deuxieme équation :
2=2w; —w;, <& w;—2w,+2=0.

On trouve alors comme solutions

On obtient donc,
wlzz', ’lU2:]_—|—’l:, ’lU3:]_—’l:,

ce qui implique
P(X)=a3(X —9)(X —1—12)(X —1+1).
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Le coefficient az nous est maintenant fourni par la deuxieme condition P(1) = 2:
2 = a3(1—-49)(1—-1—-9)(1—-14¢) = a3(1—1)
On obtient ainsiag = 1 + 2 et

P(X) = (14X —9)(X—-1—4)(X —1+1).

2. |Factoriser P(X) =1 — ;X + :X? — : X% 4 - X*:

On remardque ici un polyndome qui est une progression géométrique de raison —%X . On
a donc, pour autant que X # —2:

px) - D EE-—a RN
143X 143X 16(2 + X)

Factorisons alors
Q(X) =32 + X°.
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Il s’agit de trouver les racines 5°™® de —32. En représentation polaire, on a

wP=-32 = 32" & (lw|le®r)® = 2%¢™
|w|5 = 25’ |’U)| — 29
A ~ m 2k=w
5‘~Pw: 7 mod 27 pre {g+_5 :k:O,1,2,3,4},

On peut donc écrire la factorisation complete pour Q(X) :

4
QX)=32+Xx" = [[(X—-2¢"5).

k=0
Remarquons que pour k = 2,

. (2k+4+1)7

(X —2e" 5 ) = (X-—2e'3) = (X+2).
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Par conséquent,

32+ X° 1 : x
P(X) = = — JI x—2757).
16(2 + X) 16 kE{0.1.3,4)
Cette égalité est maintenant aussi valable pour X = —2, puisque c’est une égalité entre

polynomes.

Le théoreme fondamental de l’algebre nous permet donc d’écrire tout polynéme P(X) €
C[X] comme un produit de facteurs linéaires (X — wy), ou wy, est la k*™® racine de P(X). Le
facteur (X — wy) est lui-méme plus réductible. On les appelle des facteurs irréductibles.
Dans C[X], tout facteur irréductible est donc de degré 1 et réciproquement.

Qu’en est-il dans R[X]? On sait déja que P(X) = X2 + 1 n’est pas réductible sur R[X]. En
effet, sa réduction sur C[X] est

X241 = (X —4i)(X+1i),

mais c’est un produit de facteurs dans C[X]. Par contre, cet exemple nous suggere, que si un
nombre complexe w est une racine d’un polynome P(X) € R[X], alors le complexe conjugué,
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w en est aussi une. On peut en effet montrer le

Théoréeme 4.4.3. Soit P(X) = ap+a; X+...4+a,X"™ € R[X], un polyndéme a coefficients
réels. Si w € C est tel que P(w) = 0, alors P(w) = 0.

Démonstration. On a en effet

Plw) = 0 = 0 = P(w)
= ag+ a,w + ...+ a,w" = ag+aiw —+ ...+ a,w"
= @Gtaw—+...+a,w* = at+aw—+...+a,w" = P(w).

[

En conclusion, les racines complexes d’un polynome P(X) € R[X] a coefficients réels ar-
rivent toujours par paires conjuguées.

Cela nous facilite la factorisation. En fait, I'idée est maintenant pour un polynome P(X) €
R[X] de le considérer comme un polyndéme a coefficients complexes, puis de le factoriser
sur C[X], puis de remultiplier les facteurs complexes conjugués, pour obtenir des facteurs
irréductibles dans R[ X].
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Exemples.

1. |Factoriser P(X) =1 — ;X + X% — : X3 4+ 2. X* sur R[X] :

Ce polyndéme est a coefficients réels et on connait déja sa factorisation sur C[X] (voir
exemple 2 précédent) :

i (2k3-|5—1)7r

P(X) = 1—16 [] (x—2e ).

ke{0,1,3,4}

Ses racines arrivent effectivement par paires conjuguées :

i 197 i i3m i’ —i3T
2e’s avec 2e'5 = 2e 5 et 2e 5 avec 2e 5 = 2e 5
En multipliant les facteurs associés, on trouve
P(X) = E(X—Zezs)(X—2e"’5)(X—Ze”s)(X—Ze’S)

]- . 7T . 7T - 37 - 37
== (X2 — 25X —2e 5 X +4) (X2—2e"5X —2e %5 X +4)
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1 5 T . 3T
=16 (X* — 4cos(g)X +4) (X*— 4005(?)X + 4)

En insérant les valeurs cos(w/5) = %5 et cos(3m/5) = %g on trouve

P(X) = %6()(2 —(14+V5)X +4)(X%2—(1—-+V5)X +4).

2. |Factoriser P(X) = X* 4+ 2X? + 2 dans R[X].

Le discriminant de ce polynome est A = 4 — 2 -4 = —4. Ce nombre négatif indique
donc que P(X) n’a pas de racines réelles. Pourtant, il est réductible, méme sur R[ X!
Factorisons P(X) dans C[X]. On cherche ses racines en écrivant Y = X?2. Donc

P(X)=Y?4+2Y +2|,_,,, A= —4.

Les racines pour Y sont donc données par

—24./—4
Y, = iz = 143
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Ensuite, il faut chercher les racines complexes de —1 = ¢. On 1’écrit en polaire

- 57T

—1+4+i = 2ets , —1—1i = 2e7 .

Les racines complexes de ces nombres sont alors obtenus en prenant la racine des modules
et en divisant I’'argument mod 27 par 2. On obtient alors

La factorisation de P(X) sur C[X] s’écrit alors comme
P(X) = (X-V2F) (X-V2e¥) (X —V2e¥) (X — V2ei¥).

On remarque que le premier facteur est conjugué du quatrieme, et que le deuxieme facteur
est conjugué du troisieme. En les multipliant on obtient alors des facteurs de degré 2, irré-
ductibles sur R[X] :

P(X) = (X —+v2e7%) (X2 —2€/§cos(5§)x +v2) (X — v2e7FF)

~
— %ei%‘-X— %e_i%\—X
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. 4 3 ; 4 5913
= (XZ-— Qﬁcos(?)X +2) (X2 - Zﬁcos(?)X +2).

La procédure de factorisation d’un polynome P(X) € R[X] est donc
e Factoriser P(X) en produit de facteurs irréductibles dans C[X].
e Identifier les facteurs non réels et complexe conjugués.

e Multiplier les facteurs non réels et complexe conjugués deux a deux pour obtenir des
facteurs irréductible dans R[ X| de degré 2.

Existe-t-il des facteurs irréductibles dans R[X] de degré supérieurs a 2? On y répond par le

Théoreme 4.4.4.
Les facteurs irréductibles dans C[ X | sont les polynémes de degré 1.

Les facteurs irréductibles dans R[X] sont soit les polynémes de degré 1, soit les poly-
nomes de degré 2, sans racines réelles.

Tout polynéme P(X) € R[X] de degré 3 ou plus est donc réductible dans R[ X].
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Démonstration. Le cas de C[X] est une conséquence du théoreme fondamentale de 1’algebre.

Soit maintenant un polynome P(X) € R[X]. Soit n son degré et k < n le nombre de racines

réelles de P(X).

Puisque les racines non-réelles de P(X) apparaissent par paires complexe conjuguées, on

doit avoir que n — k, le nombre de racines non réelles, est un nombre paire.

En considérant P(X) comme un polynéome dans C[X], sa factorisation aura donc k facteurs

de degré 1 réels et (n — k)/2 facteurs non réels ainsi que leur (n — k) /2 facteurs complexe

conjugueés.

Chaque facteur non réel peut donc étre multiplié par son facteur conjugué. Le résultat sera

un facteur de degré 2 a coefficients réel. Ainsi, P(X) sera le produit de k facteurs réels de

degré 1 et de (n — k) /2 facteurs réels de degré 2.

Aucun facteur de degré 3 n’apparait dans cette factorisation, d’ou la conclusion du théoreme.
[
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4.5 Les fonctions complexes élémentaires
Tout comme les polynomes a coefficients réels, les polynomes a coefficients complexes peuvent

étre vus comme des fonctions de C vers C. Qu’en est-il des fonctions déja étudiées comme les
fonctions trigonométriques ou hyperboliques ?

On a déja ouvert la bréche en remarquant, grace aux développements limités, que

. "1
b _ . T (2h\E
e’ = Mm@
=0
= lim ( ) - COREEDY _ (ib)2+1)
T 0<a<n (21)! 0<2l+1<n (21 +1)!
(_1)l 21 . (_1)l 21

= lim -~ b + 1 A
n—oo (Oggl:gn (2[)! 0§2lz—|—:1§n (2l -+ 1)! )

= cos(b) + ¢ sin(b).
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Pour I’exponentielle réelle, on a que

Vo,y €R, exp(z + y) = exp(x) exp(y).

Si on veut garder cette propriété pour un nombre complexe z = a + b aussi, on est porté
vers la

Définition 4.5.1.
Soit z = a 4+ tb € C on définit alors

exp(z) = exp(a + ib) := exp(a) exp(ib) = exp(a)( cos(b) + isin(b)).

Propriétés.

1. |z — exp(z) est une surjection de C sur C*.

En représentation polaire, on écrit pour z # 0
z = |z|le** = exp(n]|z|)e”* = exp(ln]|z|+ ip.)

Ainsi,
exp {z} = {In|z|+i(p.+ 2kn) : k € Z}
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On a donc des valeurs négatives ou imaginaires pour I’exponentielle complexe :

—1= exp(i3n) , 1+i= exp(vV2+i97/4)

2. |Vz € C, exp(z) = exp(z+ 2mi).

En reprenant la définition et en écrivant z = a + @b, on a bien

exp(z 4+ 2wt) = exp(a+ ib+ i2m)
= exp(a)exp(i(b+27) = exp(a)(cos(b+ 27) + isin(b + 2m))
= exp(a)(cos(b) +isin(b)) = exp(a)exp(ib) = exp(z).

L’exponentielle complexe a donc une périodicité de 127.

3. |Vz,w € C, exp(z+ w) = exp(z) exp(w).
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En effet, partant de la définition, on a pourz = a + tbetw = x + 1y :
exp(z +w) = exp(a—+ib+ x+ iy)
= explat+z+i(b+y))= exp(a+x)exp(i(b+y))
= exp(a + x) exp(ib) exp(iy) = exp(a)exp(x) exp(ib) exp(iy)

= exp(a + tb)exp(x + iy) = exp(z)exp(w).

4. |exp(z)|, g redonne I'exponentielle réelle.

Siz € R, alors z = a + 10 et par conséquent exp(z) = exp(a + 10) = exp(a).

5. |Vz € C, exp(z) = exp(Z).

Appliquant les définitions, on a pour z = a + b :

exp(z) = exp(a+1ib) = exp(a)exp(ib)
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= exp(a)exp(ib) = exp(a) (cos(b) + isin(d))
= exp(a) (cos(b) —isin(b)) = exp(a) exp(—1ib)
= exp(a—1b) = exp(z).

Comme exp(ty) = cos(y) + ¢sin(y), on voit que ’exponentielle complexe, quand on restreint
son argument sur les imaginaires ¢R, implémente la fonction cosinus par sa partie réelle et
sinus par sa partie imaginaire.

Quand on restreint I’argument de I’exponentielle complexe aux réelles, on retrouve 1’expo-
nentielle réelle.

On voit donc que grace aux polynomes de Taylor et aux nombres complexes, on arrive a
synthétiser trois fonctions réelles en une fonction complexe !

Les fonctions hyperboliques étaient les parties paires et impaires de I’exponentielle réelle. On
peut alors, par parité, généraliser cela pour I’exponentielle complexe aussi :
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Définition 4.5.2. Pour z € C, on pose

cosh(z) := % (exp(z) 4+ exp(—=2)) ,
sinh(z) := % (exp(z) — exp(—2z2)) .

A nouveau, comme la restriction de exp(z) a des valeurs réelles redonne 1’exponentielle
réelle, la restriction de cosh(z) et de sinh(z) a des valeurs réelles redonnent les fonctions

réelles cosh(x) et sinh(x).

Propriétés.

1. |cosh(z) = cosh(Z) et sinh(z) = sinh(2) :

En partant des définitions et en utilisant que exp(Z) = exp(z), on trouve que

cosh(z) = %(exp(z) + exp(—z))
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1 1 B .
— §(exp(z) + exp(—z)) = §(exp(z) + exp(—2z))

— %(exp(z) + exp(—%z)) = cosh(z).

Le cas du sinus hyperbolique se traite de maniere tout a fait similiaire.
2. |Pour z = a + tb, on a cosh(z) = cosh(a) cos(b) + i sinh(a) sin(d) :

On peut calculer directement les parties réelles et imaginaires :
1
cosh(z) = 2 (exp(2z) + exp(—=2))
1 .. ..
= (e* (cos(b) + isin(b)) + e~ * (cos(—b) + isin(—b)))

— % (cos(b) (e* +e™?) + isin(b) (e® —e™?))

= cos(b) cosh(a) + isin(b) sinh(a)
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On a une identité similaire pour le sinh(z) :

sinh(z) = sinh(a) cos(b) + 2 cosh(a) sin(b).

La vérification de cette derniére égalité est laissée en exercices.

3. |Vz € C, cosh?(z) — sinh?(z) =1 :

La vérification de cette égalité se fait exactement comme dans le cas réel, en utilisant
notamment la parité des fonctions hyperboliques :

cosh®(z) — sinh®(2z) = (cosh(z) — sinh(z)) (cosh(z) + sinh(z))

= (cosh(—z) + sinh(—2)) (cosh(z) 4+ sinh(z)) = exp(—z)exp(z) = 1.

4. |Vz,w € C, cosh(z 4+ w) = cosh(z) cosh(w) + sinh(z) sinh(w) :

La vérification de cette égalité utilise la méme stratégie que dans le cas réel et est laissée
en exercices, en méme temps que la suivante :

5. |Vz,w € C, sinh(z + w) = sinh(z) cosh(w) + cosh(z) sinh(w) :




EPFL - CMS Analyse 11 p.212

6. |cosh(z) etsinh(z) sont des surjections de C vers C :

En effet, si w € C on peut résoudre cosh(z) = w. Autrement dit, la pré-image par
cosh(z) de I'’ensemble {w} n’est jamais vide, ce qui montrera la surjectivité.
En effet,

cosh(z) =w < % (exp(z) + exp(—2)) = w

& exp(z) +exp(—z) = 2w <& exp(z)’+1 = 2wexp(z)
& exp(z)? —2wexp(z)+1 = 0

& exp(z) =wE Vw? — 1.

Cette derniéere égalité est toujours possible, puisqu’on a montré que exp(z) était une
surjection de C vers C* et que w & v/w? — 1 n’est jamais nul. En effet,

wEtywr—-1=0 = w=Fyw?-1
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ce qui est absurde.
On montre de maniere similaire que sinh(z) est une surjection de C vers C.

7. |cosh(z) et sinh(z) sont périodiques de période 12 :

En effet, pour z € C et par la périodicité de I’exponentielle complexe,

cosh(z 4+ i2m) = % (eaale b i) b el s — )
= (exp() +exp(—2) = cosh(z),

sinh(z + i2m) = % Gl ) el )
= (exp(x) —exp(~2)) = sinh(z).

On remarque maintenant une certaine curiosité : si z = 2« est un nombre imaginaire pure,
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alors

cosh(tar) = % (exp(icr) + exp(—ic))
= % (cos(a) + isin(a) + cos(—a) + isin(—a))
= 52 cos(a) = cos(a),

sinh(ta) = % (exp(iax) — exp(—iax))

P (cos(a) + ¢ sin(a) — cos(—a) — isin(—a))
= 52'&' sin(a) = ¢sin(a).

Les fonctions sin et cos réelle ne sont donc rien d’autre que les fonctions sinh et cosh pour
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des arguments imaginaires! Ceci nous conduit a poser la

Définition 4.5.3. Pour z € C, on pose

cos(z) := cosh(iz),

sin(z) := —tsinh(¢z).

Cette définition nous assure donc que pour des valeurs z réelles, on retrouve bien nos fonc-
tions trigonomeétriques usuelles. On retrouve d’ailleurs aussi certaines propriétés familieres :

Propriétés.

1. |Vz € C, cos?(z) +sin®(z) =1 :

En suivant les définitions, on trouve
cos(z)? +sin’(z) = cosh?(iz) 4+ (—isinh(iz))?

= cosh®(iz) —sinh®(iz) = 1.
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2. |Vz,w € C, cos(z+ w) = cos(z) cos(w) — sin(z) sin(w) :

Toujours en suivant les définitions, on trouve
cos(z +w) = cosh(iz + 1w)
= cosh(2z) cosh(i2w) + sinh(zz) sinh(zw)

= cos(z) cos(w) + (¢sin(z))(¢sin(w)) = cos(z) cos(w) — sin(z) sin(w).

3. |Vz,w € C, sin(z + w) = sin(z) cos(w) — cos(z) sin(w) :

Encore en suivant les définitions, on trouve
sin(z +w) = isinh(iz + 1w)

= tcosh(zz) sinh(zw) 4+ ¢sinh(¢z) cosh(zw) = cos(z) sin(w) + sin(z) cos(w).

4. |sin(z) et cos(z) sont des surjections de C vers C :
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Vérifions que sin(z) = w a toujours une solution pour tout w € C. Comme sin(z) =

—1sinh(¢z), cela revient a trouver des solutions a sinh(iz) = ‘w. Or, sinh est une
surjection de C vers C. Il existe donc un w’ € C, tel que sinh(w’) = iw. On pose alors
z = —iw’ et on a bien

sin(z) = —¢sinh(éz) = —isinh(w’) = w.

Le cas pour cos(z) est similaire et se déduit de la surjectivité de cosh(z).

5. |sin(z) et cos(z) sont périodiques de périodes 2 :

Cela suit de la périodicité des fonctions cosh(z) et sinh(z) qui est de i2w. En effet,
sin(z + 27w) = ¢sinh(éz +42w) = isinh(iz) = sin(z),

cos(z+2w) = cosh(iz+12w) = icosh(iz) = cos(z).
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5 Introduction aux équations différentielles

5.1 Cadre général

Une équation différentielle est une équation dont l’'inconnue est elle-méme une fonction. On
a par exemple; si x(t) est le déplacement mesuré par rapport a un point de référence d’un
objet attaché a un ressort au cours du temps et k est la constante de ce ressort, alors

' = —kx

sera I’équation du mouvement associée (pour autant que le déplacement est mesuré dans un
référentiel dit d’inertie, notion qu’on approfondira plus au cours de 1’étude de la relativité).
La fonction x(t) est 'inconnue et si on arrive a résoudre cette équation, on sera en mesure
de décrire tout le mouvement de cet objet soumis a la force de rappel du ressort.

En mécanique générale, ’accélération d’un objet est proportionnel aux forces qui lui sont
appliquées. Celles-ci peuvent dépendre de la position de I'objet (champ de gravitation, élec-
trique, etc), ou encore de sa vitesse (frottement). On a ainsi en général, que si x(t) décrit la
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position de 1’objet, on devra résoudre 1’équation
= F(xz,x',t),

qui est une équation différentielle pour la position . En général, nous posons la

Définition 5.1.1. Une équation différentielle ordinaire de degré n est une équation

d da"
F(wayaayw"?%'y) = 0,
ou F : D — R est une fonction avec D C R"™2. Une solution a cette équation est une
fonction f : I — R, définie sur un intervalle ouvert I, n fois dérivable sur celui-ci et telle que
(z, f(x)y..., dmnf(a:)) € D pour tout x € I.
Une équation différentielle ordinaire explicite de degré n est une équation

dn d dn— 1

L =Gy, —y, ...,
gy = G @Y s o

Y),

ou G : E — R est une fonction avec E C R®*1. Une solution a cette équation est une fonction
7 . n 1

f : I — R, n fois dérivable et telle que (x, f(x),..., d‘;n ;f(x)) € E pour tout x dans

I'ouvert I C R.
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La question de l'existence et de l'unicité de tels équations est une question classique en
mathématiques. Un premier résultat a été obtenu par Peano en 1886 :

Théoreme 5.1.2. Soit D C R X R un ouvert et soit G : D — R une fonction continue. Alors
I’équation
y' = G(x,y), y(xo) = Yo, (o, Yo) € D

possede une solution f : I — Rou xo € I et I est un ouvert de R.

I1 est hors de question de prouver ce théoreme ici. Remarquons que le théoreme ne dit rien sur
I'unicité de la solution. Il existe d’ailleurs des exemples ou on peut avoir plusieurs solutions,
méme si on garde les conditions initiales yo = y(x() identiques. On donnera comme exemple
I’équation y’ = 3(/y)? avec y(0) = 0, qui possede les solutions y = 0 et y = 5.

Si on veut l'unicité, il faut ajouter des conditions sur G plus séveres. On a par exemple le
théoreme de Cauchy-Lipschitz :

Théoréme 5.1.3. Si G : E — Ravec E C R? un ouvert est telle que pour tout (x1, z2) € FE il
existe un ouvert U S (x1, ) et un nombre positif M tel que pour tout couple (¢, w), (t,v) €
U CE, |G(t,w)— G(t,v)| < M|w — v|, alors I'équation y' = G(x,y) avec y(xo) = yo et
(0, Yo) € E possede une unique solution sur un certain intervalle ouvert I 3 xo.

Il peut aussi paraitre étonnant de constater qu’il a fallu attendre presque deux siecles pour
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obtenir un tel résultat. En effet, le sujet des équations différentielles a été introduit vers le
début du dix-huitieme siecle afin de calculer et de prédire des mouvements d’objets soumis a
des forces. Ceci indique la difficulté de cette discipline.

Pourtant, les équations différentielles ont depuis considérablement étendu leur domaines
d’application et il ne reste presque plus de disciplines scientifiques ou elles n’apparaissent
pas sous une forme ou une autre. Des découvertes sur leur natures précise sont souvent
célébrées comme des avancées centrales en mathématiques et récompensées par des prix
prestigieux.

Nous allons ici nous bornés a une introduction a ce vaste sujet et étudier des équations diffé-
rentielles pour lesquelles des résultats sur les solution sont connues.
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5.2 Les équations différentielles linéaires de premier ordre

La premiere classe d’équations différentielles que nous allons étudier sont les celles dites
linéaires. On va en plus commencer par celles dites de premier ordre,. Cela signifie, que dans
I’équation différentielle, seul vont apparaitre les dérivées de premier ordre.

Définition 5.2.1. Une équation différentielle ordinaire et linéaire de premier ordre
(EDOL1) est une équation du type

y' + py = q,

ou p,q : D — R sont continues et D C R.

Une fonction f : I — R en est une solution, si I C D estun ouvertde Retsi f'+pf = q
pour tout x € 1.

Une EDOL]1 est dite homogene si g = 0.

Une solution f d’'une EDOL1 est donc dérivable sur un ouvert I. La question est alors de
savoir, dans quels cas une solution existe et si elle est unique. On va commencer par la partie
la plus simple d’'une EDOL1, c’est a dire qu’on va étudier les équations homogenes : soit
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p : D — R continue et considérons I’équation différentielle

y' + py = 0.

Remarquons que si f et g sont deux solutions a cette équation, définies sur un ouvert I C D,
alors f + Ag sera encore une solution de cette équation pour n’importe quel A € R. C’est la
I’origine de I’appellation de ces équations.

En effet

(f+29) +p(f+Ag) = f +Ag"+pf+pAg
= f'+pf+A@ +pg) =0.

Les solutions a une EDOL1 homogene peuvent donc se combiner linéairement. Mais comment
en trouver une ?
mettons pour l'instant de c6té la rigueur mathématique et essayons de travailler I’équation
y’ + py = 0. Essayons de la résoudre en séparant fonctions connues, i.e. p et fonctions
inconnue, i.e. y :

Yy
yY+py=0 & y=-py < ;z—p-
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On ne se soucie pas pour l'instant de savoir, si y # 0 et faisons le pari que tout ira bien.
Pour autant que y > 0, on reconnait % comme etant % In(y). A partir de 1a on procede a des
calculs pour isoler y :

Yy’ d ’
T =—p & - ]n(y) = —-p < ln(y) = A — / p(t)dt
vy dx o

& y=Aexp (—/ p(t)dt) , avec A € R.

(¢

A posteriori, on voit que notre hypothese y # 0 s’est avérée correcte, pour autant que A # 0.
On peut d’ailleurs vérifier que y(x) est en effet une solution a y’ + py = 0 :

= Aew (- ijww)%(— Ljp<t>dt) — y(=) - (—p())

& Yy +py=0.
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De plus, on a )
0
y(rg) = Aexp <—/ p(t)dt) = A.
o
On vient donc de trouver une solution a I’EDOLI1, pour autant que p soit continue sur un
intervalle qui contient oy et x. En fait, sous de telles hypotheses, on vient de trouver toutes
les solutions a I’EDOL1 homogeéne :

Théoreme 5.2.2. Soit p : I — R une fonction continue définie sur l'intervalle ouvert I et
soient xg € I et yo € R. Alors

f(x) := yoexp(— /33 p(t)dt)

est I'unique solution a ’'EDOL1 homogene f’ 4+ pf = 0 définie sur I telle que f(xo) = yo.

Démonstration. On a déja montrer que f était une solution a ’'EDOL1 homogéne

y' +py =0 avec f(xzo)= Yo

Soit maintenant une solution a cette EDOL1 homogene, telle que f(x¢) = yo. On considere
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la fonction _
g:I >R, x—g(x):= f(x) exp(/ p(t)dt).

a@ = o (t@ex ([ par))

xr

On a alors,

— f(x)exp (/: p(t)dt) + f(z)p(x) exp (/m

(0]

p(t)dt)

(¢

— oo ([ pdt) (@ + p@f@) = o

(0]

Sur un intervalle ouvert, les seules fonctions de dérivée nulle sont les fonctions constantes.
Ceci implique que g(x) = A = cste. On a donc que

f@) = aexp (- [ par)

0
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pour un certain A réel. De plus,

F(0) = A exp ( /w " p(t)dt) — A

0

Si (x0,Yo) € I X Retsi f estune solution a ¥y’ + py = 0 avec f(xg) = yo, on voit qu’on doit
avoir A = yp. ]

On a donc completement résolu le probleme d’une EDOL1 homogene. Le couple (xg,¥yo) est
appelé une condition initiale pour ’'EDOL1 homogene.
Remarques.

1. La condition que I soit un intervalle est cruciale a l'unicité de la solution. En effet,

considérons 1’équation différentielle
, 1
Yy ——y=20
||

définie sur R*. Imposons encore la condition initiale xy = 1 et yo = 1. On a alors deux
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solutions a cette équation sur R* qui satisfont la méme condition initiale :

€T six >0 T sixzx >0
Py = {7 S 20 gy = 1 s> 0
= sixz <0 0 six <0

2. L'ensemble des solutions a 'EDOL1 homogéne y’ 4+ py = 0 sur l'intervalle ouvert I sans
restrictions sur la condition initiale s’écrit comme

S = {Aen(x), : A €R},

avec pp(x) = exp(— f;o p(t)dt) et xg € I arbitraire. En fait, cela rappelle la description
d’une droite parametrisée en géomeétrie analytique.

3. Deux choix distincts d’'un xo sur l'intervalle I vont donner deux solutions ¢y (x) diffé-
rentes, mais proportionnelles entre elles : en effet, soient g et £y € I. On aura alors

on(@) = exp (- /mjpu)dt) ~ o (- /:’p(t)dt— /;p@)dt)
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= exp (— /:p(t)dt> exp <— [Emp(t)dt> = Aén(x).

. 7 \u g
~" ~

cste (@)

Exemples.

1.

Un exemple de la physique

Considérons un probleme qu’on rencontre
en électricité, qui est celui d’'un condensa-

teur en décharge. On suppose qu’on ait un —__— C
circuit, dont le fil relie les deux plaques d’un
condensateur.

Le fil a une résistance de R Ohm et le condensateur une capacité de C. Supposons de
plus une charge Qo placée sur le condensateur a un temps initial £, = O.

On va laisser cette charge se propager le long du circuit. Au temps ¢, la tension au bornes
du condensateur sera de U(t) = %
Les lois de 1’électricité nous disent, que

U(t) = RI(t),
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ou I(t) est le courant dans le circuit. Il faut choisir un sens au courant. On le choisira
dans le sens trigonomeétrique.

Si on chosit ce sens pour le courant, celui-ci correspond a la variation de charges par
unité de temps, i.e.

d
I(t) = ——Q(t
®= ——Q
Le signe négatif vient de ce que le courant augmente, si le condensateur se décharge.
On a ainsi
Q(t) ., Q
RI(t) —m—— = 0 <«— — =0
(t) C @+ RC

Ceci est une EDOLI1 (on le reconnait malgré la notation chere a la physique) homogene,
et on en connait donc toutes les solution, qui auront la forme

Q) = Aexp(—7t),

ou nous avons posé 7 := (RC)™'. Q(0) = Qo est notre condition initiale, qui nous
conduit a poser

Q(t) = Qoexp(—Tt)
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Physiquement, cela signifie, qu’un condensateur laissé libre se déchargera exponentiel-
lement rapidement, avec un temps caractéristique 7 qui est inversement proportionnel

a la résistance du circuit et a la capacité du condensateur.

2. |Résoudre y’ + cot(x)y = 0, y(3) = 1.

C’est clairement une EDOL1 homogene, avec p(x) = cot(x). On sait donc que toutes
les solutions sur 'intervalle |0, 7v[ seront du type

f(x) = Aexp <— /: cot(t)dt) = Aexp (— /: ::((:)) dt)
—  exp <— In(sin(z)) + ln(sin(g))) — Sin)zw).

Comme on cherche la solution avec y(3) = 1, onpose A =1 eton trouve

1

sin(x)

flx) =
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3. |Trouver toutes les fonctions f € C*(R%), telles que f(x¥) = yf(x).

Si on dérive une fois cette équation selon y on trouve
d ” d
f@¥)=yf(x) = ——f(=¥)=——yf(z)
dy dy

d d
< f’(wy)@wy = flz) < f’(wy)@eyln(w) = f(=)

& @) n@)e™™ = f@) o f(2¥) @) = f(e).
On pose maintenant y = 1 et on a par conséquent
f(z)zn(z) = f(z).
pour x > 0 cette équation peut se réécrire comme

1

x In(x)

£(@) -

f(w) =0,
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1
xln(x)”

La présence de < dans p(x) est heureuse, car c’est la dérivée de In(z). Ainsi,

qui est une EDOL1 homogéene sur Rj_ avec p(x) =

1

p@) = o = goln(lint)

Les solutions a notre EDOL1 homogéne semblent donc étre la fonction nulle et
Aexp(In(|In(z)[)) = Al In(z)|.

Mais attention : le théoreme précédent nous dit que la solution a une EDOL1 homogeéne
est proportionnelle a

o(@) = exp(— / " p(t)dt).

@ (x) est donc définie strictement sur un intervalle sur lequel p(x) est intégrable, donc
définie. Dans notre cas, p(x) = —ﬁ(w), qui n’est pas défini en x = 1. On a donc deux
familles de solutions :

e Sur l'intervalle I; =]0, 1[ : sur cet intervalle, |In(x)| = — In(x) et les solutions a
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I’EDOL1 homogeéne s’écrivent comme

p(x) = —Aln(xz), A ER.

e Sur l'intervalle I; =]1,00[ : sur cet intervalle, | In(x)| = In(x) et les solutions a

I’EDOL1 homogéne s’écrivent comme

() = pln(z), peR.

On voit en fait que deux éléments de ces familles peuvent facilement se raccorder en
= 1 sion choisit g = —A. On aura alors des solutions dans Cl(Ri), qui seront de la

forme
p(x) = Aln(x), X ER.

Ce sont la les seules fonctions continiment dérivables sur R% et qui vérifient ¢(z¥) =
ye ().

Revenons a notre EDOLL. Il faut encore discuter le cas inhomogene, i.e. quand g # 0.
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On va a nouveau chercher une solution particulieére, puis en conclure la forme générale d’'une
solution a cette équation.

On sait déja, que App(x) est une solution de 1’équation homogene. Supposons maintenant
qu’on écrive

f(x) := AMx)pn(z),

ou A(x) est une fonction dérivable sur un ouvert I C D. On a alors

=" XN@)en(®) + A(x) g, (),

et si on impose que f soit une solution de I'EDOL1, on doit avoir

X(@)pn(x) + A@)¢ (z)n +pP(2) M(@)pn(z) = q(=).
() (@)

Mais ¢} () + p(x)pn(x) = 0, et on doit donc avoir

N(x)en(z) = q(z)

q(x)
®n(z)

& MN(x)
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Cette derniere équation est facile a résoudre. En effet, si I est un intervalle ouvert et si
xo, x € I, on a comme solution

Ax) = /m a(?) dt

o Ph (t) ,

qui est définie sur tout I. On pose maintenant

op(@) = Az)p(a)
— o= [ pwan ([ awyes( | ple)ds)at),

qui sera une solution particuliere a I'EDOL1 y’ 4+ py = q, définie sur un intervalle ouvert I.
De plus, ¢,(x9) = 0, puisqu’alors la deuxieme intégrale est réduite a un intervalle de lon-
gueur nulle.

La technique qu’on vient d’illustrer est appelée la variation des constantes. Cette solution
particuliere génere en fait toutes les autres, comme le montre le
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Lemme 5.2.3. Si| f|et|g]|sont des fonctions dérivables sur un ouvert I C D et qu’elles

sont solutions de ’'EDOL1 inhomogene

v +py =gq

avec p,q : D — R des fonctions continues, alors

f—g

gene
Yy +py =0

sur 1.

est solution de I’'EDOL1 homo-

Démonstration. Par un calcul direct,

(f—9)+p(f—9) = f—gd+p(f—9)

= f'+pf—-("+pg) =

q—q =20
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On sait des lors, que toute solution de I'EDOL1 ¢y’ + py = q doit s’écrire sous la forme

J = pp+ Apn,

avec ¢, une solution particuliere et ¢; une solution a I’équation homogene. On a donc le

Théoreme 5.2.4. Soit p,q : I — R deux fonctions continues sur un intervalle ouvert I.
Alors sur I, toute solution f(x) a 'EDOL1 y'(x) + q(x)y(x) = gq(x) est de la forme

f(x) = pp() + Apn(x),

ou

* q(t) g

on(@) = exp (= [“pt)at) . ey@) = en(@) [ L

0

De plus, si (xg,yo) € I X R, alors

Y(x) = ¢p(x) + Yown()

est 'unique solution telle que y(xo) = yo
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Démonstration. On sait déja que
f = ©pt+Apn

est une solution a ’'EDOL1 inhomogene.
Si f est dérivable sur I et est solution de I’EDOL1 inhomogéne, alors on sait par le lemme
précedent que toute f — ¢, est solution a 'EDOL1 homogene. On a donc

F—vp = A <& f= op+ Aph.

De plus, si f(xg) = yo et comme p(xg) = 0 et pr(xp) = 1, on doit poser A =1y qui
donnera donc l'unique solution a ’'EDOL1 vérifiant la condition initiale (xo, yo). O

Exemples.

1. |Condensateur forcé

On reprend I’exemple du condensateur qui se décharge mais cette fois avec en plus une
source de tension U :
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En choisissant a nouveau le sens trigonomé-
trique pour le courant, on arrive au bilan des

tensions: U T() —C

RI—U—9:O.
C

I’équation du mouvement pour les charges devient

Q(t) d . Q U
—U—-———-—R—Q(t) =0 <& —_— = ——.
C dtQ( ) @+ RC R
Ceci est une EDOL1 inhomogene, dont la solution a la partie homogéne a déja été calcu-
lée : )
x = exp(—T7t avec T = ——.
en(x) p(—7t), RO

I1 suffit donc de trouver une solution particuliere a cette équation par la variation des
constantes. On trouve

w0 = ey v () o

Ph 1/en S—~—
q
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= exp(—7t) <—% exp(rs)]iié) = eXp(—Tt)% (1 — exp(Tt))

=UC (exp(—7t) — 1).
La solution satisfaisant Q(0) = Qo sera alors
Q(t) =UC (exp(—71t) — 1) + Qoexp(—T7t).

On voit des lors, qu’a des temps tres grand, la charge va se stabiliser a une valeur de
—UC.

2. |Retrouver I'EDOL1 a partir de ses solutions

On sait qu'une EDOL1 a comme ensemble solutions

S = A{ep+ Apn, : A ER},

ou ¢, est une solution particuliere a I’'EDOL1 et ou ¢}, en est solution de la partie homo-
gene.
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Supposons alors que cet ensemble soit
—,: A E R},
1+ew }

On peut y lire les solutions homogenes et particuliere :

1 e *

@) = oo e@ =

Si on dérive la solution homogene on trouve :

d () d 1 e’

_ €T — — —

dz " dr1l+ e® (14 e*)?
e’ 1 e’

= = — (Ph(m),

_1—|—e“’1—|—e“3 1+ e”
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La partie homogéne de notre EDOL1 doit donc étre

@y, () _I_l 1 en

N——
p(x)

en(x) = 0.

On insere maintenant ¢,(x) dans cette équation pour obtenir le terme inhomogene
q(z) :

@+ pplm) = (LT )y e
90p z Pr\F - dr 1+ e* 1+erl+ e*

_|_
—x? (1 _|_ ew) —e mzew —I_ ea:e—a:2
(1 + e*)?2 (14 e*)?

— (1 n em)z (x +xe”) = q(x).
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On a donc retrouvé notre EDOL1 :

2
e”* —2xe™*

1+ emy(a:) B (1 er)

y'(x) —

Remarque. On vient de voir que pour une EDOL1 définie sur un intervalle ouvert I, I’en-
semble des solutions est S = {f : I — R|f = ¢, + Ap}. En fait, ceci rappelle I’équation
vectorielle d'une droite. On peut en effet voir ¢, comme un point fixé dans S et ¢ comme
un vecteur directeur. Cette droite est évidemment pas une droite dans R™, mais plutot dans
I’espace des fonctions définies sur I, qui est un ensemble bien plus vaste.
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5.3 La séparation des variables

La suite logique est maintenant d’étudier des équations différentielles qui ne seraient pas
linéaires. Il y a un cas de non-linéarité bien connu :

Définition 5.3.1. Une équation différentielle ordinaire a variables séparées, ou une
EDOv.s., est une équation différentielle qui est sous la forme

f(@)h(f(x)) = g(=),
oug: D — Reth: E — R sont des fonctions continues.
f est une solution de cette équation si
e f: I — R estdérivable sur un ouvert I C D,
e son image est inclue dans E : {(f(x)|x € I} C E,

o et h(f)f' = g(o).

On va d’abord voir ce qu’une telle solution implique : supposons donc que f : I — R soit une
fonction qui satisfasse les trois derniers points de la définition.
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Supposons encore que f(xg) = yo avec xg € I et yo € E. On a alors

h(f@)f' (@) = g(@) = /mh(f(t))f’(t)dt - /wg(t)dt

0

f(x) N
F(t)=y, f'(t)dt=dy /yo (y)dy 5 g(t)

C’est la d’ailleurs I’origine de I’appellation séparation des variables : on peut, formellement,
écrire une EDOv.s. en séparant les termes en y des termes en .
Si H (y) est une primitive de h(y) et G(x) une primitive de g(x) on alors que

h(f(x))f'(z) = g(x) = H(f(x))—H(y) = G(z)— G(zo)
& H(f(z)) = G(=)—G(zo) + H(yo)

Pour autant que H soit inversible, la solution sera ainsi donnée par
f(z) = H(G(z) — G(z0) + H(zo))-

On a donc déja une bonne idée d’une solution a I’équation f’(x)h(f(x)) = g(x). On va main-
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tenant dériver cette solution de maniere rigoureuse, ajouter les conditions pour l’existence et
étudier son unicité.

Théoreme 5.3.2. Soient :
® g : I, — R une fonction continue sur l'intervalle ouvert I,.
e h : I, — R* une fonction continue sur l'intervalle ouvert I,.
® (zo,y0) € It X I.

Il existe alors une fonction f : J — I, définie sur un intervalle ouvert xo € J C I, telle
que f(xo) = yo et telle que

vz € J, h(f(z))f'(x) = g(=).

Qe plus, si f c J — 1, est une ]ionction définie sur un intervalle xo € J C I, telle que
f(xo) = yo et telle que h(f(x))f = g(x) pour x € J, alors

Vvee JNJ, f(z)=f(x).

Démonstration. Comme Iy est un ouvert et comme yo € I, on peut pour y € I, définir la
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fonction

H(y) := /yy h(s)ds.

(0]

Cette fonction est clairement continue, dérivable de dérivée h et H(yo) = 0 € Im(H ). De
plus, comme h(y) # 0 pour tout y € I, on a que H(y) est strictement monotone sur I. Par
conséquent,

H':Im(H) — I, existe et
1 1

T ey Ty

En plus, comme H est une bijection continue, Im(H) est elle-méme un intervalle ouvert.

On définit maintenant une fonction G : I; — R sur l'intervalle ouvert I; 3 x

G(z) = /mg(t)dt.

0

Clairement, G est continue et G(xy) = 0. Ainsi, la pré-image G~*[Im(H)] est un un ouvert
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non-vide, puisqu’on a ¢y € G~ [Im(H)].

On définit alors l'intervalle J comme le plus grand intervalle ouvert qui contient x( et tel que
J C G HIm(H)].

Sur cet intervalle on pose

f(@) = H(G(z)).
Manifestement, f(x¢) = yo. Par un calcul directe, on obtient
d 1 , B 1
N 10~ S T(<7e5)) R TV 105 s

d’ou on déduit que f'h(f) = g.

Soit maintenant f o J — I, une fonction définie sur un intervalle ouvert ¢ € J, telle que
Fh(f) = g et telle que f(zo) = yo.
Alors, pour z € J N J, H(f(x)) = fyj;(m) h(s)ds est bien définie, puisque f est continue et
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que donc Im( f) est contenue dans un intervalle ouvert de I, et contient y,. Mais alors,

) Fa . )

H(f(z)) = / h(s)ds = / h(f(£)F(t)dt ( substitution s = F(£))
x x F(x)

= [ ewat = [ hg@rwa = [ heds = HE@),

0 0

et comme H est une bijection, f(x) = f(x). O
Fixons alors la marche a suivre pour résoudre I’EDOv.s.

h(y)y = g, f(zo) = yo,
sous les hypotheses que
e g : I, — R une fonction continue sur l'intervalle ouvert I;.

e h : I, — R* une fonction continue sur l'intervalle ouvert I,.

o (3307y0) € I, X I.
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1. Poser G : I; — R par

G(x) := /wg(t)dt.

2. Poser H : I, — R par
Yy
H(y) := / h(s)ds.
Y

3. Chercher le plus grand intervalle ouvert J tel que g € J et J C G~ '(Im(H)).

4. La solution f(x) recherchée sera
Jo>xz — f(x) = H 'Y(G(x)).

Exemples.

1. Trouver la solution a I’EDOwv.s.

, cos(y)
Yy

telle que y(1) = .
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Commencons par la mettre sous forme séparée :

o1 1
Y —
cos(y) x
On identifie
1 1
glz) = — , h(y) = et (€0, yo) = (1, 7).
x cos(y)

Pour se placer dans les hypothéses de la marche a suivre, on doit choisir pour les inter-
valles I et I :

g = 1 €& Il, = I1 = R:_,

Yyo=mwecl,, = I,= ]5’7[°

On suit maintenant les quatre points de la résolution :
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1. Pour x > 0,
|
G(zx) = / Zdt = In(x)
1

T 37

2. Poury E]E’ > L

H(y) = L o ds = /: ccc?ssz((i)) = /: 1 —cossiilsz)(s)ds

cos(s)

Y cos(s) 1 1
ds ar éléments simples
/ 2 (1 — sin(s) + 1+ Sin(s)) P P

™

1 (1 —|—sin(y)) |

1 . i
5 (In(1 + sin(y)) — In(1 — sin(y))) = 2 1 — sin(y)

3. Comme la dérivée de H(y) est cosl(y) et pour y € I, =]%, [ celle-ci est toujours

strictement négative, on a que H (y) est strictement décroissante.
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Un calcul de limite montre que

1. /14 si 1. /2°
lim H(y) = lim —ln< +an(y)) — _—n (—> — sy
y— I+ y—It 2 1 — sin(y) 2 0+
1. /14 si 1. /ot
lim H(y) = lim —ln( +an(y)) — Z <—) -
- 3 — 2 1 — sin(y) 2 2~

3
Y= Y=

On a donc que Im(H) = R et donc

G'(Im(H)) = I '(R) = R:.

On a alors
g = 1 e J = Rj_.

4. Sur J = RZ la solution a 'EDOv.s. est donnee par

fl®) = H(G(x)).
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Calculons alors H~(z) : pour y €]%,%"[, ona

B o 1 N 1 4 sin(y)
o= H) e e =g (1—sin<y))
& exp(2x) = i i_ :EE?; & exp(2x) (1 —sin(y)) = 1+ sin(y)
< exp(2x) —1 = sin(y) (1 +exp(2x)) < sin(y) ziggz; —T— 1
& Yy = m — Arcsin (?;Egg _T_ 1) car y E]g, 3771-[

On a alors

fl®) = H YG(z)) = = — Arcsin (Z:i)
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Considérons un récipient cylindrique
de section S contenant de 1’'eau qui
peut s’échapper par une petite ouver-
ture de section s située en bas de ce
récipient Notons y(t) la hauteur dans
le récipient de 1’eau a l'instant ¢.
Nous allons établir une équation dif-
férentielle pour y(t).

section S

‘ Liquide

5

'
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On suppose g constant le long du récipient et on suppose que I’eau est incompressible
et parfaite, de sorte que sa densité est constante et qu’on peut négliger les effets de
la viscosité. De plus, I’écoulement de I’eau sera stationnaire et S > s. Considérons un
petit volume d’eau se deplacant sur une ligne de courant (en bleu sur la figure ).
Le théoreme de Bernouilli exprime alors la conservation de la densité d’énergie :

1 1
pa + pgy + §pv2(A, t) = pp + Epvz(B, t),

ou
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® p4, pp estla pression aux endroits A et B respectivement, qu’on supposera égales
a la pression atmosphérique.

e v(A,t) et v(B,t) sont les vitesses en valeurs absolues a l'instant ¢ et aux endroits
A et B respectivement. En A, cette vitesse vaut manifestement

v(48) = |y = 3] =3
Par conservation de la masse, on doit avoir
pSv(A,t) = psv(B,t).
Ainsi, apres simplifications, Bernouilli nous dit que
gyt @ = L)

o oy = @G- = ()

82
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(9)? 2g s? 1
& —— = —— & |yl-—==k,

(] 5% — 52 VY

2
avec k? = 22°;.

Pour enlever la valeur absolue on va faire le choix physique de prendre y < 0. Cela
revient a supposer que le niveau d’eau descend avec le temps. Prendre yy > 0 revien-
drait a dire que le niveau d’eau monte avec le temps, ou encore descend avec le temps
renversé. On a donc comme EDO :

1
y— = —k, y(0)=yo > 0,1t =0.

VY

On vérifie les hypotheses de la marche a suivre avec
eg:R—>R g(t) = —k.

1

e h:RY* »>R* h(y) = —.
+ \/g

{ (O,yo) - R X Rj_

On peut alors tranquillement appliquer la démarche a suivre :



EPFL - CMS

Analyse II p.259
. On pose
Rt — G({) = /tg(s)ds = —kt.
0
. On calcule
R" 5y H(y) = /:h<u>du = 2(F - Vo).
0

. On calcule

m(H) = | =2Fpocl, = GTm(H) = |- oo, V]

Ceci est déja un intervalle ouvert qui possede t, = 0 comme élément. On pose alors

2\/ Yo
k

[.

J = ]—- o0,

4. Sur J, la solution a notre EDOv.s. sera donnée par

yt) = H(G@R) < H(yt) = G()
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o 2(Vi—vi) = K o Vi) = V-t

& yit) = (M—%t)z.

Ainsi, le récipient se vide en un temps
2 |2yg v/ S? — s2
T p— \/%— p— .
k g S

3. |Une EDOv.s. peut étre cachée.

Considérons 1’équation différentielle

Y 7y
zy' =y +cos®(=), y(l)=—.
T 4
Telle quelle, ceci n’est pas une EDOv.s. Mais on peut la transformer pour la rendre a
variable sépareée.
Notons d’abord que I’ensemble de définition de cette équation est R*. Sur cet ensemble,
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on est en droit de poser

- ¥@ _vy) _ 7
z(x) = o z(1) = =

On aura donc

y=xz = vy =z4+x

et I’équation différentielle devient

r(z+x2') = =xz+ cos®’(z), z(1)= %
0
& 2 = cos’(z), z(1) = 1
/ 1 2 T
&, 2 = —cos(z), z(1)= h



EPFL - CMS Analyse II p.262

On retrouve donc une EDOv.s. avec

1

cos?(z)’

On applique alors tranquillement la démarche a suivre :

1 L
h(z) = g(x) = 20 To= 1, yo= h

1. On pose
R* 3 G(x) / "L -2
€I —> €Zr = — — —

+ 1 t2 £

2. On calcule
T T Y 1
T Ty — H(y) = / i =
=5 5By (y) /2 052(5) g(y)

3. On calcule

Im(H)= R, = G '(Im(H)) = R}.

Ceci est déja un intervalle ouvert qui possede xz = 1 comme élément. On pose

alors
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4. Sur J, la solution a notre EDOv.s. sera donnée par

y(t) = H ' (G) <& H@y®) = G@)
& tmeE) -1 = 1- & @) = 2-
< y(x) = arctan(2 — i)

Remarque. On peut observer, que si on connait les conditions initiales a un moment donné
to et siles lois de la nature peuvent se mettre sous une forme d’équation différentielle, alors,
I’évolution d’un systeme est en principe univoque et connu pour tout temps t. Ceci est une
formulation du déterminisme, c’est-a-dire que le future, ainsi que le passé, est completement
déterminé par le présent. En citant Laplace :
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"Nous devons donc envisager 1’état présent de I'univers comme l'effet de son état
antérieur et comme la cause de celui qui va suivre. Une intelligence qui, pour un
instant donné, connaitrait toutes les forces dont la nature est animée, et la situation
respective des étres qui la composent, si d’ailleurs elle était assez vaste pour sou-
mettre ces données a I’analyse, embrasserait dans la méme formule les mouvements
des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incer-
tain pour elle et ’avenir, comme le passé serait présent a ses yeux."

I’avénement au X X°™° siécle de la théorie du chaos a quelque peu ébranlé ce systéme de
pensée. La mécanique quantique semble 1’avoir rendu définitivement obsoléte et a ce jour, il
semble plutét qu’on ne reviendra plus jamais a un déterminisme absolu en science.
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