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2.4 Fonctions hyperboliques

Le but ici est d’étudier la parité de l’exponentielle, ce qui nous amènera vers des fonctions,
dites hyperboliques, qui ont des similitudes frappantes avec les fonctions trigonométriques.
Commençons par rappeler ce qu’est une fonction (im)paire :

Définition 2.4.1. Une fonction f : R→ R est dite paire (resp. impaire) si

• x ∈ Deff ⇔ −x ∈ Deff .

• ∀x ∈ Deff , f(−x) = f(x) (resp. f(−x) = −f(x)).

Exemples.

1. Le cos(x) est une fonction paire : cos(−x) = .

2. Le sin(x) et la tangente sont des fonctions impaires : sin(−x) = , tg(−x) =

(pour autant que x ∈ Deftg).

3. Il y a des fonctions ni paires ni impaires : p- ex . exp(−x) ̸= exp(x),− exp(x).
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Théorème 2.4.2. Soit f : R → R, telle que x ∈ Deff ⇔ −x ∈ Deff . Il existe alors une
fonction paire f+ et une fonction impaire f−, telles que

∀x ∈ Deff , f = f+ + f−.

Plus précisément :

f+(x) =
1

2

(
f(x) + f(−x)

)
, f−(x) =

1

2

(
f(x)− f(−x)

)
.

Démonstration. Vérifions la parité :

f+(−x) = = f+(x),

f−(−x) = = −f−(x).
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f+(x) est donc paire et f−(x) est impaire. De plus, si x ∈ Deff :

f+(x) + f−(x) =

= = f(x).

Comme toute fonction peut s’écrire comme une somme de sa partie paire et impaire, on va
maintenant l’appliquer à l’exponentielle :

Définition 2.4.3. On définit les fonctions cosinus hyperbolique et sinus hyperbolique
comme les parties paire et impaire respectivement de l’exponentielle :

cosh(x) :=
1

2

(
ex + e−x

)
, sinh(x) :=

1

2

(
ex − e−x

)
.
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Graphiquement :

x

y

sinh(x)

cosh(x)

1
2
exp(x)
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Propriétés.

1. x 7→ sinh(x) est une fonction impaire alors que x 7→ cosh(x) est paire.

Ceci est vrai par définition de ces deux fonctions.

2. sinh(0) = 0 et cosh(0) = 1.

cosh(0) = = 1, sinh(0) = = 0.

3. ∀x ∈ R, sinh(x) < 1
2
exp(x) < cosh(x).

sinh(x) = < <
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4. ∀x ∈ R, exp(±x) = cosh(x)± sinh(x).

En effet, la somme de la partie paire et impaire de l’exponentielle redonne l’exponen-
tielle :

cosh(x) + sinh(x) = ex,

cosh(x)− sinh(x) = = e−x.

5. ∀x ∈ R, cosh2(x)− sinh2(x) = 1.

En effet,

cosh2(x)− sinh2(x) =

= = 1.
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6. ∀x ∈ R, d
dx

sinh(x) = cosh(x), d
dx

cosh(x) = sinh(x).

En effet,

d

dx
sinh(x) = = = cosh(x),

d

dx
cosh(x) = = = sinh(x).

Exemple.

Cet exemple illustre comment résoudre une équation avec des fonctions hyperboliques : ré-
solvons

cosh(x) = 4.

L’ensemble de définition ne pose pas de problèmes ici, puisque cosh(x) est définie pour tout
réel x.
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Par définition :

4 =
1

2

(
ex + e−x

)
⇔ .

substitution X := ex > 0.

8 = ex + e−x ⇔

⇔ .

Discriminant :
√
∆ = .

⇒

⇒ .
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La propriété 5 rappelle la somme des carrés des sinus et cosinus, mais avec un changement
de signe. On a d’ailleurs une autre ressemblance :

Théorème 2.4.4. Soient x, y ∈ R. Alors :

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

sinh(x + y) = sinh(x) cosh(y) + sinh(y) cosh(x).

Démonstration. Par parité et les propriétés de l’exponentielle, on a

cosh(x + y) + sinh(x + y) = =

=

=

+
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Par la propriété 4., on a aussi

cosh(x + y)− sinh(x + y) = =

=

=

−

En additionnant et en soustrayant ces deux dernières égalités, on obtient

2 cosh(x + y) = 2 cosh(x) cosh(y) + 2 sinh(x) sinh(y),

2 sinh(x + y) = 2 sinh(x) cosh(y) + 2 sinh(y) cosh(x).

On conclut en divisant par 2.

Remarque. La ressemblance avec les fonctions cos(x) et sin(x) est donc apparente. Mais
pourquoi ajoute-t-on le terme hyperbolique?
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Rappelons que le lieu des points

Γ := {(cos(t), sin(t)) : t ∈ R}

est le cercle centré en (0, 0) et de rayon 1 (cercle trigonométrique).
Par analogie avec les fonctions trigonométriques, on peut tracer le lieux des points

H := {(cosh(t), sinh(t)) : t ∈ R}.

Par la propriété 5, on a que si P ∈ H, alors

xP = cosh(t) et yP = sinh(t) pour un certain t ∈ R.

⇒ (xP )
2 − (yp)

2 = cosh2(t)− sinh2(t) = 1

⇒ P est sur l’hyperbole d’équation x2 − y2 = 1.
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x

y

Γ

P (cos(t), sin(t))

x

y

HH

P (cosh(t), sinh(t))

P ′(− cosh(t′), sinh(t′))
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Réciproquement, si P (x, y) est tel que x2 − y2 = 1, alors on peut trouver un t ∈ R, tel que

x = cosh(t), y = sinh(t) ou x = − cosh(t), y = sinh(t).

En effet, montrons-le par des

Exemples.

1. P (
√
10, 3) : on a bien (

√
10)2 − 32 = 1. On cherche t ∈ R tel que

√
10 = cosh(t) et 3 = sinh(t).

on a alors
√
10 + 3 = et. On pose t = ln(

√
10 + 3).

On obtient alors

cosh(t) = =

= =
√
10,
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sinh(t) = =

= = 3.

2. P (−
√
10, 3) : on a bien (−

√
10)2 − 32 = 1. Le point est donc bien sur l’hyperbole

H : x2 − y2 = 1, mais comme xP < 0, on va chercher t ∈ R tel que

−
√
10 = − cosh(t) et 3 = sinh(t).

On pose à nouveau t = ln(
√
10 + 3) et comme avant, mais avec changement de signes,

xP = −
√
10 = − cosh(t), yP = sinh(t).

L’analogie avec les fonctions trigonométriques nous conduit naturellement à poser la
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Définition 2.4.5. On définit les fonctions tangente et cotangente hyperboliques comme

tanhx : R→ R, x 7→
sinh(x)

cosh(x)
,

cothx : R∗ → R, x 7→
cosh(x)

sinh(x)
.

x

y

tanh(x)

coth(x)
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Propriétés.

1. x 7→ tanh(x) et x 7→ coth(x) sont des fonctions impaires.

En effet, en partant des définitions,

tanh(−x) = = = − tanh(x),

coth(−x) = = = − coth(x).

2. tanh(0) = 0 et limx→0± coth(x) = ±∞.

En effet, en partant des définitions,

tanh(0) = =
0

1
= 0,
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lim
x→0±

coth(x) = = ±∞,

où la dernière limite est du type " 1
0± ".

3. ∀x ∈ R∗
+, tanh(x) < 1 < coth(x).

On se rappelle que x > 0 implique 0 < sinh(x) < 1
2
ex < cosh(x), d’où le résultat.

4. ∀x ∈ R∗, 1− tanh2(x) = 1
cosh2(x)

.

En effet,

1− tanh2(x) = = =
1

cosh2(x)
.
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5. x 7→ coth(x), tanh(x) sont continues et dérivables sur leur ensembles de définition
et

d

dx
tanh(x) =

1

cosh2(x)
,

d

dx
coth(x) =

−1
sinh2(x)

.

On peut le vérifier directement :

d

dx
tanh(x) = = =

1

cosh2(x)
,

d

dx
coth(x) = = = −

1

sinh2(x)
.

On remarque à nouveau les similarités frappantes avec le cas trigonométrique. Passons à des
exemples de résolution :
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Exemples.

1. Résoudre coth(x) = 3.

Puisque l’équation implique une coth(x), l’ensemble de définition de cette égalité est
alors Ddef = R∗.
En suivant les définitions, on a

coth(x) = 3 ⇔ ⇔

⇔ ⇔ 0 = 2ex − 4e−x

⇔ ⇔ ⇔ x =
1

2
ln(2).

2. Résoudre : coth(x)ex/2 + ex/2 = e−x/2
(
1 + 1

sinh(x)

)
.

L’équation implique à nouveau une coth(x), l’ensemble de définition de cette égalité est
donc Ddef = R∗.
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On peut à nouveau essayer de tout écrire en termes de ex. Mais on peut aussi commencer
par multiplier l’équation en question par sinh(x), ce qui fera disparaître la coth(x) et le
terme en 1

sinh(x)
:

coth(x)ex/2 + ex/2 = e−x/2

(
1 +

1

sinh(x)

)
⇔ cosh(x)ex/2 + sinh(x)ex/2 =

⇔ = e−x/2 (sinh(x) + 1)

⇔ = e−x/2 (1 + sinh(x))

⇔ e2x = ⇔ = 0

⇔ 2e3x − e2x − 2ex + 1 = 0.

On pose maintenant X := ex (qui devra donc être strictement positif). Et on résout
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2X3 −X2 − 2X + 1 = 0 ( sol. évidentes :X = ±1)

⇔ = 0 (factoriser par (X − 1)(X + 1))

⇒ ⇒ x = − ln(2).
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2.5 Fonctions hyperboliques réciproques

Le but de cette section est l’étude des fonctions réciproques aux fonctions hyperboliques, ren-
forçant les parallèles qui existent avec le cas trigonométrique.

Dans le cas hyperbolique on peut explicitement renverser les relations

sinh(x) = y et cosh(x) = y(≥ 1)

pour trouver une expression concrète aux fonctions réciproques :

1. sinh(x) = y :

En utilisant les relations hyperboliques on trouve que

sinh(x) = y ⇒

⇒

On ne retient ici que la solution positive, puisque cosh(x) est toujours positif. On a donc
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sinh(x) = y ⇒

⇔ ⇔

En invertissant les rôles de x et y on trouve alors une formule explicite à la fonction
réciproque au sinh(x), qu’on appelle Arsh :

Arsh(x) = ln(x +
√
x2 + 1).

Cette fonction est définie sur tout R et on peut explicitement vérifier (exercice) que

∀x ∈ R, sinh(Arsh(x)) = Arsh(sinh(x)) = x.
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x

y

sinh(x)

Arsh(x)

2. cosh(x) = y :

Dans le cas du cosh(x) il faut être plus précautionneux pour les valeurs de y admises.
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En effet,

cosh(x) ≥ 0 et cosh2(x) = 1 + sinh2(x) ≥ 1 ⇒ cosh(x) ≥ 1.

La parité du cosh(x) nous oblige aussi à restreindre le domaine des x pour obtenir une
bijection. La convention est de prendre x ≥ 0.
Ces restrictions prises, on peut résoudre l’équation cosh(x) = y pour x ≥ 0 et y ≥ 1.
On trouve d’abord que

x ≥ 0 et cosh(x) = y ⇒ sinh2(x) = cosh2(x)− 1 = y2 − 1

⇒ sinh(x) =
√

y2 − 1.

On ne retient ici que la solution positive, puisque sinh(x) est toujours positif pour x ≥ 0.
On a donc

x ≥ 0 et cosh(x) = y ⇒

⇔ ⇔
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En invertissant les rôles de x et y on trouve alors une formule explicite à la fonction
réciproque au cosh(x), qu’on appelle Arch :

Arch(x) = ln(x +
√
x2 − 1).

Cette fonction est définie pour x ∈ [1,∞[ et on peut explicitement vérifier (exercice)
que

∀x ∈ [1,∞[, cosh(Arch(x)) = x,

∀x ∈ R+, Arch(cosh(x)) = x.

x

y

cosh(x)

Arch(x)
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Résumons ce qu’on a trouvé par le

Théorème 2.5.1. x 7→ sinh(x) est une bijection entre R et R, alors que x 7→ cosh(x) est
une bijection entre R+ et [1,∞[. De plus,

Arsh(x) = ln(x +
√
x2 + 1), Arch(x) = ln(x +

√
x2 − 1).

Ces fonctions sont dérivables et

∀x ∈ R,
d

dx
Arsh(x) =

1
√
x2 + 1

, ∀x > 1,
d

dx
Arch(x) =

1
√
x2 − 1

.

Démonstration. Les expressions pour l’Arsh(x) et l’Arch(x) ayant été établies, il ne reste plus
qu’à vérifier les égalités pour les dérivées :

d

dx
Arsh(x) =

= =
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= =

Similairement, pour x > 1 (on rappelle qu’une dérivée est strictement définie que sur un
voisinage ouvert) :

d

dx
Arch(x) =

= =

= =
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Exemples.

1. Calculer le sinh(x) sachant que x = Arch(y)

Puisque l’Arch est défini sur [1,∞] et donne des valeurs dans R+, on doit avoir y ≥ 1 et
x = Arch(y) ≥ 0.
On sait qu’alors sinh(x) ≥ 0. Et on peut aussi écrire

cosh2(x)− sinh2(x) = 1 ⇒ .

On en conclut que

sinh(Arch(y)) = =

2. Simplifier : Arsh(x
√

y2 + 1 + y
√
x2 + 1), x, y ∈ R

Comme sinh(x) est une bijection entre R et R, on peut pour des valeurs données de x et
y, toujours trouver des réels u, v, tels que x = sinh(u) et y = sinh(v).
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On a alors

Arsh(x
√
y2 + 1 + y

√
x2 + 1)

=

=

=

=

3. Résoudre le système :

{
2 sinh(2 + x) + e−y = ey,

Arsh(x) + Arsh(y − 2) = Arsh(2xy).

L’ensemble de définition ne pose pas de problèmes : toutes les fonctions sont bien défi-
nies. On a donc Ddef = R.
La première équation peut se réécrire comme

2 sinh(2 + x) + e−y = ey ⇔
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⇔ sinh(2 + x) =

La bijectivité de la fonction sinh force alors à avoir

2 + x = y.

La deuxième équation devient alors

Arsh(x) + Arsh(y − 2) = Arsh(2xy)

⇔

⇔

où nous avons à nouveau bénéficié de la bijectivité de sinh.
On pose alors u = Arsh(x), et on résout

sinh(u + u) = =
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On est alors amené à résoudre

2x
√
1 + x2 = 2x(x + 2)

On constate que x = 0 et donc y = 2 est une solution. Pour en trouver une autre, on
doit considérer √

1 + x2 = (x + 2)

sur le domaine de positivité :√
1 + x2 = (x + 2) ⇔

Dpos = [−2,∞[
1 + x2 = x2 + 4x + 4

⇔ 0 = 4x + 3.

On a donc comme nouvelle solution x = −3
4
∈ Dpos et y = 5

4
. L’ensemble solution est

alors

S =
{
(0, 2),

(
−
3

4
,
5

4

)}
.
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Les fonctions tanh(x) et coth(x) possèdent elles aussi des fonctions réciproques avec des
expressions explicites :

1. tanh(x) = y, y ∈]− 1, 1[:

tanh(x) = y ⇔

⇔ ⇔

⇔ ⇔

⇔

Le fait que cette relation puisse s’inverser et donne à nouveau une fonction montre que
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la tanh(x) est inversible, d’inverse

Artanh(x) : ]− 1, 1[∋ x 7→
1

2
ln

(
1 + x

1− x

)
.

x

y

tanh(x)

Artanh(x)
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2. coth(x) = y, x ∈ R∗, y ∈ R \ [−1, 1] :

coth(x) = y

⇔ ⇔

⇔ ⇔

⇔

Le fait que cette relation puisse s’inverser et donne à nouveau une fonction montre que
la coth(x) est inversible, d’inverse

Arcoth(x) : R \ [−1, 1] ∋ x 7→
1

2
ln

(
x + 1

x− 1

)
.
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x

y

coth(x)

Arcoth(x)

Résumons par le
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Théorème 2.5.2. tanh(x) : R 7→]− 1, 1[ est une bijection et

Artanh(x) =
1

2
ln(

1 + x

1− x
),

d

dx
Artanh(x) =

1

1− x2
.

coth(x) : R∗ 7→ R \ [−1, 1] est une bijection et

Arcoth(x) =
1

2
ln(

x + 1

x− 1
),

d

dx
Arcoth(x) =

1

1− x2
.

Démonstration. On vient d’établir l’existence et la forme explicite des fonctions réciproques.
Il ne reste que les dérivées à calculer :

d

dx
Artanh(x) =

= = =
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Similairement,

d

dx
Arcoth(x) =

= = =
1

1− x2
.

Remarque. On constate que ces deux fonctions ont les mêmes expressions pour leur déri-
vées. Pourtant ce ne sont pas les mêmes fonctions : leur ensembles de définition ne coïncident
pas et sont mêmes disjoints :

DefArtanh =]− 1, 1[, DefArcoth = R \ [−1, 1].
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2.6 Puissances généralisées

Rappelons-nous que l’exponentielle et le logarithme nous ont permis de définir des puissances
ba, et cela même pour des valeurs de l’exposant a non rationnelles :

ba := expb(a) = exp(ln(b)a).

Cette expression est permise pour autant que b > 0. On peut alors utiliser cela pour définir
des puissances où et l’exposant, et la base sont des fonctions :

Exemple.

Définir et étudier xx :

La première chose à faire est donc de bien poser l’expression xx. En effet, on doit poser

xx = expx(x) = exp(ln(x)x).

Pour que cette expression ait un sens, on doit avoir x > 0. On a donc

Defxx = R∗
+.
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(Il serait encore possible d’inclure 0 dans le domaine de définition en posant 00 = 1. Bien que
possible, cela est généralement omis et on se restreint à R∗

+.)
Pour x > 0 on a en tout cas un objet bien défini. On peut alors s’intéresser aux comportements
aux limites de Defxx :

1. limx→0+ xx : Par définition on a donc à étudier

lim
x→0+

xx = lim
x→0+

exp(ln(x)x).

La continuité de l’exponentielle nous permet de se restreindre à l’étude de l’exposant
a(x) = ln(x)x.
Comme vu lors des études d’exponentielles, limx→0+ x ln(x) = 0. On peut s’en convaincre
par une application de la règle de Bernoulli :

lim
x→0+

x ln(x) = =

= = 0.
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On a donc

lim
x→0+

xx = = = 1.

2. limx→∞ xx : Par définition on a donc à étudier

lim
x→∞

xx = lim
x→∞

exp(ln(x)x).

On peut à nouveau invoquer la continuité de l’exponentielle pour étudier le comporte-
ment de l’exposant :

lim
x→∞

x ln(x) =∞.

Par conséquent, par continuité et croissance de l’exponentielle,

lim
x→∞

xx = = = ∞.

Pour étudier ce qu’il se passe entre ces deux extrêmes, on va passer à l’étude de la dérivée de
xx. Mais à nouveau, la bijectivité et la monotonie de l’exponentielle nous permettent de nous
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restreindre à l’étude de l’exposant :

xx < yy ⇔ ⇔ .

Il suffit donc d’étudier le comportement de la fonction

f(x) = x ln(x)

pour connaître celui de xx par exponentiation.
On vient de trouver

lim
x→0+

f(x) = 0 et lim
x→∞

f(x) =∞.

En dérivant une fois, on obtient

f ′(x) = .

Les signes de cette dérivée sont vite connus :

sgn(f ′(x)) =

{
≤ 0 si ln(x) ≤ −1,
≥ 0 si ln(x) ≥ −1,

=

{
≤ 0 si x ≤ 1

e
,

≥ 0 si x ≥ 1
e
.
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La fonction f ′(x) passe donc par 0 et change de signes dans un voisinage de x = 1
e
. On en

conclut que

f(x) = x ln(x) est


décroissante quand 0 < x < 1

e
,

minimale pour x = 1
e
,

croissante quand x > 1
e
.

x

y

x ln(x)

1
e
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Par monotonie de l’exponentielle, on a ainsi que

xx = exp(x ln(x)) est


décroissante quand 0 < x < 1

e
,

minimale pour x = 1
e
,

croissante quand x > 1
e
.

x

y

xx

1
e

On peut maintenant généraliser par la
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Définition 2.6.1. Soient f, g : R → R , définies sur un ensemble E ⊂ R et telles que
im(f) ⊂ R∗

+. Pour x ∈ E, on définit

(fg)(x) = f(x)g(x) := exp(ln(f(x))g(x)).

Tout comme avant, on peut étudier le comportement de la fonction f(x)g(x) en étudiant celui
de ln(f(x))g(x) :

Théorème 2.6.2. Soient f, g : R → R , définies et dérivables sur un ensemble ouvert
E ⊂ R et telles que im(f) ⊂ R∗

+. Alors fg est dérivable en tout x ∈ E et

(
d

dx
fg)(x) = (fg)

(
g
f ′

f
+ g′ ln(f)

)
(x).

De plus,

sgn

(
(
d

dx
fg)(x)

)
= sgn

(
d

dx
(ln(f)g)(x)

)
.
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Démonstration. En partant des définitions, on a que

d

dx
f(x)g(x) =

=

=

De plus, puisque (fg)(x) = exp(g(x) ln(f(x))), on a que fg(x) > 0 pour tout x ∈ E, ce qui
montre que

sgn

(
(
d

dx
fg)(x)

)
= sgn

(
(fg)

(
g
f ′

f
+ g′ ln(f)

)
(x)

)
= = sgn

(
d

dx
(ln(f)g)(x)

)
.



EPFL - CMS Analyse II p.54

Remarque. Si g(x) = n ∈ N∗ on est bien sûr ramené à la définition usuelle

f(x)n = f(x) · . . . · f(x)︸ ︷︷ ︸
n fois

.

On n’est alors pas restreint par la condition f(x) > 0. La définition de

f(x)g(x) = exp(g(x) ln(f(x))

s’applique surtout dans le cas où f et g sont des fonctions à valeurs irrationnelles.
Remarquons quand même, que pour x > 0,

xn = exp(n ln(x)) et
d

dx
(xn) = nxn−1 = exp(n ln(x))

n

x
.

La définition exp(g(x) ln(f(x))) revient donc à la définition usuelle de la puissance dans le
cas où f(x) = x > 0 et g(x) = n.
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Exemples.

1. Résoudre (x2)
√

x =
√
x
(x−2)

:

La présence de la racine et d’une puissance à exposant à priori irrationnel nous force à
prendre Ddef = R∗

+.
Sur cet ensemble, l’équation s’écrit donc

(x2)
√

x =
√
x
(x−2) ⇔

⇔ ⇔

⇔ ⇔ 0 = ln(x)
(
x− 2− 4x1/2

)
.

Un produit est nul si et seulement si un des facteurs est nul. On a donc
ln(x) = 0

ou

x− 2− 4x1/2 = 0.

⇔
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⇔


x = 1

ou

La dernière équation est une équation du trinôme et se résout par le discriminant :

x2 − 4x + 4 = 16x et x ≥ 2 ⇔ x2 − 20x + 4 = 0 et x ≥ 2

∆ = 202 − 16 = 384 = 6 · 64 ⇒ x± =
20± 8

√
6

2
= 10± 4

√
6

Ne retenant que les valeurs x ≥ 2 pour cette équation trinômiale et reprenant la valeur
x = 1 de l’équation logarithmique, on a

S = {1, 10 + 4
√
6}.

2. Comparer π
√

10 à
√
10

π
:

On a par définition que π
√

10 = exp(ln(π)
√
10) et

√
10

π
= exp(ln(

√
10)π).
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Par la monotonie de l’exponentielle, on a que

π
√

10 >
√
10

π
⇔

On pose alors la fonction
f(x) = x ln(π)− ln(x)π

et on va étudier le comportement de celle-ci.

On constate déjà que f(π) = 0. Puis on la dérive :

∀x > 0, f ′(x) = .

Le signe de cette dérivée est donc particulièrement simple :

sgn(f ′(x)) =
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f(x) est donc


strictement décroissante quand 0 < x < π

ln(π)
,

minimale pour x = π
ln(π)

,

strictement croissante quand x > π
ln(π)

.

x

y

f(x)

π
ln(π)

π



EPFL - CMS Analyse II p.59

On constate maintenant que

0 <
π

ln(π)
< π <

√
10.

En effet,

3 < π ⇒ 1 < ln(π) ⇒
π

ln(π)
< π,

π < 3.15 ⇒ π2 < (3.15)2 = (3 + 0.15)2 = 9 + 2 · 3 · 0.15 + (0.15)2

⇒ π2 < 9.9 +
9

400
< 10 ⇒ π <

√
10.

Résumons :

• La fonction f est strictement croissante sur l’intervalle [ π
ln(π)

,∞[.

• La fonction f est strictement croissante sur l’intervalle [π,
√
10] ⊂ [ π

ln(π)
,∞[.

• f(π) = 0.

On peut donc conclure que

√
10 ln(π)− π ln(

√
10) = f(

√
10) > f(π) = 0.
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Donc,
√
10 ln(π) > π ln(

√
10), et par conséquent, par exponentiation,

π
√

10 >
√
10

π
.

3. Etudier la fonction f(x) = cossin(x) :

Pour que cette fonction soit bien définie en terme de puissance généralisée, il faut choisir
une base strictement positive, i.e. cos(x) > 0. On a donc

Deff = ∪n∈Z]−
π

2
+ 2nπ,

π

2
+ 2nπ[.

Sur cette ensemble la fonction s’écrit comme

f(x) =

Par périodicité, on peut se restreindre à étudier cette fonction sur ]− π
2
, π
2
[.

On sait que son comportement est semblable à celui de l’exposant. On peut donc étudier

g(x) = ln(cos(x)) sin(x).
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Sur ]− π
2
, π
2
[ on sait que cette fonction ne possède qu’un seul 0 :

g(x) = ln(cos(x)) sin(x) = 0

⇔ ⇔ x = 2nπ, n ∈ Z.

Si on se restreint à l’intervalle ]− π
2
, π
2
[ on aura plus que x = 0 comme unique solution.

Pour comprendre le comportement de g(x) = ln(cos(x)) sin(x) en dehors de x = 0, on la
dérive une fois :

g′(x) = .

On constate que

• : Sur ] − π
2
, π
2
[, cos(x) > 0 et sin2(x) ≥ 0. Donc, − sin2(x)

cos(x)
≤ 0 avec égalité en x = 0

uniquement.
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• : Sur ] − π
2
, π
2
[, 1 ≥ cos(x) > 0. Donc, ln(cos(x)) cos(x) ≤ 0 avec égalité seulement

quand x = 0.

On en conclut que g′(x) est toujours négative sur ]− π
2
, π
2
[, avec un point de dérivée nulle en

x = 0. La fonction g(x) est donc décroissante, avec un plateau en x = 0 :

x

y

ln(cos(x)) sin(x)

−π
2

π
2

Etudions encore les limites limx→±π
2
g(x) :
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On remarque premièrement que

lim
x→±π

2

cos(x) = .

cos(x) > 0 pour x ∈]− π
2
, π
2
[ et ainsi,

lim
x→±π

2

ln(cos(x)) = = .

Puis, limx→±π
2
sin(x) = , et par conséquent,

lim
x→±π

2

g(x) =

=
type ”−∞× borné ”

On vient donc de montrer, que g(x) possède deux asymptotes verticales en x = ±π
2
.



EPFL - CMS Analyse II p.64

Pour revenir à f(x) = cossin(x) = exp (g(x)) il suffit de prendre l’exponentielle. La monoto-
nie stricte de celle-ci nous permet donc de conclure que :

• limx→−π
2
g(x) =∞, donc, limx→−π

2
cossin(x) =∞.

• g(0) = 0 et y possède un plateau, donc cossin(0) = 1 et y possède un plateau.

• limx→π
2
g(x) = −∞, donc, limx→π

2
cossin(x) = 0.

x

y

cos(x)sin(x)

−π
2

π
2
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Tous ces exemples montrent donc que lorsqu’on étudie une fonction puissance généralisée,
on passe par l’étude de son exposant.

Lorsqu’on compare deux fonctions puissances généralisées, on compare leur exposants.
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3 Développements Limités

Le but des développements limités est d’approximer des fonctions telles que

sin, cos, exp, ln, sinh,
√

, . . .

par des polynômes. L’idée est ainsi de rendre calculable des valeurs telles que

π, sin(1), e = exp(1),
√
5

et ainsi de suite.

3.1 Polynômes de Taylor

Une première approximation par un polynôme d’une fonction telle que la racine carrée serait
par exemple de le faire en traçant la tangente à

√
x en x0 = 1.

Rappelons que la tangente à une fonction f(x) en un point x0 fixé se calcul en cherchant une
fonction affine t(x) = a0 + a1(x− x0), qui, en x0 possède la même valeur et la même pente
que f(x).
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Ceci donne donc

f(x0) = t(x0) ⇒ ⇒ ,

f ′(x0) = t′(x0) ⇒ ⇒ ,

Dans notre cas, avec f(x) =
√
x et

x0 = 1, on obtient

a0 =
√
1 = 1 et

a1 =
√
x
′∣∣
x=1

=
1

2

1
√
x

∣∣
x=1

=
1

2
.

On obtient ainsi la tangente

t(x) = . x

f(x)

f(x) =
√
x

t(x) = 1 + 1
2
(x− 1)
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Visuellement, la tangente approxime le graphe de la racine carrée autour de x0 = 1. Mais
plus on s’éloigne de x0 = 1, moins l’approximation sera bonne.
Par contre, on peut déjà utiliser t(x) pour calculer une valeur approximative du nombre

√
2.

En effet,

t(2) = 1 +
1

2
(2− 1) = 1.5.

En comparant avec la "vraie" valeur :

√
2 = 1.414 213 562 . . .

La tangente ne prend pas en compte la courbure de la fonction qu’elle approxime. Pour faire
mieux, l’idée est de rajouter un terme a2(x−x0)

2 pour obtenir un polynôme de second degré

P2(x) = a0 + a1(x− x0) + .

On ajuste maintenant les coefficients de ce polynôme de sorte qu’en x = x0, il ait les mêmes
valeurs que f(x) et les mêmes deux premières dérivées :
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f(x0) = P2(x0) ⇒ ⇒ ,

f ′(x0) = P ′
2(x0) ⇒ ⇒ ,

f ′′(x0) = P ′′
2 (x0) ⇒ ⇒ .

Dans notre cas, avec f(x) =
√
x et x0 = 1, on obtient

a0 =
√
1 = 1 a1 =

√
x
′∣∣
x=1

=
1

2

1
√
x

∣∣
x=1

=
1

2
,

et a2 =
1

2

√
x
′′∣∣

x=1
= −

1

2

1

4
x−3

2

∣∣
x=1

= −
1

8
.

On obtient ainsi,

P2(x) = 1 +
1

2
(x− 1)︸ ︷︷ ︸−

1

8
(x− 1)2.
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x

f(x)

f(x) =
√
x

t(x) = 1 + 1
2
(x− 1)

P2(x)

On peut déjà constater une amélioration du calcul du nombre
√
2. En effet,

P2(2) = 1 +
1

2
(2− 1)−

1

8
(2− 1)2 = 1.5− 0.125 = 1.375.

Pour obtenir une valeur encore plus exacte, on essaye d’approximer f(x) en x0 par un poly-



EPFL - CMS Analyse II p.71

nôme d’ordre 4 par exemple :

P4(x) = a0 + a1(x− x0) + a2(x− x0)
2 + a3(x− x0)

3 + a4(x− x0)
4.

L’idée est à nouveau d’égaler les premières dérivées en x0 :

f(x0) = a0 + a1(x− x0) + a2(x− x0)
2 + a3(x− x0)

3 + a4(x− x0)
4
∣∣
x=x0

⇒ ,

f ′(x0) = a1 + 2 · a2(x− x0) + 3 · a3(x− x0)
2 + 4 · a4(x− x0)

3
∣∣
x=x0

⇒ ,

f ′′(x0) = 2 · a2 + (3 · 2)a3(x− x0) + (4 · 3) · a4(x− x0)
2
∣∣
x=x0

⇒ ,

f ′′′(x0) = (3 · 2)a3 + (4 · 3 · 2) · a4(x− x0)
∣∣
x=x0

⇒ ,

f (4)(x0) = (4 · 3 · 2) · a4

∣∣
x=x0

⇒ .
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Remarque. Afin d’alléger l’écriture, on a introduit une nouvelle notation pour les dérivées :

dn

dxn
f(x) =

not.
f (n)(x).

Dans notre cas, avec f(x) =
√
x et x0 = 1, on calcule donc les quatre premières dérivées :

f(x) = x
1
2 , f (1)(x) , f (2)(x) ,

f (3)(x) , f (4)(x) = −
15

16
x−7

2 ,

ce qui donne donc pour x0 = 1 les coefficients

a0 = f(x0) = 1, a1 = f (1)(x0) = , a2 =
1

2!
f (2)(x0) = ,

a3 =
1

3!
f (3)(x0) = , a4 =

1

4!
f (4)(x0) = −

5

128
.
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On obtient donc

P4(x) = 1 +
1

2
(x− 1)−

1

8
(x− 1)2︸ ︷︷ ︸+

1

16
(x− 1)3 −

5

128
(x− 1)4.

x

f(x)

f(x) =
√
x

P2(x)

P4(x)
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On constate que P4(x) est une meilleure approximation de
√
x sur l’intervalle ]0, 2[ (pour

x > 2, il semble se produire un "décrochage"). Testons avec l’approximation de
√
2 par P4 :

P4(2) = 1 +
1

2
−

1

8
. +

1

16
−

5

128
= 1.398 437 5,

qui est en effet une meilleure approximation encore.

Pour résumer ce qu’on a fait :

• On a cherché à approximer
√
x par un polynôme P (x). Ceci est fait dans l’idée de

calculer ses valeurs, même approximatives.

• Plus le degré de P (x) est élevé, plus on épousera bien le graphe de
√
x, en tout cas

dans un voisinage de x0 = 1.

• Les coefficient de P (x) sont fixés par les valeurs successives des dérivées de
√
x en

x0 = 1 : le coefficient ak est donné par

ak =

√
x
(k)

k!

∣∣
x=1

.
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• Il n’y rien de particuliers à priori avec la racine carrée : si f est une fonction définie et
n fois dérivable sur un voisinage de x0 = 1, le polynôme

Pf,1,n(x) = f(1) +
f (1)(1)

1!
(x− 1) +

f (2)(1)

2!
(x− 1)2 + . . . +

aura les mêmes n premières dérivées que f en x0 = 1.

• Il n’y rien de particuliers à priori à choisir x0 = 1 : si f est une fonction définie et n fois
dérivable sur un voisinage de x = X0, le polynôme

Pf,x0,n(x) = f(x0)+
f (1)(x0)

1!
(x−x0)+

f (2)(x0)

2!
(x−x0)

2 + . . .+

aura les mêmes n premières dérivées que f en x = x0.

Ces considérations sont donc très générales et peuvent être appliquées à toute fonction f(x)

suffisamment dérivable sur un voisinage de x0. On pose alors la
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Définition 3.1.1. Soient x0 ∈ R et f : R → R une fonction n fois dérivable en x0. Le
polynôme de Taylor de f à l’ordre n autour de x0 est défini par

Pf,x0,n(x) :=
n∑

k=0

f (k)(x0)
(x− x0)

k

k!
,

où f (0)(x0) = f(x0) et ∀k ∈ {1, . . . , n}, f (k)(x0) = ( dk

dxkf)(x0).

Propriétés.

1. Pf,x0,n(x) est l’unique polynôme de degré n, tel que

∀k ∈ {0, 1, . . . , n},
( dk

dxk
Pf,x0,n

)
(x0) = .

2. Les premiers termes non nuls et non constants de Pf,x0,n(x) redonnent l′IPE de f .

3. Pour 0 < m < n on a [
Pf,x0,n(x)

]
m

= ,
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où
[
. . .
]
m

signifie qu’on ne retiens que les termes de puissances inférieurs ou égal à m.

4. Si f est un polynôme de degré n, alors

Pf,x0,n(x) = .

Passons maintenant à des exemples :

Exemples.

1. Informations pour écrire Pf,x0,n(x) :

Il suffit de connaître les dérivées successives d’une fonction en x0 pour déterminer son
polynôme de Taylor autour de ce point. Par exemple :

f(−1) = 1, f ′(−1) = 2, f ′′(−1) = 3, f ′′′(−1) = 4,

Pf,−1,3(x) =

=
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2. f(x) = exp(x), x0 = 0 :

L’exponentielle est une fonction particulièrement simple à développer en polynôme de
Taylor : toutes les dérivées de l’exponentielle égalent exp(x). Donc, ∀k ≥ 0, exp(k)(0) =

1 et le polynôme de Taylor à l’ordre n s’écrit comme

Pexp,0,n(x) =

x

f(x) expx

Pexp,0,6(x)
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Graphiquement la différence entre la fonction et son polynôme de Taylor est indiscer-
nable proche de x0 = 0. On peut d’ailleurs en profiter pour approximer la valeur numé-
rique de e = exp(1) :

e = exp(1) ≈ Pexp,0,n(1)

= 1 + 1 +
1

2
+

1

3!
+

1

4!
+

1

5!
+

1

6!
. . . = 2.718 05,

à comparer avec la valeur
e = 2.718 281 828 46 . . .

3. f(x) = cos(x), x0 = 0 :

Approximons cos(x) autour de x0 = 0 à l’ordre n.
Par définition, le polynôme de Taylor Pcos,0,n(x) aura n + 1 coefficients, déterminés par

ak =

pour k = 0, 1, 2 . . . , n.
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Il faut donc commencer à calculer les dérivées de cos(x).
Montrons par récurrence que

∀k ∈ N, cos(k)(x) = cos(x + k
π

2
).

Pour k = 0, le résultat est manifeste. On peut donc initialiser la récurrence pour k = 0.
Pour l’hérédité on observe que

cos(k+1)(x) = =
hyp. réc.

= =

= =

= cos

(
x + (k + 1)

π

2

)
.

Cela est bien le résultat annoncé pour k + 1.
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Pour x0 = 0 les coefficients du polynôme de Taylor sont alors

∀k ∈ N : ak =
cos(k)(0)

k!
=

1

k!
cos(0 + k

π

2
)

=

On en conclut donc que

ce qu’on peut réécrire comme

Pcos,0,n(x) =
∑

0≤2k≤n

(−1)k
1

(2k)!
x2k.
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x

f(x)

f(x) = cosx

Pcos,0,6(x)

Pcos,0,8(x)

4. f(x) = ln(x), x0 = 1 :

Quand on ne peut pas développer une fonction autour de x0 = 0, ce qui est le cas du
logarithme naturel par exemple, on choisit une autre valeur pour x0. Dans le cas du lo-
garithme, on peut par exemple prendre x0 = 1. Les dérivées successives du logarithme
naturel sont

ln(1)(x) =
1

x
, ln(2)(x) =

−1
x2

, ln(3)(x) =
2

x3
, ln(4)(x) =

−3 · 2
x4

, . . .
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On devine que

ln(n)(x) = .

En effet, cette formule est valide pour n = 1, 2, 3 et 4. Vérifions l’hérédité de cette
relation :

ln(n+1)(x) = = = (−1)n
n!

xn+1
,

qui est bien la formule attendue pour n + 1. On conclut par récurrence que

∀n ≥ 1, ln(n)(x) = (−1)n−1
(n− 1)!

xn
.

En évaluant ces dérivées en x0 = 1 et en mutlipliant, conformément à la définition, ces
valeurs par (x− 1)n, on trouve

Pln,1,n(x) = ln(1) + ln(1)(1)(x− 1) +
ln(2)(1)

2!
(x− 1)2 +

ln(3)(1)

3!
(x− 1)3 + . . .
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=

x

f(x)

f(x) = lnx

Pln,1,2(x)

Pln,1,6(x)

Le dernier exemple pose la question de la convergence des polynômes de Taylor. En effet,
pour le logarithme naturel, il semble que plus on augmente le degré n du polynôme de Taylor
en x0 = 1, plus celui-ci approxime bien le graphe du logarithme, mais seulement sur l’inter-
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vall ]0, 2[. Au-delà de la valeur x = 2, il semble que l’approximation est moins bonne. Pour
comprendre ce qu’il se passe, il faut passer à une étude de l’erreur d’approximation commise
par les polynôme de Taylor.
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3.2 Corrections

La question naturelle qui vient maintenant est à quel point la fonction est-elle bien aproximée
par son polynôme de Taylor. Ou encore, peut-on évaluer l’erreur faite ?

Par chance on a le

Théorème 3.2.1. Soient x, x0 ∈ R et f : R→ R, une fonction n+1 fois dérivable sur un
intervalle ouvert contenant [x0, x]. Alors il existe ξ ∈]x0, x[ tel que

rf,x0,n(x) := f(x)− Pf,x0,n(x) =
(x− x0)

n+1

(n + 1)!
f (n+1)(ξ).

rf,x0,n(x) est appelé le terme de correction et l’écriture

f(x) = Pf,x0,n(x) + rf,x0,n(x)

est appelé le développement limité de f à l’ordre n autour de x0.
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Démonstration. (facultative) Pour t ∈ [x0, x], posons

F (t) = f(x)− Pf,t,n(x)− (x− t)n+1
c

(n + 1)!
,

avec

c =
(n + 1)!

(x− x0)n+1
(f(x)− Pf,x0,n(x)) .

En substituant t par x, on remarque que F (x) = 0. De plus,

F (x0) = f(x)− Pf,x0,n(x)− (x− x0)
n+1

c

(n + 1)!

=
(x− x0)

n+1

(n + 1)!
c− (x− x0)

n+1
c

(n + 1)!
= 0.

La fonction F (t) s’annule donc sur les bords de l’intervalle [x0, x] et est une fois dérivable sur
ce dernier. Ainsi, par le théorème de Rolle, il existe ξ ∈]x0, x[, tel que F ′(ξ) = 0. Calculons
alors la dérivée de F (t) :

d

dt
F (t) =

d

dt

(
f(x)− Pf,t,n(x)− (x− t)n+1

c

(n + 1)!

)
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= −
d

dt
Pf,t,n(x) + (x− t)n

c

n!

= (x− t)n
c

n!
−

d

dt

n∑
k=0

f (k)(t)

k!
(x− t)k

= (x− t)n
c

n!
−

n∑
k=0

f (k+1)(t)

k!
(x− t)k +

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1

= (x− t)n
c

n!
−

n∑
k=0

f (k+1)(t)

k!
(x− t)k +

n−1∑
k=0

f (k+1)(t)

k!
(x− t)k

= (x− t)n
c

n!
−

f (n+1)(t)

n!
(x− t)n =

(x− t)n

n!

(
c− f (n+1)(t)

)
.

F ′(ξ) = 0 implique alors (x−ξ)n

n!

(
c− f (n+1)(ξ)

)
= 0 et puisque ξ ∈]x0, x[, on a (x− ξ)n ̸= 0

et donc c− f (n+1)(ξ) = 0, ou encore c = f (n+1)(ξ). Mais par définition de c :

c =
(n + 1)!

(x− x0)n+1
(f(x)− Pf,x0,n(x)) = f (n+1)(ξ),
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d’où le résultat (x−x0)n+1

(n+1)!
f (n+1)(ξ) = f(x)− Pf,x0,n(x).

Remarques :

1. Le terme de correction ressemble au n+1− ième terme du polynôme de Taylor pour f .
La seule différence est que la dérivée f (n+1) est évaluée en ξ ∈]x0, x[ et non en x0 :

f(x) = f(x0) + f (1)(x0)(x− x0) + . . . +
f (n)(x0)

n!
(x− x0)

n︸ ︷︷ ︸+
f (n+1)(ξ)

(n + 1)!
(x− x0)

n+1︸ ︷︷ ︸ .

2. Le théorème nous dit rien de très précis sur ξ. La seule chose que l’on sait est qu’il
se situe dans l’ouvert ]x0, x[. La situation est tout à fait analogue au théorème des
accroissements finis :

∃ξ ∈]x0, x[ tel que f(x) = .

Là non plus, rien de plus est connu pour ξ. Malgré cela, on pourra utiliser l’existence
d’un tel ξ pour étudier le comportement du terme d’erreur.
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3. Pour x0 fixé et x qui varie dans l’ensemble de définition de f , on a bien sûr que la valeur
de ξ peut varier aussi avec celle de x. Puisque ξ ∈]x0, x[, on a sûrement que

lim
x→x0

ξ = x0.

C’est une chose qu’on peut affirmer, sans même connaître plus précisément ξ.

4. Le terme de correction change avec le degré du polynôme de Taylor. On espère mainte-
nant que ce terme de correction tend vers 0 si on augmente ce degré n. Cela signifierait
que la fonction se laisse approcher exactement par son polynôme de Taylor.

Exemples.

1. Calcul de valeurs non remarquables pour cos(x) :

Comment estimer la valeur de cos(1
2
)? A l’ordre 2, le développement limité, i.e. le poly-

nôme de Taylor de cette fonction pour x0 = 0 et son terme de correction, est

cos(x) =
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Remarquer qu’on peut même affiner le terme de correction dans ce cas : comme le
polynôme de Taylor pour le cosinus n’implique que des termes de puissances paires, on
a que Pcos,0,2(x) = Pcos,0,3(x). On peut donc écrire

cos(x) = pour un ξ ∈]0, x[.

Si on pose x = 1
2
, on a 0 < ξ < 1

2
. La valeur de cos(ξ) est alors comprise entre 0 et 1.

on obtient alors l’estimation

< cos(
1

2
) <

On obtient alors l’encadrement

0, 875 =
7

8
< cos(

1

2
) <

7

8
+

1

384
= 0, 877 604.

On peut donc conclure, que le polynôme de Taylor à l’ordre 2 nous donne la valeur de
cos(1

2
) avec deux décimales exactes.
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2. Déterminer les bonnes décimales pour e :

L’exemple de l’exponentielle de la section précédente nous a conduit à estimer

e ≈ Pexp,0,6(1) = 1 + 1 +
1

2
+ . . . +

1

6!
= 2, 718 05.

Le théorème précédent nous dit que pour la vraie valeur de e, il faut ajouter le terme de
correction :

e = Pexp,0,6(1) = 2, 718 05

Le terme d’erreur se laisse lui-même estimer. En effet, bien qu’on ne sache pas la valeur
exacte de ξ, on sait néanmoins que ce nombre se trouve dans ]0, 1[ (x0 = 0 et x = 1),
et que donc exp(ξ) < exp(1) = e < 3.
On arrive alors à encadrer la valeur de e :

2, 718 05 < e < 2, 718 05 +
3

7!
= 2, 718 650 . . . .

Le terme de correction nous permet alors d’affirmer, que 2, 718 sont les premières déci-
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males exactes pour e.
On peut d’ailleurs essayer de trouver plus de décimales exactes, en écrivant

e = Pexp,0,8(1) = 2, 718 05︸ ︷︷ ︸
Pexp,0,6(1)

Après calculs on trouve

2, 718 278 . . . < e < 2, 718 278 . . . +
3

9!
= 2, 718 287 . . . .

On a donc une nouvelle décimale exacte : e = 2, 718 2 . . ..

Ces exemples semblent indiquer, que plus on augmente l’ordre du polynôme de Taylor d’une
fonction, mieux on arrive à approximer les valeurs de f(x) pour une valeur de x donnée. Est-il
possible alors qu’à la limite de l’ordre tendant vers l’infini, on retrouve exactement la valeur
f(x)?
Pour certaines fonctions et certaines valeurs de x, cela est en effet le cas. Etudions certaine
exemples :
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Exemples. 1. f(x) = cos(x), x0 = 0 :

On a déjà calculé

Pcos,0,n(x) =
∑

0≤2k≤n

.

de plus, on a aussi établi le résultat

∀k ∈ N, cos(k)(x) .

D’après le théorème précédent, rcos,0,n(x) = xn+1

(n+1)!
cos(n+1)(ξ), avec ξ ∈ [0, x]. On a

donc

|rcos,0,n(x)| = |
xn+1

(n + 1)!
cos(n+1)(ξ)| =

≤ , car cos(x) ne prend que des valeurs entre −1 et 1.
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Pour une valeur de x fixée et pour des valeurs de n grandissantes, on a alors dès que n

dépasse la valeur de N0 := ⌊x⌋+ 1 :

|rcos,0,n(x)| ≤
|x|n+1

(n + 1)!

=

n+1 termes︷ ︸︸ ︷
|x| · |x| . . . |x|
1 · 2 . . . (n + 1)︸ ︷︷ ︸

n+1 termes

=

N0 termes︷ ︸︸ ︷
|x| · |x| . . . |x|
1 · 2 . . . N0︸ ︷︷ ︸

N0 termes

·

n+1−N0 termes︷ ︸︸ ︷
|x| · |x| . . . |x|

(N0 + 1) . . . (n + 1)︸ ︷︷ ︸
n+1−N0 termes >|x|

<
|x| · |x| . . . |x|
1 · 2 . . . N0︸ ︷︷ ︸

valeur fixe

|x|
n + 1

−→
n→∞

0.

Le terme de correction rcos,0,n(x) tend donc vers 0 avec n, et cela pour chaque valeur
de x fixée. Ainsi, pour toute valeur de x ∈ R :

lim
n→∞

Pcos,0,n(x) = cos(x).

Le cosinus est donc la valeur limite des polynômes de Taylor, qui approxime donc d’aussi
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proche qu’on veut la valeur de cos(x).
On voit grâce à cet exemple, que la connaissance de la valeur exacte de ξ n’est pas né-
cessaire pour montrer que le terme de correction tend vers 0. Uniquement son existence
nous a suffit pour conclure.
Le cos(x) est donc une limite de polynôme. Mais attention ! : cela ne veut pas dire que
c’est lui-même un polynôme. La situation peut se comparer aux nombres irrationnels :
ils sont tous des limites de nombres rationnels, mais la limite, même si elle existe dans
R, ne l’est pas.

2. f(x) = exp(x), x0 = 0 :

Là aussi, on peut reprendre notre calcul précédent :

Pexp,0,n(x) = .



EPFL - CMS Analyse II p.97

Le théorème précédent nous dit alors, que le terme de correction est

rexp,0,n(x) = , pour un ξ ∈]0, x[.

Par la monotonie de l’exponentielle, on a exp(ξ) ≤ exp(x). A nouveau, fixons une valeur
de x et faisons croître les valeurs de n :

|rexp,0,n(x)| = |
xn+1

(n + 1)!
exp(ξ)| ≤ .

Comme pour l’exemple précédent, limn→∞
|x|n+1

(n+1)!
= 0 et exp(x) est une valeur fixée si

x l’est. On a donc là aussi que

∀x ∈ R, lim
n→∞

rexp,0,n(x) = 0,

⇒ ∀x ∈ R, lim
n→∞

Pexp,0,n(x) = exp(x).

On obtient donc une manière de calculer le nombre e :
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e = exp(1) = limn→∞ Pexp,0,n(1) =
∑

n≥0
1
n!
.

Là aussi, il est à remarquer, que bien que l’exponentielle est une limite de polynômes, la
fonction elle-même n’est pas un polynôme.
Tout comme le nombre e, qui est limite de nombres rationnels, mais qui lui est irration-
nel.

3. f(x) = ln(x), x0 = 1 :

On a montré que

ln(n)(x) = .

On peut donc à nouveau invoquer le dernier théorème est écrire le terme de correction :

rln,1,n(x) = avec un ξ ∈]1, x[,

= .
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Comme ξ > 1 on aura que 1
ξ
< 1 et on a l’estimation

|rln,1,n(x)| ≤
1

(n + 1)
|x− 1|n+1.

Pour montrer que cette estimation tend vers 0 avec n qui augmente, on est obligé de
distinguer deux cas :

• 1 < x ≤ 2 : dans ce cas |x− 1| ≤ 1 et

lim
n→∞

|rln,1,n(x)| ≤ = 0.

On a donc que
∀x ∈ [1, 2], lim

n→∞
Pln,1,n(x) = ln(x).

En posant x = 2 on obtient la fameuse équation

ln(2) = lim
n→∞

Pln,1,n(2)

= 1−
1

2
+

1

3
−

1

4
−

1

5
+ . . .
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• x > 2 : dans ce cas |x − 1| > 1 et on ne peut plus garantir la convergence du
polynôme de Taylor vers la valeur du logarithme : dans le terme de correction, le
terme |x− 1|n+1 diverge vers l’infini avec n.
Ceci explique le "décrochage" observé graphiquement.

Une autre application du terme de correction d’un développement limité est son utilisation
pour calculer des limites d’une fonction à priori mal définie en un point. Cela complètera notre
arsenal d’analyse de ce genre de situation avec le théorème de l’Hôpital.

Exemples.

1. Calcul de limx→0
sin(x)−x

x3 .

On reprend le développement limité à l’ordre 3 de sin(x) autour de x0 = 0 :

Psin,0,3(x) = ,

rsin,0,3(x) = = ,
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sin(x) = x−
1

3!
x3︸ ︷︷ ︸

Psin,0,3(x)

+
x4

4!
sin(ξ)︸ ︷︷ ︸

rsin,0,3(x)

.

En fait, ξ, nombre inconnu, satisfait ξ ∈]0, x[ ou ξ ∈]x.0[, suivant si x > 0 ou x < 0.
On peut alors réécrire la limite à calculer comme

lim
x→0

sin(x)− x

x3

= lim
x→0

= lim
x→0

(
−

1

3!
+

x

4!
sin(ξ)

)
.

On remarque maintenant que sin(ξ) reste borné et que limx→0
x
4!

= 0. On a donc

lim
x→0

sin(x)− x

x3
= −

1

3!
.
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2. Calcul de limx→0
cos(x)−1+1

2
x2+x4

x4 .

On reprend le développement limité à l’ordre 4 de cos(x) autour de x0 = 0 :

Pcos,0,4(x) = ,

rcos,0,4(x) = = ,

cos(x) = 1−
1

2!
x2 +

1

4!
x4︸ ︷︷ ︸

Pcos,0,4(x)

−
x5

5!
sin(ξ)︸ ︷︷ ︸

rcos,0,4(x)

.

On rappelle que ξ, nombre inconnu, satisfait ξ ∈]0, x[ ou ξ ∈]x, 0[, suivant si x > 0 ou
x < 0.
On peut alors réécrire la limite à calculer comme

lim
x→0

cos(x)− 1 + 1
2
x2 + x4

x4
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= lim
x→0 x4

= lim
x→0

.

On remarque maintenant que sin(ξ) reste borné et que limx→0
x
5!

= 0. On a donc

lim
x→0

cos(x)− 1 + 1
2
x2 + x4

x4
=

25

24
.

On peut énoncer un résultat général sur le terme de correction :

Théorème 3.2.2. Soit f : R → R une fonction n + 1 fois continûment dérivable sur un
voisinage ouvert I ∋ x0. Alors

lim
x→x0

rf,x0,n(x)

(x− x0)n
= 0.
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Démonstration. On sait qu’il existe un ξ ∈]x0, x[ (ou ξ ∈]x, x0[) tel que

rf,x0,n(x) = .

Puis, on remarque que ξ ∈]x0, x[ (ou ξ ∈]x, x0[) implique que limx→x0 ξ = x0.
Comme f (n+1)(x) est continue sur I ∋ x0 on a

lim
x→x0

(x− x0)
n+1

(n + 1)!(x− x0)n
f (n+1)(ξ)

= lim
x→x0

= 0 · f (n+1)(x0) = 0.
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3.3 Règles de calcul pour polynômes de Taylor

Le but d’apprendre des règles de calcul pour les polynômes de Taylor est d’économiser des
calculs de dérivées et d’utiliser des résultats déjà établis.

Règle d’addition : Si f, g : R→ R sont deux fonctions n fois dérivables sur un intervalle
ouvert I ∋ x0, alors

Pf+g,x0,n(x) = Pf,x0,n(x) + Pg,x0,n(x).

Exemples.

1. Calcul de P 1+x
1−x

,0,n(x)

Calculer les dérivées d’une fonction rationnelle telle que 1+x
1−x

peut s’avérer vite très labo-
rieux. On va s’aider de la règle d’addition pour simplifier considérablement les calculs :
On remarque d’abord que

1 + x

1− x
=

2 + x− 1

1− x
=
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On a déjà calculé les polynômes de Taylor pour 1
1−x

:

P 1
1−x

,0,n(x) = =
n∑

k=0

xk.

On applique maintenant simplement la règle de calcul pour l’addition :

P 1+x
1−x

,0,n(x) = P 2
1−x

−1,0,n(x) =

= =

= 1 + 2
n∑

k=1

xk.

Puisqu’on sait que P 2
1−x

,0,n(x) converge vers 2
1−x

quand n tend vers l’infini et quand

x ∈]− 1, 1[ est fixé, il en va de même pour P 1+x
1−x

,0,n(x).

En fait, le terme de correction d’une somme est aussi la somme des termes de correc-
tions.
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2. Calcul de Psinh,0,n(x) et Pcosh,0,n(x)

On sait déjà que

Pex,0,n(x) = =
n∑

k=0

xk

k!
,

Pe−x,0,n(x) = =
n∑

k=0

(−1)k
xk

k!
.

Or, cosh(x) = 1
2
(ex + e−x) et sinh(x) = 1

2
(ex − e−x). On peut donc additionner, ou

soustraire, les deux polynômes de Taylor pour l’exponentielle croissante et décroissante
pour trouver ceux du cosh(x) et du sinh(x).
Ce faisant, on aura retenu une fois que les puissances paires du polynôme de Taylor
pour ex, et une fois les puissances impaires : en effet, en observant les polynômes de
Taylor plus précisément, on constate que les mêmes termes apparaissent dans le poly-
nôme Pex,0,n(x) et Pe−x,0,n(x), au signe près. Les puissances paires apparaissent avec
le même signe alors que les puissances impaires apparaissent avec un signe opposé.
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Quand on additionne alors Pex,0,n(x) et Pe−x,0,n(x), ne resterons que les termes de puis-
sances paires, alors que si on soustrait ne resterons que les termes en puissance im-
paires :

Pcosh,0,n(x) = 1 +
x2

2!
+ . . . +

x2k

(2k)!
+ . . . =

∑ x2k

(2k)!
,

Psinh,0,n(x) = x +
x3

3!
+ . . . +

x2k+1

(2k + 1)!
+ . . . =

∑ x2k+1

(2k + 1)!
.

Remarque. On remarque d’ailleurs que la parité des puissances dans les polynômes de Taylor
reflètent exactement la parité des deux fonctions, pour autant que x0 = 0.
En effet, si f est paire, sa dérivée sera impaire, et si f est impaire, sa dérivée sera paire :

f(x) = f(−x) ⇒ f ′(x) =
1

2
(f(x) + f(−x))′ =

⇒ f ′(−x) = = −f ′(−x);
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f(x) = −f(−x) ⇒ f ′(x) =
1

2
(f(x)− f(−x))′ = ,

⇒ f ′(−x) = = +f ′(−x).

Donc, si f est paire, toutes ses dérivées d’orde impaires seront impaires et vont s’annuler en
x0 = 0.
Si f est impaire, toutes ses dérivées d’orde paires seront impaires et vont s’annuler en x0 = 0.
Par conséquent, on a pour de telles fonctions

f(x) = f(−x) ⇒ Pf,0,n(x) = f(0) +����f ′(0)x +
1

2
f (2)(0)x2 +

1

3!
�����
f (3)(0)x3 + . . . ,

f(x) = −f(−x) ⇒ Pf,0,n(x) = �
��f(0) + f ′(0)x +

1

2
�����
f (2)(0)x2 +

1

3!
f (3)(0)x3 + . . . .

Par conséquent, si f est paire, son polynôme de Taylor autour de x0 = 0 n’aura que des
puissances paires et
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si f est impaire, son polynôme de Taylor autour de x0 = 0 n’aura que des puissances im-
paires.

Règle de composition : Soit f : R → R une fonction n fois dérivable sur un intervalle
J ∋ y0. Pour x0 ∈ I, a ∈ R et N ∈ N∗, posons

g(x) := f(y0 + a(x− x0)
N).

Alors
Pg,x0,Nn(x) = Pf,y0,n

(
y0 + a(x− x0)

N
)
.

Remarques.

1. La règle de composition dit donc, que pour obtenir le polynôme de Taylor Pg d’une
fonction g qui est la composition d’une fonction f avec une fonction puissance, il suffit
de composer le polynôme de Taylor Pf de f avec cette même fonction puissance.

2. Attention ! Quand cette composition est faite, il faut prendre garde aux points x0 et y0

autour desquels on considère les polynômes de Taylor :
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• x0 est le point autour duquel on calcule le polynôme de Taylor de la composition
g(x) = f(y0 + a(x− x0)

N).

• y0 est le point autour duquel on calcule le polynôme de Taylor de f .

• Le lien entre x0 et y0 est y0 = y0 + a(x− x0)
N
∣∣
x=x0

.

Exemples.

1. Calcul de Pln(1+x),0,n(x) :

La fonction ln(1+x) est précisément la composition de f(y) = ln(y) avec .

En posant x0 = 0, on a bien y0 = 1 + x0

∣∣
x0=0

= 1.
La règle de composition nous dit alors qu’il faut évaluer (ou composer) le polynôme de
Taylor Pln,1,n(y) en y = 1+x. Or, on a déjà calculé le polynôme de Taylor du logarithme
en y0 = 1 :

Pln,1,n(y) = (y − 1)−
1

2
(y − 1)2 +

1

3
(y − 1)3 + . . . + (−1)n−1

1

n
(y − 1)n.
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On peut donc simplement évaluer Pln,1,n(y) en y = 1 + x pour obtenir Pln(1+x),0,n(x) :

Pln(1+x),0,n(x) = Pln,1,n(y)
∣∣
y=x+1

= Pln,1,n(1 + x)

=

=

On peut conclure que

Pln(1+x),0,n(x) = Pln,1,n(1 + x) =
∑n

k=1(−1)k−1 1
k
xk.

2. Un calcul faux de Pln(2+x),0,n(x) :

La fonction ln(2+x) est précisément la composition de f(y) = ln(1+y) avec .
Comme on vient de calculer Pln(1+y),0,n(y), la tentation d’évaluer ce polynôme en y =

1 + x est grande pour obtenir Pln(2+x),0,n(x). Mais attention !
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Dans Pln(1+y),0,n(y), y0 = alors que y = 1 + x
∣∣
x=0

= 1 ̸= y0. On ne peut donc
pas simplement évaluer Pln(1+y),0,n(y) en y = 1 + x pour obtenir Pln(2+x),0,n(x).
Regardons d’ailleurs ce que cela donnerait :

Pln(1+y),0,n(y) =

Pln(1+y),0,n(y)
∣∣
y=1+x

=

Puisque ceci est une expression en puissances de (x + 1) = (x − (−1)), cela ne peut
être qu’un polynôme de Taylor autour de x0 = .
Et en effet, (x+1)

∣∣
x=−1

= 0 = y0. Ainsi, ce qu’on a obtenu, ce n’est pas Pln(2+x),0,n(x),

mais bien .

3. Calcul de P 1
1+x2 ,0,n(x) :

La fonction x 7→ 1
1+x2 peut se voir comme la composition de y 7→ 1

1−y
= f(y) avec

y = .
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Ici, x0 = 0 et y0 = 0. Le polynôme de Taylor pour 1
1−y

en y0 = 0 est connu, puisque
c’est la série géométrique.
On peut donc à nouveau évaluer un polynôme de Taylor connu en y = −x2 :

P 1
1−y

,0,n(y) = =
n∑

k=0

yk,

⇒ P 1
1+x2 ,0,2n(x) = P 1

1−y
,0,n

∣∣
y=−x2 =

Ici la composition des deux polynômes de Taylor nous donne un polynôme de degré 2n.

On peut se demander dans ce cas, ce que devient le terme de correction.

En fait, le polynôme de Taylor pour 1
1+x2 est à nouveau une série géométrique, mais pour

une raison de −x2 :

1

1 + x2
=

1

1− (−x2)
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= 1− x2 + x4 − . . . + (−1)nx2n︸ ︷︷ ︸+ (−1)n+1
x2n+2

1 + x2︸ ︷︷ ︸ .

Remarque. On remarque que le polynôme de Taylor pour 1
1+x2 ne comporte que des puis-

sances pairs. C’est pour cette raison que l’on a

P 1
1+x2 ,0,2n(x) = P 1

1+x2 ,0,2n+1(x) et

r 1
1+x2 ,0,2n(x) = r 1

1+x2 ,0,2n+1(x).

Ceci est en général vrai pour une fonction f paire ou impaire. Pour une telle fonction ona en
effet

Pf,0,2n(x) = Pf,0,2n+1(x) et

rf,0,2n(x) = rf,0,2n+1(x).
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Règle de dérivation : Soit f : R→ R une fonction n + 1 fois dérivable sur un voisinage
ouvert de x0. Alors

d

dx
Pf,x0,n+1(x) = Pf(1),x0,n(x).

Exemple.

1. Calcul de P 1
x
,1,n(x) :

On sait que d
dx

ln(x) = . On connait aussi le polynôme de Taylor de ln(x) autour

de x0 = 1 :

Pln,1,n+1(x) = (x− 1)−
1

2
(x− 1)2 +

1

3
(x− 1)3 − . . . + (−1)n

1

n + 1
(x− 1)n+1.

La dérivée de ce polynôme de Taylor nous donne donc celui de 1
x

autour de x0 = 1 :

P 1
x
,1,n =
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Si la dérivation donne une règle, on paut tout aussi bien faire le chemin "inverse" et trouver
des polynômes de Taylor par intégration :

Règle de l’intégration : Soit f : R→ R une fonction n+1 fois dérivable sur un voisinage
ouvert de x0. Alors

Pf,x0,n+1(x) = f(x0) +

∫ x

x0

Pf(1),x0,n(t)dt.

Exemples.

1. Calcul de Parctan,0,n(x) :

On sait que d
dx

arctan(x) = 1
1+x2 . On connait aussi le polynôme de Taylor de 1

1+x2 autour
de x0 = 0 :

P 1
1+x2 ,0,2n(x) =

L’ntégration de ce polynôme de Taylor nous donne donc celui de arctan(x) autour de
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x0 = 0 :

Parctan(x),0,2n+1(x) = ������arctan(0) +

∫ x

0

P 1
1+x2 ,1,2n(t)dt

=

=

Comme seuls des puissances impaires apparaissent dans ce polynôme, cela peut se ré-
écrire pour un n quelconque comme

Parctan(x),0,n(x) =
∑

0≤2k+1≤n

(−1)k
x2k+1

2k + 1
.

Il est d’ailleurs même possible de donner dans ce cas une expression pour le terme de
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correction. En effet, puisque 1
1+x2 est le résultat d’une série géométrique, on peut écrire

arctan(1)(x) =
1

1 + x2
=

1

1− (−x2)

= =

On a alors

arctan(x) =

∫ x

0

(
n∑

k=0

(−t2)k
)
dt +

∫ x

0

(
(−t2)n+1

1 + t2

)
dt

= + (−1)n+1

∫ x

0

(
(t2)n+1

1 + t2

)
dt

= ︸ ︷︷ ︸
Parctan(x),0,2n+1(x)

+(−1)n+1

∫ x

0

t2n+2

1 + t2
dt︸ ︷︷ ︸

rarctan,0,2n+1(x)
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On va estimer ce terme de reste. En notant que ∀t ∈ R, 1
1+t2
≤ 1, on trouve

|rarctan,0,2n+1(x)| =
∣∣∣(−1)n+1

∫ x

0

t2n+2

1 + t2
dt
∣∣∣

=
∣∣∣ ∫ x

0

t2n+2

1 + t2
dt
∣∣∣ = ∫ |x|

0

t2n+2

1 + t2
dt

≤
∫ |x|

0

t2n+2dt =
|x|2n+3

2n + 3
.

Pour une valeur de x fixée avec |x| ≤ 1, on a donc clairement que

lim
n→∞

rarctan,0,2n+1(x) = 0.

Par conséquent :

∀x ∈ [−1, 1], lim
n→∞

Parctan,0,2n+1(x) = arctan(x).
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Si on choisit alors x = 1, on a

π

4
= arctan(1) = lim

n→∞
Parctan,0,2n+1(1)

= lim
n→∞

(
x−

1

3
x3 + . . . + (−1)n

1

2n + 1
x2n+1

∣∣∣
x=1

)
= lim

n→∞

(
1−

1

3
+

1

5
−

1

7
+ . . . + (−1)n

1

2n + 1

)
.

On a donc (enfin !) une formule pour calculer la valeur de π :

π = 4− 4
3
+ 4

5
− 4

7
+ 4

9
+ . . . .

2. Calcul de Psin,0,n(x) : et Pcos,0,n(x) :

Bien qu’on connaisse déjà ces polynômes de Taylor, il est instructif d’appliquer la règle
d’intégration pour illustrer cette dernière :
en effet, on peut simplement commencer par noter que

Psin,0,0(x) = 0, et Pcos,0,0(x) = 1.
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A partir de là on applique itérativement la règle d’intégration pour obtenir

Psin,0,1(x) = sin(0) +

∫ x

0

= 0 +

∫ x

0

=

∫ x

0

dt = x.

Puis, en intégrant une deuxième fois, on obtient

Pcos,0,2(x) = cos(0) +

∫ x

0

= 1 +

∫ x

0

= 1−
∫ x

0

tdt = 1−
x2

2
.

Une troisième intégration donne

Psin,0,3(x) = sin(0) +

∫ x

0

= 0 +

∫ x

0

=

∫ x

0

(
1−

t2

2

)
dt
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= x−
x3

6
.

Une quatrième intégration donne

Pcos,0,4(x) = cos(0) +

∫ x

0

= cos(0) +

∫ x

0

= 1−
∫ x

0

(
t−

t3

3!

)
dt

= 1−
x2

2
+

x4

4!
.

En continuant ainsi, on voit que, par pas d’intégrations successifs, on reconstruit les po-
lynômes de Taylor de sin(x) et de cos(x).

Il est à noter, que de manière tout à fait similaire, on peut reconstituer les polynômes de
Taylor de sinh(x) et de cosh(x) en intégrant itérativement, commençant par

Psinh,0,0(x) = 0, et Pcosh,0,0(x) = 1.
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4 Nombres Complexes

L’intérêt des nombres complexes est de trouver des solutions à des équations qui n’en ont
pas dans R. Cela nous permettra ensuite de faire une étonnante synthèse entre les fonctions
trigonométrique, hyperboliques et l’exponentiel.

4.1 Construction des nombres complexes

La considération des nombres réels se justifie par la recherche de solutions à des équations
non solubles dans l’ensemble des nombres rationnels. En effet, x2 = 2 n’a pas de solutions
dans Q. Il faut donc "élargir" l’ensemble des nombres rationnels pour que x2 = 2 ait une
solution. Ceci est possible dans R. On a en fait la même situation en ce qui concerne les
nombres naturel, entiers et rationnels :

N︸︷︷︸
x + 1 = 0

n’a pas de solution

⊊ Z︸︷︷︸
2x + 1 = 0

n’a pas de solution

⊊ Q︸︷︷︸
x2 − 2 = 0

n’a pas de solution

⊊ R︸︷︷︸
x2 + 1 = 0

n’a pas de solution
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Il faut donc trouver un ensemble de nombres encore plus grand que R pour inclure des solu-
tions à x2 + 1 = 0. Comment trouver un tel ensemble?

On va s’inspirer de ce qu’on a déjà fait pour passer de Q à R. Pour trouver une solution à
l’équation x2− 2 = 0 on a introduit un nouveau symbole,

√
2, et on a donné une signification

à ce symbole en imposant que

(
√
2)2 = 2 et

√
2 > 0.

On a fait de même en introduisant des symboles π, e et ainsi de suite. On a par la suite gardé
les règles de calculs usuels :

2
√
2 =
√
2 +
√
2, e2 = e · e, (e + π)

√
3 = e

√
3 + π

√
3, 0 · π = 0, . . .

On va donc faire de même et introduire un nouveau symbole, i, et imposer la relation

i2 = −1

On considère ensuite formellement toutes les combinaisons linéaires à coefficients réels de
ce symbole i :
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Définition 4.1.1. L’ensemble des nombres complexes C est défini par

C := {a + ib : a, b ∈ R}.

Propriétés.

• Ce nouveau symbole i représente une nouvelle constante, non réelle. Tout comme −1
était un nouveau nombre non naturel ou

√
2 était un nouveau symbol non rationnel.

• On note z ∈ C pour dire que z = a + ib, avec a, b ∈ R.

• Pour z ∈ R et z = a+ ib, on dit que a est la partie réelle de z, alors que b est la partie
imaginaire de z. On note aussi

a = Re(z), b = Im(z).

A noter que et Re(z), et Im(z) sont des nombres réels.

• Le fait qu’un z ∈ C soit constitué d’une partie réelle et d’une partie imaginaire est
l’origine du mot "complexe".
Ce mot ne signifie pas que ces nombres sont compliqués (au contraire !) mais signifie
"fait de plusieurs parties".
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• On note que 0, 1, i ∈ C :

0 = , 1 = , i = .

• Plus généralement, R ⊂ C. En effet, si x ∈ R, on peut toujours écrire

x = ∈ C.

Sur C, on impose formellement les relations algébriques suivantes :

Définition 4.1.2. Soient z, w ∈ C où

z = a + ib, w = c + id et a, b, c, d ∈ R.

Alors

• z + w = (a + ib) + (c + id) := (a + c) + i(b + d),

• z · w = (a + ib) · (c + id) := (ac− bd) + i(ad + bc).
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Remarques.

• Comme dans R, l’ordre dans lequel ces opérations algébriques sont faites n’a pas d’im-
portance. En effet, si

z = a + ib et w = c + id,

alors

z + w = (a + ib) + (c + id) =

= = (c + id) + (a + ib) = w + z,

et

z · w = (a + ib) · (c + id) =

= = (c + id) · i(a + ib) = w · z.

En particuliers, ib = bi.

• La règle pour la multiplication n’est rien d’autre qu’une conséquence de la distribution
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d’une somme sur un produit. En effet, par distribution on a

(a + ib) · (c + id) =

=

=

= .

On retombe bien sur la formule qui définit le produit de deux nombres complexes.

On peut maintenant manipuler les lois algébriques sur C comme celles dans R :

Exemples.

1. Résoudre 2z + 2i = 3 + i :

Comme dans le cas réel, z joue le rôle de l’inconnue. On isole les termes qui la contiennent :

2z + 2i = 3 + i ⇔ 2z = = 3− i.
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En divisant par 2 on trouve la solution

z = ∈ C.

2. Calculer z = 1
1+2i

:

On cherche donc un nombre z ∈ C, tel que z(1 + 2i) = 1. Pour ce faire, on pose
z = a + bi et on calcule

z(1 + 2i) = 1 ⇔ ⇔

⇔ ⇔
{
a− 2b = 1

2a + b = 0
,

où pour la dernière équivalence on égalise les parties réelles et imaginaires des deux
cotés de l’égalité : deux nombres complexes sont égaux ssi leur parties réels et
imaginaires le sont séparément.
On est donc ramené à résoudre un système de deux équations à deux inconnues réelles.
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Si on ôte deux fois la première ligne à la deuxième, on trouve{
a− 2b = 1

2a + b = 0
⇔ ⇔ b =

−2
5

, a =
1

5
.

Ainsi,
1

1 + 2i
=

1

5
(1− 2i) .

3. Calculer 1
z
, z ̸= 0 :

Pour des nombres complexes, tout nombre non nul peut s’inverser, comme on va le voir
maintenant. Similairement à ce qu’on vient de faire, on pose z = a + ib et 1

z
= x + iy.

Puis on veut que

z
1

z
= 1 ⇔ (a + bi)(x + yi) = 1 ⇔

⇔
{

⇔
(
a −b
b a

)(
x

y

)
=

(
1

0

)
.
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Si a2 + b2 ̸= 0 (i.e. z ̸= 0), on peut inverser cette matrice :(
a −b
b a

)−1

=

On obtient alors(
x

y

)
=

1

a2 + b2

(
a b

−b a

)
= .

Résumons : si z = (a + ib) ̸= 0, on a

1

z
=

1

a + ib
=

1

a2 + b2
(a− ib).

L’exemple précédent qui était z = 1 + 2i redonne donc notre résultat 1
1+2i

= 1−2i
12+22 =

1−2i
5

. On a d’autres exemples comme

1

3 + i
= ,

1
√
2−
√
3i

= ,
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2 + i

1− 7i
= = =

3i− 1

10
.

Ce dernier exemple suggère l’importance de a − ib et de a2 + b2 pour un nombre complexe
a + ib donné. On pose alors la

Définition 4.1.3. Soit z = a + ib ∈ C, a, b ∈ R. On définit le complexe conjugué, z, et
le module, |z| du nombre z comme

z := a− ib, |z| :=
√

a2 + b2.

Remarques.

• Le complexe conjugué d’un complexe est encore un nombre complexe.

• Le module d’un nombre complexe est toujours un nombre réel positif. En fait, si z ∈ R,
alors le module de z, |z|, n’est autre que sa valeur absolue.

Résumons les propriétés les plus importantes dans le
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Théorème 4.1.4. Soient z, z′ ∈ C. On a alors

1. z = 0⇔ |z| = 0.

2. |z| = |z|.
3. |z|2 = z z.

4. z z′ = z z′.

5. |z · z′| = |z| · |z′|.

6. z ̸= 0⇒ z−1 = 1
|z|2z.

7. z ̸= 0⇒ |z−1| = 1
|z| .

8. z + z′ = z + z′.

9. z + z = 2Re(z).

10. z − z = 2iIm(z).

Démonstration. Posons z = a + ib et z′ = c + id.

1.
z = 0 ⇔ z = ︸︷︷︸

a

+i · ︸︷︷︸
b

⇔ ⇔ |z|2 = 0.

2.

|z| = = = |z|.

3.
z z = = = = |z|2.
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4. D’une part

z · z′ = (a + ib)(c + id) = ac− bd + i(ad + bc) = ac− bd− i(ad + bc).

D’autre part

z · z′ = (a + ib) · (c + id) = (a− ib)(c− id) = ac− bd− i(ad + bc).

Les points 5. à 10. sont laissés en exercices.

Comme pour les nombre réels, on a les identités telles que

(z2 − w2) = (z − w)(z + w) ou (z + w)2 = z2 + 2zw + w2.

On aura donc aussi des techniques comme compléter des carrés ou calculer des discrimi-
nants :

Exemples.

1. Résoudre z2 + 2z + 2 = 0 :
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Le discriminant de cette équation est ∆ = 22−2 ·4 = −4. Il n’y a donc pas de solutions
réelle à cette équation. Par contre, on trouve des solutions complexes :

z2 + 2z + 2 = 0 ⇔

⇔ ⇔

⇔ z = −1± i.

On remarque d’ailleurs, que la formule avec discriminant donne le même résultat :

z± =
−2±

√
−4

2
=
−2±

√
(2i)2

2
= −1± i.

Il est à remarquer qu’un léger abus de notation a été commis : la racine
√
−4 n’est à

strictement parler pas une fonction, puisque dans le cas complexe, il n’est pas possible
de choisir la solution "positive" entre −2i et 2i à l’équation

z2 = 4.

En effet, l’ordre total et compatible avec les opérations algébriques de R est perdu dans
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C. Il n’est pas possible de décider, en accord avec les opérations algébriques, si 2i > 0

ou si −2i > 0.
Si on veut que le produit avec un nombre positif ne renverse pas une inéquation, alors
2i > 0 impliquerait −4 > 0 et −2i > 0 impliquerait −4 > 0 aussi.

2. Résoudre z3 + 19z − 20 = 0 :

On peut, comme pour le cas réel, identifier une solution manifeste. On trouve z = 1.

(astuce : si les coefficients d’un polynôme s’additionnent à 0, alors z = 1 est une racine
de ce polynôme.)

On factorise alors ce polynôme par (z − 1) :

(z − 1)(az2 + bz + c) = z3 + 19z − 20

⇒ en comparant les termes z3 et constantes

(z − 1)(z2 + bz + 20) = z3 + 19z − 20.

⇒ en comparant les termes z
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(z − 1)(z2 + z + 20) = z3 + 19z − 20.

Il reste à calculer les racines de z2 + z + 20. Le discriminant est ∆ = 1 − 80 = −79,
d’où on tire les racines

z± = .

Les solutions sont donc les éléments de l’ensemble

S = {1,
−1 + i

√
79

2
,
−1− i

√
79

2
}.

3. Calculer 1 + (1 + 2i) + (1 + 2i)2 + (1 + 2i)3 :

On peut évidemment tout développer et additionner. Ou alors, on remarque une série
géométrique de raison :

1 + (1 + 2i) + (1 + 2i)2 + (1 + 2i)3 =
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= = =
8 + 24i

−2i
= −12 + 4i.

4. Résoudre |z|2 (z2 − 4) = z(z + 2) :

A nouveau, on peut poser z = a + ib, tout développer et essayer de résoudre. Ce n’est
pas la meilleure méthode !
Ou alors on essaye avant de simplifier au maximum :

|z|2
(
z2 − 4

)
= z(z + 2)

⇔

⇔ .

Il y a donc comme solutions déjà

z = 0 et z = −2.



EPFL - CMS Analyse II p.140

On résout maintenant le dernier facteur en posant z = a + ib :(
z(z − 2)− 1

)
= 0

⇔ |z|2 − 2z − 1 = 0

⇔

⇔

⇔
{
a2 + b2 − 1− 2a = 0,

2b = 0
⇔
{
a2 − 2a− 1 = 0,

b = 0

On résout l’équation avec a comme une équation réelle usuelle. Le discriminant est
∆ = (−2)2 + 4 = 8 et ainsi,

a± =
2±
√
8

2
.

L’ensemble solution est donc

S =
{
0,−2, 1−

√
2, 1 +

√
2
}
.
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Une curiosité des nombres complexes a été remarquée par Gauss : certains nombres premiers
dans N ne le sont plus si on considère des nombres complexes dont les coefficients sont des
entiers.
Plus précisément, Il posa la définition suivante :

Définition 4.1.5. Un nombre entier de Gauss est un nombre qui s’écrit comme

z = a + ib ou a, b ∈ Z.

L’ensemble des nombres de Gauss s’écrit comme

Z[i] :=
{
a + ib, : a, b ∈ Z

}
.

Clairement, une somme ou un produit de deux nombres de Gauss est encore un nombre de
Gauss. On peut maintenant se poser la question de la factorisation de nombres du type

p = p + i · 0 ∈ Z[i], avec p ∈ N premier.

On cherche donc des entiers de Gauss a + ib, c + id ∈ Z[i], tels que

p = (a + ib)(c + id).
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Une première chose à remarquer dans cette recherche, est que

p = (a + ib)(c + id)

⇒ ⇒ avec k ∈ Z.

On est donc ramené à chercher des entiers a, b et k, tels que

p = = k(a2 + b2).

Comme p est premier, et k est entier, et a2 + b2 est naturel, on a comme solutions possibles

• k = 1 et p = a2 + b2,

• k = p et a = ±1, b = 0,

• k = p et a = 0, b = ±1.

Les deux dernières possibilités ne sont pas vraiment nouvelles, puisqu’on aurait comme fac-
torisation

p = 1 · p = i · (−ip) = (−i) · ip = (−1) · (−p),

qui sont des factorisations "triviales".
Reste la première possibilité. Pour p = 2 on a en effet comme factorisation sur les entiers de
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Gauss
2 = = .

Il y a donc deux factorisations possibles de 2 sur les entiers de Gauss. 2 n’est plus un nombre
premier dans Z[i].

Prenons l’exemple du prochain nombre premier, à savoir p = 3. D’après la discussion précé-
dente, pour trouver une factorisation non-triviale de 3 sur Z[i], il faut trouver deux nombres
entiers a et b, tels que a2+b2 = 3. En essayant successivement a = 0 ou a = 1 (a = 2 serait
déjà trop grand), on voit qu’il n’est pas possible d’en trouver. Donc, 3 reste premier, même
dans Z[i]. C’est ce qu’on appelle alors un nombre premier de Gauss.

Essayons le nombre premier p = 5. Cette fois-ci il est possible de trouver a, b ∈ Z tels que
a2 + b2 = 5. En effet, on peut prendre a = 1 et b = 2, ou symétriquement, a = 2 et b = 1.
On a donc comme factorisation de p = 5 sur Z[i] :

5 = =

= = .
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5 n’est donc pas un nombre premier de Gauss puisqu’il possède 4 factorisations distinctes et
non triviales.

Pour p = 7 il est à nouveau pas possible de trouver des entiers a et b, tels que 7 = a2+b2. En
effet, ni a = 0, ni a = 1, ni a = 2 (a = 3 est déjà trop grand) ne nous permettent de trouver
un nombre b entier, dont les carrés en somme donnerait 7. C’est donc un nombre premier de
Gauss.

En fait la situation est la suivante : un nombre premier p se factorise sur Z[i] ssi il est la
somme de deux carrés d’entiers, a2 + b2 = p.
On a vu que 2 et 5 étaient factorisables, alors que 3 ou 7 ne l’étaient pas. On sait que d’après
un théorème en théorie des nombres, que tout nombre premier p qui s’écrit comme p = 4k+1

peut être écrit comme somme de deux carrés d’entiers, alors que si p = 4k + 3 cela est
impossible.
Donc,

3, 7 11, 19, 23, . . .
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sont des premiers de Gauss alors que

2, 5, 13, 17, . . .

ne sont plus des premiers dans Z[i].
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4.2 Représentations

Le but de ce paragraphe est d’améliorer notre intuition des nombres complexes en les repré-
sentant de différentes manières. Ces représentations simplifieront aussi certains calculs.
Il existe des manières de se représenter géométriquement un nombre complexe. En effet,
puisque un tel nombre s’écrit comme

z = a + ib, avec a, b ∈ R,

on voit qu’un nombre complexe est la donnée de deux nombres réels a e b. Comme en plus
on additionne des nombres complexes en additionnant séparément leur parties réels et ima-
ginaires, il est naturel de voir z comme un point du plan :

Définition 4.2.1. La représentation de Gauss est l’identification de C avec R2, donnée
par

C ∋ z = a + ib ←→ M(z) := (a, b) ∈ R2.

Réciproquement, l’affixe d’un point P (x, y) ∈ R2 est le nombre complexe zP := x + iy.

Dans la représentation de Gauss les nombres complexes sont donc représentés par des points
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du plan, l’addition de deux nombres complexes revient à additionner les coordonnées carté-
siennes de ces points et la conjugaison complexe n’est autre qu’une symétrie d’axe (Ox) :

x = Re(z)

y = Im(z)

(3,1)=M(3+i)
3+i=z(3,1)

(−1,1)=M(i−1)
i−1=z(−1,1)

(2,2)=M(3+i+i−1)
2+2i=z(3,1)+z(−1,1)

x = Re(z)

y = Im(z)

(3,1)=M(3+i)
z(3,1)=3+i

(3,−1)=M(3−i)
z(3,−1)=3−i

Dans la représentation de Gauss, le module d’un nombre z = a+ ib, à savoir |z| =
√
a2 + b2,

n’est donc autre que la norme du vecteur
−−−−→
OM(z) :

|z| ←→ ∥
−−−−→
OM(z)∥.
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De plus, la multiplication i · z correspond à la rotation par π
2

du vecteur
−−−−→
OM(z). En effet,

i(a + ib) = :

x = Re(z)

y = Im(z)

(2,1)=M(2+i)
z(2,1)=2+i

(−1,2)=M(2i−1)
z(−1,2)=i(2+i) i · (2 + i)

x = Re(z)

y = Im(z)

(3,1)=M(3+i)
z(3,1)=3+i

∥
−−−−−−−→
OM(3 + i)∥

Puisque le module |z| =
√
a2 + b2 d’un nombre complexe z = a + ib correspond à la norme

du vecteur
−−−−→
OM(z) et que les normes vectoriels dans le plan obéissent à l’inégalité du triangle,
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il en va de même pour le module :

|z + w| ≤ |z|+ |w|.

On peut d’ailleurs le montrer algébriquement : souvenons-nous que |z|2 = z · z. On a alors

|z + w|2 = =

= =

= ≤

= = = (|z|+ |w|)2.

On extrait maintenant la racine des deux côtés de cette inégalité et on retrouve l’inégalité
triangulaire.

Venons maintenant à ce qu’on appelle la représentation triginométrique d’un nombre com-
plexe.
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Pour définir un nombre complexe z = a +

ib, il suffit de connaître son module |z| =√
a2 + b2 et l’angle φz formé par (Ox) et

(0M(z)). La trigonométrie nous apprend
alors que

z = a + ib = |z|
(
cos(φz) + i sin(φz)

)
. x = Re(z)

y = Im(z)

(1,2)=M(1+2i)
z(1,2)=1+i2

∥
−−−−−−−−→
OM(1 + 2i)∥

φ1+2i

L’angle φz peut d’ailleurs se calculer grâce à la trigonométrie.

• Si z = a + ib et b ≥ 0, on a simplement φz = arcos( a√
a2+b2

).

• Si z = a + ib et b < 0, on a simplement φz = −arcos( a√
a2+b2

).

φz = sgn(b)arcos(
a

√
a2 + b2

) ∈ ]− π, π],
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pour autant que l’on choisisse la convention que sgn(0) = 1.

x = Re(z)

y = Im(z)

(1,2)=M(1+2i)
z(1,2)=1+i2

√
5

arcos( 1√
5
)

1

x = Re(z)

y = Im(z)

(1,−2)=M(1−2i)
z(1,−2)=1−2i

√
5
−arcos( 1√

5
)

1

On peut d’ailleurs maintenant utiliser les développement limités pour simplifier encore cette
écriture. En effet, l’étude des polynômes de Taylor nous a montré, que pour un nombre réel
x, on a avait

exp(x) = lim
n→∞

n∑
k=0

xk

k!
.

Notons donc, que pour calculer une valeur pour l’exponentielle d’un objet x, il suffit en fait



EPFL - CMS Analyse II p.152

de savoir élever à une puissance naturelle cet objet x, faire une somme de ces puissances et
faire une limite.
Toutes ces opérations peuvent se faire avec des nombres complexes. Voyons donc ce que
donnerait la limite des polynômes de Taylor pour l’exponentielle, si on substitue x par iy :

n∑
k=0

(iy)k

k!
=

∑
0≤2k≤n

+
∑

0≤2k+1≤n

=
∑

0≤2k≤n

+
∑

0≤2k+1≤n

=
∑

0≤2k≤n

+
∑

0≤2k+1≤n

=
∑

0≤2k≤n

(−1)ky2k

(2k)!︸ ︷︷ ︸
+i

∑
0≤2k+1≤n

(−1)ky2k+1

(2k + 1)!︸ ︷︷ ︸
.
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On voit donc apparaître les polynômes de Taylor pour les fonctions trigonométriques cos et
sin. Or, on saît que ces fonctions sont elles aussi les limites de leur polynômes de Taylor.
Donc,

lim
n→∞

n∑
k=0

(iy)k

k!
= cos(y) + i sin(y).

Autrement dit, on peut définir l’exponentielle d’un nombre imaginaire par les polynômes de
Taylor et le résultat est

exp(iy) = cos(y) + i sin(y) .

Remarques.

• Cette dernière formule est une synthèse remarquable entre les fonctions exponentielles
et trigonométriques. Les fonctions cos et sin peuvent donc être vues comme la partie
réelle et imaginaire respectivement de l’exponentielle pour une variable imaginaire iy.

• Pour obtenir de résultat il était nécessaire de passer par les polynômes de Taylor et par
leur termes de corrections. Il est bien sûr nécessaire aussi d’avoir introduit les nombres
complexes. Mais maintenant, grâce à tout ce travail, on est en mesure de comprendre
cette formule et de donner un sens à exp(iy).

On peut donc poser la
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Définition 4.2.2. Soit z ∈ C∗. Alors la représentation polaire de z est l’écriture :

z = |z| exp(iφ)

où

φ = sgn(Im(z))arcos(
Re(z)

|z|
) ∈ ]− π, π]

est l’argument principal de z.

Remarque.
L’argument principal d’un nombre complexe non nul z est donc l’unique angle dans φ ∈
]− π, π] tel que

z = |z| (cos(φ) + i sin(φ)) .

Il est bien sûr possible d’avoir d’autres angles que l’argument principal. Comme en trigono-
métrie, on peut toujours ajouter des multiples de 2π :

z = |z| (cos(φ + 2kπ) + i sin(φ + 2kπ)) .
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Par conséquent, l’exponentielle a une periodicité de 2πi :

exp(iy) = exp(iy + i2kπ), k ∈ Z.

On peut même pousser plus loin encore les parallèles avec l’exponentielle réelle :

Propriétés.

1. ∀φ, θ ∈ R, exp(i(φ + θ)) = exp(iφ) exp(iθ)

En effet, par définition, on a

exp(i(φ + θ)) =

=
lois d’addition

cos(θ) cos(φ)− sin(θ) sin(φ) + i
(
cos(φ) sin(θ) + sin(φ) cos(θ)

)
=

loi de multiplication dans C

(
cos(φ) + i sin(φ)

)(
cos(θ) + i sin(θ)

)
= .
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Donc, la loi d’addition de l’exponentielle

ei(φ+θ) = eiφeiθ

implémente de manière directe et synthétisée les deux lois d’addition trigonométriques.

Exemples.

1. exp(i0) = 1, exp(iπ
2
) = i, exp(iπ) = −1, exp(i3π

2
) = −i.

Suivant la définition :

exp(i0) = cos(0) + i sin(0) = ,

exp(i
π

2
) = cos(

π

2
) + i sin(

π

2
) = ,

exp(iπ) = cos(π) + i sin(π) = ,

exp(i3
π

2
) = cos(3

π

2
) + i sin(3

π

2
) = .
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La troisième équation nous donne d’ailleurs la splendide relation

eiπ + 1 = 0.

Cette dernière équation permet de placer en une seule équation simple les nombres
fondamentaux 0, 1π, i et e. Elle témoigne donc de la synthèse qu’on est arrrivé à faire
entre la trigonométrie, l’exponentielle, les polynômes de Taylor et les nombres com-
plexes.

2. La multiplication de z par eiθ est une rotation de z autour de l’origine d’un angle θ :

On commence par exprimer z en représentation polaire :

z = |z| eiφ, φ ∈]− π, π].

On multiplie ensuite par eiθ :

eiθz = eiθ|z| eiφ = |z| ei(θ+φ).

L’argument de z a été augmenté d’un angle θ alors que son module n’a pas changé :
c’est bien une rotation de z autour de l’origine d’un angle θ.
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x = Re(z)

y = Im(z)

2 + i
zP (2,1)

ei2π
3 · z

· ei2π
3

φ2+i

φ2+i +
2π
3

3. Calculer les racines nièmes d’un nombre complexe z :

La représentation polaire est particulièrement adaptée pour calculer les racines. Par
exemple, trouvons w ∈ C tel que

w5 = 1.
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En effet, en représentation polaire, cette équation s’écrit comme(
rw eiφw

)5
= ei·0 ⇔ r5

we
i5φw = ei·0

⇔
{
r5
w = 1

5φw = 0 mod 2kπ
=

{
rw = 1

φw = 2kπ
5
, k = 0, 1, 2, 3, 4

.

le nombre 1 possède donc 5 racines 5ièmes

dans C : {
1, ei2π

5 , ei4π
5 , ei6π

5 , ei8π
5

}
.

L’écriture
√
1 n’est donc plus celle d’une

fonction dans C. Il n’est en effet pas possible
de décider laquelle de ces cinq solutions est
la solution "positive".
Dans C,

√
1 est un plutôt un ensemble de

cinq nombres complexes.

x = Re(z)

y = Im(z)

1
zP (1,0)

ei2π/5

ei4π/5

ei6π/5

ei8π/5
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4. Tourner P (3, 3) autour de Ω(2, 1) d’un angle de π
4
.

On a déjà vu comment faire tourner un point autour de l’origine dans l’exemple 2. On va
donc se ramener à ce cas par translation du plan :

x = Re(z)

y = Im(z)

Ω(2,1)
zΩ=2+i

P ′
+π

4

P (3,3)
zP=3+3i

x = Re(z)

y = Im(z)

Ω(2,1)
zΩ=2+i

P ′
+π

4

P (3,3)
3+2i

Q(1,2)
zQ=1+2i

Q′

zQ′=eiπ/4zQ

+π
4

On va ramener le centre de rotation Ω(2, 1) vers l’origine des coordonnées par une

translation des points du plan grâce au vecteur
−→
ΩO.

En terme d’affixe des points, cela revient à soustraire l’affixe zΩ à l’affixe zP pour obtenir
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l’affixe zQ du point translaté Q :

zQ = = .

Ce nouveau point Q va maintenant subir une rotation de π
4

autour de l’origine pour
obtenir un point Q′ :

zQ′ = = =

Pour trouver l’affixe de P , il suffit mainte-
nant de faire la translation inverse par

−→
OΩ :

zP ′ = zQ′ + zΩ

=

x = Re(z)

y = Im(z)

Ω(2,1)
zΩ=2+i

P ′
+π

4
P (3,3)
3+2i

Q(1,2)
zQ=1+2i

Q′

zQ′=eiπ/4zQ

+π
4
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Cette manière de faire est très générale : pour trouver l’affixe zP ′ d’un point P qu’on
fait tourner d’un angle φ autour d’un point Ω ̸= (0, 0), on calcule

zP ′ = zΩ + eiφ · (zP − zΩ)︸ ︷︷ ︸
translation de

−→
ΩO︸ ︷︷ ︸

rotation autour de l’origine︸ ︷︷ ︸
translation de

−→
OΩ

5. Trouver les sommets d’un hexagone régulier, sachant que zS3 = 0 et que zS5 =
√
6(1 + i)

Pour résoudre ce problème, on va utiliser
les symétries de l’hexagone. On pourra aussi
utiliser la formule pour les rotations qu’on
vient de trouver au problème précédent.
Pour bien débuter un problème géomé-
trique, on peut toujours commencer par un
dessin pour bien visualiser la situation pré-
sente : x = Re(z)

y = Im(z)

S3(0,0)
zS3=0

S5(
√

6,
√

6)

zS5=
√

6(1+i)

S1

S2

S4

S0



EPFL - CMS Analyse II p.163

Géométriquement, il est clair, que les sommets S1, S3 et S5 forment un triangle équila-
téral orienté positivement.

Or, le côté S1 est obtenu par une rotation de
π
3

de S5 autour de S3 :

zS1 = =

=

x = Re(z)

y = Im(z)

S3(0,0)
zS3=0

S5(
√

6,
√

6)

zS5=
√

6(1+i)

S1

S2

S4

S0

+π
3

On remarque ensuite que les sommets S2, S4 et S0 forment eux aussi un triangle équi-
latéral. Celui-ci est d’ailleurs tout simplement le triangle formé par S1, S3 et S5, tourné
d’un angle π

3
autour du centre Ω de l’hexagone.

Mais le centre de cet hexagone est le même que le centre du triangle formé par S1, S3
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et S5, qui se calcule donc comme

zΩ = =

=

√
3− 1
√
2

+ i

√
3 + 1
√
2

(√
6

2
=

√
3
√
2

)
.

x = Re(z)

y = Im(z)

S3(0,0)
zS3=0

S5(
√

6,
√

6)

zS5=
√

6(1+i)

S1(
√

3−3√
2

,
√

3+3√
2

)

zS1=
√

3−3√
2

+i
√

3+3√
2

S2

S4

S0

Ω

+π
3

−π
3
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Il reste donc à calculer

zS0 = =
√
6−
√
2 + i(

√
6 +
√
2),

zS2 = =

=

=
1
√
8
(−4 + i4) =

√
2(i− 1),

zS4 = =

=

=
1
√
8

(
2(1 +

√
3) + i2(

√
3− 1)

)
=

√
3 + 1
√
2

+ i

√
3− 1
√
2

.
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4.3 Division euclidienne

Le but des deux derniers paragraphes est de trouver des solutions dans C pour des équations
polynômiales. Ces solutions peuvent ensuite être utilisées pour écrire ce même polynôme en
produit de facteurs simples, comme dans le cas de la factorisation de nombres naturels en
facteurs premiers.
On a donc introduit ce nombre i, solution de x2 + 1 = 0. La question maintenant est de
savoir : reste-t-il des équations sans solution dans C ? On peut en effet trouver facilement de
telles équations :

• zz = −1 n’a pas de solutions dans C, car

zz = .

• 1
z
= 0 n’a pas de solutions dans C, car

1

z
= 0 ⇔ .

Par contre, les équations polynômiales ont toujours une solution dans C. Pour un polynôme
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P (X) de degré n, notons

P (X) = a0 + a1X + . . . + anX
n = .

On classifie les polynômes par leur type de coefficients :

Définition 4.3.1. L’ensemble des polynômes à coefficients a0, a1, . . . , an ∈ R et de degré
n ∈ N est dénoté par R[X] :

R[X] :=
{ n∑

k=0

akX
k : n ∈ N et a0, a1, . . . , an ∈ R

}
.

L’ensemble des polynômes à coefficients a0, a1, . . . , an ∈ C et de degré n ∈ N est dénoté
par C[X] :

C[X] :=
{ n∑

k=0

akX
k : n ∈ N et a0, a1, . . . , an ∈ C

}
.

On a bien sur R[X] ⊂ C[X].
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Deux polynômes P (X) et Q(X) peuvent s’additionner et se multiplier. Pour ces opérations,
on va s’intéresser au comportement du degré des polynômes, c’est-à-dire de l’exposant le
plus élevé qui apparaît dans l’expression polynômiale :

Le degré de l’addition de deux polynômes est
majoré par le plus haut degré des deux poly-
nômes additionnés :

deg(P + Q) ≤ max{deg(P ), deg(Q)}.

deg=5︷ ︸︸ ︷
6X5 − 2X2 + X + 3

4X4 − 6X3 + 2X2︸ ︷︷ ︸
deg=4

+

Le degré du produit de deux polynômes est
la somme des degrés des deux polynômes
multipliés :

deg(P ×Q) = deg(P ) + deg(Q).

deg=2︷ ︸︸ ︷
− 2X2 + X + 3

−3X3 + 2X2 + 1︸ ︷︷ ︸
deg=3

×
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Comme pour dans le cas des nombres naturels, on peut procéder à une division avec reste
entre deux polynômes. On parle de division euclidienne. Illustrons cela par un exemple, où
nous allons procéder à la division euclidienne de

P (X) = 6X3 − 2X2 + X + 3 par Q(X) = X2 −X + 1.

Pour ce faire, on commence par diviser le terme de plus haut degré de P (X), à savoir 6X3,
par le terme de plus haut degré de Q(X), à savoir X2. Le résultat, qui est est alors
à reporter sur une ligne de résultat :

P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

Q(X)︷ ︸︸ ︷
X2 − X + 1

︸ ︷︷ ︸
résultat

La deuxième étape consiste à multiplier ce résultat, 6X, par Q(X). Le résultat de ce produit,

à savoir est ensuite reporté sur une ligne en dessous de P (X), pour
être prêt à être soustrait :
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P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

︸ ︷︷ ︸
Q(X)×6X

−

Q(X)︷ ︸︸ ︷
X2 − X + 1

6X

Cette soustraction est ensuite effectuée et le résultat, à savoir , est placé
sur une nouvelle ligne :

P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

6X3 − 6X2 + 6X

︸ ︷︷ ︸
P (X)−6X×Q(X)

−

Q(X)︷ ︸︸ ︷
X2 − X + 1

6X
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On divise le terme de plus haut degré de ce
polynôme, à savoir 4X2, par le terme de plus
haut degré de Q(X), toujours X2, pour ob-
tenir . Cela est reporté sur la ligne ré-
sultat :

P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

6X3 − 6X2 + 6X

4X2 − 5X + 3

−

Q(X)︷ ︸︸ ︷
X2 − X + 1

L’ étape suivante consiste à multiplier ce ré-
sultat, 4, par Q(X). Le résultat de ce pro-

duit, à savoir est en-
suite reporté sur une ligne en dessous de
4X2 − 5X + 3, pour être prêt à être sous-
trait :

P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

6X3 − 6X2 + 6X

4X2 − 5X + 3

︸ ︷︷ ︸
4×Q(X)

−

−

Q(X)︷ ︸︸ ︷
X2 − X + 1

6X + 4

Cette soustraction est ensuite effectuée et le résultat, à savoir , est placé sur
une nouvelle ligne :
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P (X)︷ ︸︸ ︷
6X3 − 2X2 + X + 3

6X3 − 6X2 + 6X

4X2 − 5X + 3

4X2 − 4X + 4

−X − 1

−

−

Q(X)︷ ︸︸ ︷
X2 − X + 1

6X + 4

Ce dernier polynôme est de degré inférieure à Q(X) et ne peut pas être divisé plus. On dit
que c’est le reste de la division euclidienne de P (X) par Q(X) :

P (X) = (6X + 4)︸ ︷︷ ︸
division D(X)

Q(X) + −X − 1︸ ︷︷ ︸
reste R(X)

.

Ce procédé est toujours possible pour tout polynôme P (X) qu’on souhaiterai diviser par
Q(X).
La division euclidienne fonctionne bien sûr aussi pour des polynômes à coefficients complexes.
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Exemple.

1. Diviser P (Z) = 2iZ5 + 4Z3 − iZ + 1 par Q(Z) = 2Z3 − 8.

Dans cet exemple on a le degré de P (Z) égal à5 et le degré de Q(Z) égal à 3. On
devra donc avoir un diviseur (à coefficients complexes) de degré 2 et un reste R(X) (à
coefficients complexes) de degré 2 au plus.

P (Z)︷ ︸︸ ︷
2iZ5 + 4Z3 − iZ + 1

2iZ5 − 8iZ2

4Z3 + 8iZ2 − iZ + 1

4Z3 − 16

i8Z2 − iZ + 17

−

−

Q(Z)︷ ︸︸ ︷
2Z3 − 8

iZ2 + 2

Se dernier polynôme obtenu, à savoir 8iZ2 − iZ − 17, ne peut plus être divisé plus
par 2iZ3 − 8, puisqu’il est de degré inférieur à 3. C’est donc le reste de notre division
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euclidienne qui s’écrit comme

2iZ5 + 4Z3 − iZ + 1︸ ︷︷ ︸
P (Z)

= (iZ2 + 2)︸ ︷︷ ︸
D(Z)

(2Z3 − 8)︸ ︷︷ ︸
Q(Z)

+ i8Z2 − iZ + 17︸ ︷︷ ︸
R(Z)

.

On peut résumer par le

Théorème 4.3.2. Soient P (X), Q(X) ∈ C[X], deux polynômes de degrés n et m res-
pectivement, avec n ≥ m > 0. Il existe alors

• un unique polynôme D(X) de degré n−m et

• un unique polynôme R(X) de degré strictement inférieur à m,

tels que
P (X) = D(X)×Q(X) + R(X).

Démonstration. L’existence des polynômes D(X) et R(X) avec deg(R) < deg(Q) est garan-
tie par la division euclidienne.
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Montrons alors l’unicité. Supposons que

P (X) = D1(X)Q(X) + R1(X) et deg(R1) < deg(Q),

P (X) = D2(X)Q(X) + R2(X) et deg(R2) < deg(Q).

Alors,

0 = P (X)− P (X) = .

Si D1(X)−D2(X) ̸= 0, alors .

Comme deg(R1 −R2) ≤ max{deg(R1), deg(R2)} < deg(Q), on a que

.

Ce dernier polynôme ne peut donc être égal à 0. On doit donc avoir D1(X) = D2(X).
Si tel est le cas,

0 = P (X)− P (X) =
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=

et on a donc aussi R1(X) = R2(X).

Le reste d’une division euclidienne est donc toujours de degré inférieur au diviseur. Si ce di-
viseur est de degré 1, c’est-à-dire que si on divise par un polynôme du type X − a, alors le
reste sera un nombre. Que représente ce nombre ?

Posons les choses : supposons qu’on Divise un polynôme P (X) de degré n par (X − a). La
division euclidienne nous donnera alors quelque chose du type

P (X)︸ ︷︷ ︸
degré n

= (X − a)︸ ︷︷ ︸
degré 1

D(X)︸ ︷︷ ︸
degré n−1

+ R︸︷︷︸
cste

.

Si on substitue maintenant X par la valeur a on obtient

P (a) = (a− a)Q(a) + R = R, ⇒

On a donc le
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Théorème 4.3.3. Soit P (X) ∈ C[X]. Alors le reste de la division euclidienne de P (X)

par (X − a) est la valeur que prends P (X) en X = a :

P (X) = (X − a)D(X) + P (a).

Autrement dit, a est une racine du polynôme P (X) ssi (X − a) divise P (X) sans reste.
C’est un résultat qu’on a déjà utilisé plusieurs fois lors de factorisations d’expressions dont
on cherchait les racines. La division euclidienne nous justifie pleinement dans cette approche.

Exemples.

1. Utiliser les valeurs P (a) et P (b) comme informations sur R(X) :

Etant donné un polynôme P (X) dont on sait, que le reste de la division euclidienne par
(X − a) est 1 et le reste de la division euclidienne de P (X) par (X − b) est 2. Que
peut-on dire du reste de la division de P (X) par (X − a)(X − b)?

On sait déjà que ce reste doit être de degré au plus 1, puisque (X − a)(X − b) est de
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degré 2. Le reste qu’on cherche est donc du type

R(X) = a1X + a0.

Puis, on sait que le reste de la division de P (X) par (X−a) est 1. Donc,

et similairement, .
Puisque

P (X) = D(X)(X − a)(X − b) + R(X)

on sait aussi que et . Par consé-
quent,{

R(a) = 1,

R(b) = 2
⇔

{
,

⇔
{

,

⇔


,

⇒ R(X) =
1

b− a
X + 2−

b

b− a
.
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On peut aussi réécrire ce résultat comme

R(X) =

R(b)−R(a)︷︸︸︷
1

b− a
(X − a) + 1︸︷︷︸

R(a)

,

ou encore comme

R(X) =

R(a)−R(b)︷︸︸︷
−1

a− b
(X − b) + 2︸︷︷︸

R(b)

.

Ces deux dernières écritures pourront être vérifiées en exercices.

2. Utiliser les valeurs P (a) et P ′(a) comme informations sur R(X) :

Si on sait que P (a) = 1 et P ′(a) = 2, que peut-on dire sur le reste R(X) de la division
de P (X) par (X − a)2 ?

A nouveau, ce reste doit être de degré au plus 1, puisque le degré du quotient Q(X) =
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(X − a)2 est de 2. On a donc

P (X) = D(X)(X − a)2 + R(X),

P ′(X) =

⇒ R(a) = et P ′(a) =

On cherche donc

R(X) = a1X + a0 t.q. R(a) = 1 et R′(a) = 2

⇔
{

⇔
{

⇔ R(X) = 2X + 1− 2a.

On peut réécrire cela comme

R(X) = 2︸︷︷︸
P ′(a)

(X − a) + 1︸︷︷︸
P (a)

.
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On remarquera que cela n’est rien d’autre que le polynôme de Taylor de R(X) autour
de X0 = a.

3. Reste de la division de P (X) = (X + 1)n −Xn − 1 par X2 − 3X + 2.

Ici la difficulté réside dans le fait que le degré du polynôme P (X) est inconnu. On ne
peut donc procéder à une division euclidienne.
Par contre, on sait que

X2 − 3X + 2 =

De plus,

le reste de la division de P (X) par (X − 1) est P (1) =

le reste de la division de P (X) par (X − 2) est P (2) =
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Le reste qu’on cherche est de degré 1 et on sait par le premier exemple, que

R(X) =
P (2)− P (1)

2− 1
(X − 1) + P (1)

=
R(2)−R(1)

2− 1
(X − 1) + R(1)

=

=

Comme pour les nombres entiers, on peut alors poser la

Définition 4.3.4. Soient P (X), Q(X) ∈ R[X] (ou ∈ C[X]). On dit alors que Q(X)

divise P (X), et on note A|B, si le reste de la division euclidienne de P (X) par Q(X)

est nul.

On sait alors déjà qu’un polynôme de degré un Q(X) = (X − a) divise un polynôme P (X)

si et seulement si P (a) = 0. On peut utiliser ce résultat itérativement pour déterminer la
divisibilité des polynômes :
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Exemples.

1. Utiliser les racines de Q(X) pour diviser P (X).

Est-ce que le polynôme

P (X) = X5 −X4 − 4X3 + 5X2 − 3X + 2

est divisible par
Q(X) = X2 − 3X + 2?

On va utiliser les racines de Q(X) pour déterminer cela. En effet,

Q(X) = .

Les racines de Q(X) sont donc {1, 2}. Mais

P (1) = ,

P (2) =
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On sait alors que P (X) est divisible par (X − 2) et par (X − 1). Mais alors,

P (X) = D(X)(X − 1).

Comme P (2) = 0 et que (X − 1)|X=2 ̸= 0, il faut que . Donc (X − 2)

divise D(X) et

P (X) = E(X)(X − 2)︸ ︷︷ ︸
D(X)

(X − 1) = .

On a donc bien que Q(X) = X2 − 3X + 2 divise P (X).

2. (X − 1)2 divise-t-il P (X) = Xn+1 −X2 + (1− n)X + n− 1?

On vérifie facilement que P (1) = 0. On en conclut que (X − 1) divise P (X). Mais
comment savoir, si (X − 1)2 divise P (X)?

En fait, la réponse nous est donnée par les polynômes de Taylor, dont notre connaissance
va nous être utile même ici. P (X) étant un polynôme de degré n, on sait que son poly-
nôme de Taylor autour de tout X0 et de degré n lui sera égal.
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L’astuce est maintenant de considérer le polynôme de Taylor de P (X) autour de X0 =

1 :

P (X) = .

Le reste de la division de P (X) par (X − 1)2 est donc . La
division sera alors possible si P (1) = 0 et P ′(1) = 0. Dérivons alors P (X) :

P ′(X) = .

On voit alors maintenant qu’en effet, P ′(1) = 0. On conclut alors que (X − 1)2 divise
bel et bien P (X).
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4.4 Factorisation

La question de savoir si toute équation polynômiale dans C possède une solution a été soulevée
mais pas complètement résolue au paragraphe précédent.
La bonne nouvelle vient maintenant sous la forme du théorème fondamental de l’algèbre :

Théorème 4.4.1. Soit P (X) ∈ C[X] un polynôme de degré plus grand que 1. Alors
l’équation P (X) = 0 possède au moins une solution dans C.

Remarques.

• Le théorème fondamental de l’algèbre n’est pas vrai si on remplace C par R : on a déjà
vu que X2 + 1 = 0 n’a pas de solution dans R.
Par contre, X2 + 1 = 0 a les solutions X = ±i. Un polynôme à coefficients réels peut
donc avoir des solutions dans C.

• La preuve de ce théorème est laissé dans une note séparée et est donc facultative.

Comme nous assure la division euclidienne, on peut procéder à une division d’un polynôme
P (X) par un facteur X − w, pour autant que P (w) = 0. En effet, le reste R de la division
euclidienne par X − w représente la valeur P (w), qui est donc nul.
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Exemples.

1. Division de P (X) = X3 + 2X2 − i2X + i par X − i :

On commence par constater que

P (i) = = = 0.

On peut donc diviser P (X) par X − i. Le tableau de la division euclidienne donne

P (X)︷ ︸︸ ︷
X3 + 2X2 − 2iX + i

0

−

−

−

Q(X)︷ ︸︸ ︷
X − i
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On obtient donc

X3 + 2X2 − i2X + i = (X2 + (2 + i)X − 1)(X − i).

On remarque que le reste est effectivement nul.

2. Factoriser complètement P (X) = 2X3 + (2i− 4)X2 + (6− 6i)X + 4i− 4 :

On remarque premièrement qu’on peut factoriser le polynôme par 2 :

P (X) = 2X3 + (2i− 4)X2 + (6− 6i)X + 4i− 4

= 2 .

Les racines de P (X) seront donc les mêmes que celles de

N(X) = X3 + (i− 2)X2 + (3− 3i)X + 2i− 2.

On dit que N(X) est le polynôme P (X) normalisé.

Puis on cherche une racine apparente. Dans ce cas, X = 1 en est une (astuce : si la
somme des coefficients d’un polynôme est nulle, X = 1 en est une racine).
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On passe donc à une division par X − 1 :

N(X)︷ ︸︸ ︷
X3 + (i− 2)X2 + (3− 3i)X − 2 + 2i

0

−

−

−

Q(X)︷ ︸︸ ︷
X − 1

On obtient ainsi
N(X) = (X − 1)(X2 + (i− 1)X + 2− 2i).

Les racine du deuxième facteur peuvent se calculer soit par discriminant, soit on re-
marque encore une solution par tâtonnement : on peut remarquer que X = −2i en est
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une. On divise alors par (X + 2i) :

X2 + (i− 1)X + 2− 2i = (X + 2i)

On obtient alors

N(X) = (X − 1)(X + 2i)(X − i− 1),

⇒ P (X) = .

Ces exemples montrent donc qu’on peut factoriser un Polynôme à coefficients complexes en
produits de facteurs de degré 1. Il semble que ce processus puisse se généraliser pour des
polynômes à coefficients complexes de n’importe quel degré.
En fait, on se retrouve dans une situation très similaire aux nombres entiers, qu’on peut écrire
comme produit de leur facteurs premiers. Cette état de faite est précisé par la deuxième ver-
sion du TFA :
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Théorème 4.4.2. Soit P (X) = a0 + a1X + . . . + anX
n ∈ C[X], un polynôme de degré

n ≥ 1. Il existe alors des nombres complexes w1, . . . , wn (pas toujours tous distincts),
tels que

P (X) = an

n∏
k=1

(X − wk).

Démonstration. On peut procéder par récurrence sur le degré de P (X) ∈ C[X] :
si deg(P ) = 1, on peut écrire

P (X) = a1X + a0, et a1 ̸= 0.

On a donc
P (X) = a1(X +

a0

a1︸︷︷︸ ),

qui est exactement la forme annoncée par le théorème.
Supposons maintenant le théorème prouvé pour tous les polynômes de degré n et soit P (X) ∈
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C[X] un polynôme de degré n + 1. On peut alors écrire

P (X) = a0 + a1X + . . . + an+1X
n+1.

La première version du théorème fondamental de l’algèbre nous dit qu’il existe au moins une
racine pour P (X), disons w0 : P (w0) = 0.
La division euclidienne nous permet alors de dire, que X − w0 divise le polynôme P (X) :

P (X) = (X − w0)D(X), ,

D(X) = bn︸︷︷︸ Xn + . . . + b1X + b0 .

Par hypothèse de récurrence, D(X), étant de degré n, peut se factoriser complètement sur
ses racines. Il existe donc des nombres complexes w1, . . . , wn (pas tous distincts), tels que

D(X) = bn

n∏
k=1

(X − wk) = an+1

n∏
k=1

(X − wk),



EPFL - CMS Analyse II p.193

⇒ P (X) = (X − w0)D(X) = an+1

n∏
k=0

(X − wk),

qui est exactement la forme annoncée par le théorème.

Exemples.

1. Déterminer un polynôme à partir de propriétés :

On va chercher un polynôme P (X) ∈ C[X], de degré 3, qui satisfait

• P (i) = 0,

• P (1) = 2,

• La somme des racines de P (X) égale 2 + i.

• Le produit des racines de P (X) égale 2i.

D’après le Théorème fondamental de l’algèbre, il doit exister un nombre complexe a3 et
trois racines w1, w2 et w3 qui nous permettent d’écrire

P (X) = a3(X − w1)(X − w2)(X − w3)

= a3(X
3 + X2 + X − ).
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D’après la première condition on peut poser w1 = i. Les deux dernières conditions nous
disent alors que{

2 + i = ,

2i =
⇔

{
2 = ,

2 =
.

On pose alors w3 = 2− w2 qu’on insère dans la deuxième équation :

2 = 2w2 − w2
2 ⇔ .

On trouve alors comme solutions

w2 = = .

On obtient donc,
w1 = i, w2 = 1 + i, w3 = 1− i,

ce qui implique
P (X) = a3(X − i)(X − 1− i)(X − 1 + i).
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Le coefficient a3 nous est maintenant fourni par la deuxième condition P (1) = 2 :

2 = = .

On obtient ainsi a3 = 1 + i et

P (X) = (1 + i)(X − i)(X − 1− i)(X − 1 + i).

2. Factoriser P (X) = 1− 1
2
X + 1

4
X2 − 1

8
X3 + 1

16
X4 :

On remarque ici un polynôme qui est une progression géométrique de raison −1
2
X. On

a donc, pour autant que X ̸= −2 :

P (X) = = = .

Factorisons alors
Q(X) = 32 + X5.
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Il s’agit de trouver les racines 5ième de −32. En représentation polaire, on a

w5 = −32 = ⇔ =

⇔
{
|w|5 = 25,

5φw =
⇔


|w| = 2,

φw ∈ .

On peut donc écrire la factorisation complète pour Q(X) :

Q(X) = 32 + X5 =
4∏

k=0

(X − 2ei
(2k+1)π

5 ).

Remarquons que pour k = 2,

(X − 2ei
(2k+1)π

5 ) = = .
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Par conséquent,

P (X) =
32 + X5

16(2 + X)
=

1

16

∏
k∈{0,1,3,4}

(X − 2ei
(2k+1)π

5 ).

Cette égalité est maintenant aussi valable pour X = −2, puisque c’est une égalité entre
polynômes.

Le théorème fondamental de l’algèbre nous permet donc d’écrire tout polynôme P (X) ∈
C[X] comme un produit de facteurs linéaires (X−wk), où wk est la kième racine de P (X). Le
facteur (X − wk) est lui-même plus réductible. On les appelle des facteurs irréductibles.
Dans C[X], tout facteur irréductible est donc de degré 1 et réciproquement.

Qu’en est-il dans R[X]? On sait déjà que P (X) = X2 + 1 n’est pas réductible sur R[X]. En
effet, sa réduction sur C[X] est

X2 + 1 = ,

mais c’est un produit de facteurs dans C[X]. Par contre, cet exemple nous suggère, que si un
nombre complexe w est une racine d’un polynôme P (X) ∈ R[X], alors le complexe conjugué,
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w en est aussi une. On peut en effet montrer le

Théorème 4.4.3. Soit P (X) = a0+a1X+. . .+anX
n ∈ R[X], un polynôme à coefficients

réels. Si w ∈ C est tel que P (w) = 0, alors P (w) = 0.

Démonstration. On a en effet

P (w) = 0 = 0 = P (w)

= =

= = = P (w).

En conclusion, les racines complexes d’un polynôme P (X) ∈ R[X] à coefficients réels ar-
rivent toujours par paires conjuguées.
Cela nous facilite la factorisation. En fait, l’idée est maintenant pour un polynôme P (X) ∈
R[X] de le considérer comme un polynôme à coefficients complexes, puis de le factoriser
sur C[X], puis de remultiplier les facteurs complexes conjugués, pour obtenir des facteurs
irréductibles dans R[X].
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Exemples.

1. Factoriser P (X) = 1− 1
2
X + 1

4
X2 − 1

8
X3 + 1

16
X4 sur R[X] :

Ce polynôme est à coefficients réels et on connait déjà sa factorisation sur C[X] (voir
exemple 2 précédent) :

P (X) =
1

16

∏
k∈{0,1,3,4}

(X − 2ei
(2k+1)π

5 ).

Ses racines arrivent effectivement par paires conjuguées :

2eiπ
5 avec et 2ei3π

5 avec .

En multipliant les facteurs associés, on trouve

P (X) =
1

16
(X − 2eiπ

5 )(X − 2ei9π
5 )(X − 2ei3π

5 )(X − 2ei7π
5 )

=
1

16
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=
1

16

En insérant les valeurs cos(π/5) = 1+
√

5
4

et cos(3π/5) = 1−
√

5
4

on trouve

P (X) =
1

16
(X2 − (1 +

√
5)X + 4)(X2 − (1−

√
5)X + 4).

2. Factoriser P (X) = X4 + 2X2 + 2 dans R[X].

Le discriminant de ce polynôme est ∆ = 4 − 2 · 4 = −4. Ce nombre négatif indique
donc que P (X) n’a pas de racines réelles. Pourtant, il est réductible, même sur R[X] !
Factorisons P (X) dans C[X]. On cherche ses racines en écrivant Y = X2. Donc

P (X) = Y 2 + 2Y + 2
∣∣
Y =X2, ∆ = −4.

Les racines pour Y sont donc données par

Y± = = .
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Ensuite, il faut chercher les racines complexes de −1± i. On l’écrit en polaire

−1 + i = , −1− i = .

Les racines complexes de ces nombres sont alors obtenus en prenant la racine des modules
et en divisant l’argument mod 2π par 2. On obtient alors

4
√
2ei3π

8 ,
4
√
2e−i5π

8 ,
4
√
2ei5π

8 ,
4
√
2e−i3π

8 .

La factorisation de P (X) sur C[X] s’écrit alors comme

P (X) = .

On remarque que le premier facteur est conjugué du quatrième, et que le deuxième facteur
est conjugué du troisième. En les multipliant on obtient alors des facteurs de degré 2, irré-
ductibles sur R[X] :

P (X) =
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= .

La procédure de factorisation d’un polynôme P (X) ∈ R[X] est donc

• Factoriser P (X) en produit de facteurs irréductibles dans C[X].

• Identifier les facteurs non réels et complexe conjugués.

• Multiplier les facteurs non réels et complexe conjugués deux à deux pour obtenir des
facteurs irréductible dans R[X] de degré 2.

Existe-t-il des facteurs irréductibles dans R[X] de degré supérieurs à 2? On y répond par le

Théorème 4.4.4.
Les facteurs irréductibles dans C[X] sont les polynômes de degré 1.

Les facteurs irréductibles dans R[X] sont soit les polynômes de degré 1, soit les poly-
nômes de degré 2, sans racines réelles.

Tout polynôme P (X) ∈ R[X] de degré 3 ou plus est donc réductible dans R[X].
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Démonstration. Le cas de C[X] est une conséquence du théorème fondamentale de l’algèbre.
Soit maintenant un polynôme P (X) ∈ R[X]. Soit n son degré et k ≤ n le nombre de racines
réelles de P (X).
Puisque les racines non-réelles de P (X) apparaissent par paires complexe conjuguées, on
doit avoir que n− k, le nombre de racines non réelles, est un nombre paire.
En considérant P (X) comme un polynôme dans C[X], sa factorisation aura donc k facteurs
de degré 1 réels et (n− k)/2 facteurs non réels ainsi que leur (n− k)/2 facteurs complexe
conjugués.
Chaque facteur non réel peut donc être multiplié par son facteur conjugué. Le résultat sera
un facteur de degré 2 à coefficients réel. Ainsi, P (X) sera le produit de k facteurs réels de
degré 1 et de (n− k)/2 facteurs réels de degré 2.
Aucun facteur de degré 3 n’apparaît dans cette factorisation, d’où la conclusion du théorème.
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4.5 Les fonctions complexes élémentaires

Tout comme les polynômes à coefficients réels, les polynômes à coefficients complexes peuvent
être vus comme des fonctions de C vers C. Qu’en est-il des fonctions déjà étudiées comme les
fonctions trigonométriques ou hyperboliques ?

On a déjà ouvert la brêche en remarquant, grâce aux développements limités, que

eib =

=

=

= cos(b) + i sin(b).



EPFL - CMS Analyse II p.205

Pour l’exponentielle réelle, on a que

∀x, y ∈ R, exp(x + y) = exp(x) exp(y).

Si on veut garder cette propriété pour un nombre complexe z = a + ib aussi, on est porté
vers la

Définition 4.5.1.
Soit z = a + ib ∈ C on définit alors

exp(z) = exp(a + ib) := exp(a) exp(ib) = exp(a)
(
cos(b) + i sin(b)

)
.

Propriétés.

1. z 7→ exp(z) est une surjection de C sur C∗.

En représentation polaire, on écrit pour z ̸= 0

z = = = .

Ainsi,
exp−1{z} = .
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On a donc des valeurs négatives ou imaginaires pour l’exponentielle complexe :

−1 = , 1 + i = . . .

2. ∀z ∈ C, exp(z) = exp(z + 2πi).

En reprenant la définition et en écrivant z = a + ib, on a bien

exp(z + 2πi) = exp(a + ib + i2π)

= =

= = = exp(z).

L’exponentielle complexe a donc une périodicité de i2π.

3. ∀z, w ∈ C, exp(z + w) = exp(z) exp(w).
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En effet, partant de la définition, on a pour z = a + ib et w = x + iy :

exp(z + w) = exp(a + ib + x + iy)

= exp(a + x + i(b + y)) =

= =

= = exp(z) exp(w).

4. exp(z)
∣∣
z∈R

redonne l’exponentielle réelle.

Si z ∈ R, alors z = a + i0 et par conséquent exp(z) = exp(a + i0) = exp(a).

5. ∀z ∈ C, exp(z) = exp(z).

Appliquant les définitions, on a pour z = a + ib :

exp(z) = exp(a + ib) = exp(a) exp(ib)
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= =

= =

= = exp(z).

Comme exp(iy) = cos(y)+ i sin(y), on voit que l’exponentielle complexe, quand on restreint
son argument sur les imaginaires iR, implémente la fonction cosinus par sa partie réelle et
sinus par sa partie imaginaire.
Quand on restreint l’argument de l’exponentielle complexe aux réelles, on retrouve l’expo-
nentielle réelle.
On voit donc que grâce aux polynômes de Taylor et aux nombres complexes, on arrive à
synthétiser trois fonctions réelles en une fonction complexe !

Les fonctions hyperboliques étaient les parties paires et impaires de l’exponentielle réelle. On
peut alors, par parité, généraliser cela pour l’exponentielle complexe aussi :
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Définition 4.5.2. Pour z ∈ C, on pose

cosh(z) :=
1

2
(exp(z) + exp(−z)) ,

sinh(z) :=
1

2
(exp(z)− exp(−z)) .

A nouveau, comme la restriction de exp(z) à des valeurs réelles redonne l’exponentielle
réelle, la restriction de cosh(z) et de sinh(z) à des valeurs réelles redonnent les fonctions
réelles cosh(x) et sinh(x).

Propriétés.

1. cosh(z) = cosh(z) et sinh(z) = sinh(z) :

En partant des définitions et en utilisant que exp(z) = exp(z), on trouve que

cosh(z) =



EPFL - CMS Analyse II p.210

= =

= = cosh(z).

Le cas du sinus hyperbolique se traîte de manière tout à fait similiaire.

2. Pour z = a + ib, on a cosh(z) = cosh(a) cos(b) + i sinh(a) sin(b) :

On peut calculer directement les parties réelles et imaginaires :

cosh(z) =
1

2
(exp(z) + exp(−z))

=

=

= .
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On a une identité similaire pour le sinh(z) :

sinh(z) = sinh(a) cos(b) + i cosh(a) sin(b).

La vérification de cette dernière égalité est laissée en exercices.

3. ∀z ∈ C, cosh2(z)− sinh2(z) = 1 :

La vérification de cette égalité se fait exactement comme dans le cas réel, en utilisant
notamment la parité des fonctions hyperboliques :

cosh2(z)− sinh2(z) =

= = = 1.

4. ∀z, w ∈ C, cosh(z + w) = cosh(z) cosh(w) + sinh(z) sinh(w) :

La vérification de cette égalité utilise la même stratégie que dans le cas réel et est laissée
en exercices, en même temps que la suivante :

5. ∀z, w ∈ C, sinh(z + w) = sinh(z) cosh(w) + cosh(z) sinh(w) :
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6. cosh(z) et sinh(z) sont des surjections de C vers C :

En effet, si w ∈ C on peut résoudre cosh(z) = w. Autrement dit, la pré-image par
cosh(z) de l’ensemble {w} n’est jamais vide, ce qui montrera la surjectivité.
En effet,

cosh(z) = w ⇔

⇔ ⇔

⇔

⇔ exp(z) = w ±
√
w2 − 1.

Cette dernière égalité est toujours possible, puisqu’on a montré que exp(z) était une
surjection de C vers C∗ et que w ±

√
w2 − 1 n’est jamais nul. En effet,

w ±
√
w2 − 1 = 0 ⇒ w = ∓

√
w2 − 1
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⇒ w2 = w2 − 1 ⇒ 0 = −1,

ce qui est absurde.
On montre de manière similaire que sinh(z) est une surjection de C vers C.

7. cosh(z) et sinh(z) sont périodiques de période i2π :

En effet, pour z ∈ C et par la périodicité de l’exponentielle complexe,

cosh(z + i2π) =

= = cosh(z),

sinh(z + i2π) =

= = sinh(z).

On remarque maintenant une certaine curiosité : si z = iα est un nombre imaginaire pure,



EPFL - CMS Analyse II p.214

alors

cosh(iα) =

=

= = cos(α),

sinh(iα) =

=

= = i sin(α).

Les fonctions sin et cos réelle ne sont donc rien d’autre que les fonctions sinh et cosh pour
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des arguments imaginaires ! Ceci nous conduit à poser la

Définition 4.5.3. Pour z ∈ C, on pose

cos(z) := cosh(iz),

sin(z) := −i sinh(iz).

Cette définition nous assure donc que pour des valeurs z réelles, on retrouve bien nos fonc-
tions trigonométriques usuelles. On retrouve d’ailleurs aussi certaines propriétés familières :

Propriétés.

1. ∀z ∈ C, cos2(z) + sin2(z) = 1 :

En suivant les définitions, on trouve

cos(z)2 + sin2(z) =

= = 1.
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2. ∀z, w ∈ C, cos(z + w) = cos(z) cos(w)− sin(z) sin(w) :

Toujours en suivant les définitions, on trouve

cos(z + w) =

=

= = cos(z) cos(w)− sin(z) sin(w).

3. ∀z, w ∈ C, sin(z + w) = sin(z) cos(w)− cos(z) sin(w) :

Encore en suivant les définitions, on trouve

sin(z + w) =

= = cos(z) sin(w) + sin(z) cos(w).

4. sin(z) et cos(z) sont des surjections de C vers C :
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Vérifions que sin(z) = w a toujours une solution pour tout w ∈ C. Comme sin(z) =

−i sinh(iz), cela revient à trouver des solutions à sinh(iz) = iw. Or, sinh est une
surjection de C vers C. Il existe donc un w′ ∈ C, tel que sinh(w′) = iw. On pose alors
z = −iw′ et on a bien

sin(z) = −i sinh(iz) = −i sinh(w′) = w.

Le cas pour cos(z) est similaire et se déduit de la surjectivité de cosh(z).

5. sin(z) et cos(z) sont périodiques de périodes 2π :

Cela suit de la périodicité des fonctions cosh(z) et sinh(z) qui est de i2π. En effet,

sin(z + 2π) = = = sin(z),

cos(z + 2π) = = = cos(z).
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5 Introduction aux équations différentielles

5.1 Cadre général

Une équation différentielle est une équation dont l’inconnue est elle-même une fonction. On
a par exemple ; si x(t) est le déplacement mesuré par rapport à un point de référence d’un
objet attaché à un ressort au cours du temps et k est la constante de ce ressort, alors

x′′ = −kx

sera l’équation du mouvement associée (pour autant que le déplacement est mesuré dans un
référentiel dit d’inertie, notion qu’on approfondira plus au cours de l’étude de la relativité).
La fonction x(t) est l’inconnue et si on arrive à résoudre cette équation, on sera en mesure
de décrire tout le mouvement de cet objet soumis à la force de rappel du ressort.
En mécanique générale, l’accélération d’un objet est proportionnel aux forces qui lui sont
appliquées. Celles-ci peuvent dépendre de la position de l’objet (champ de gravitation, élec-
trique, etc), ou encore de sa vitesse (frottement). On a ainsi en général, que si x(t) décrit la
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position de l’objet, on devra résoudre l’équation

x′′ = F (x, x′, t),

qui est une équation différentielle pour la position x. En général, nous posons la

Définition 5.1.1. Une équation différentielle ordinaire de degré n est une équation

F (x, y,
d

dx
y, . . . ,

dn

dxn
y) = 0,

où F : D → R est une fonction avec D ⊂ Rn+2. Une solution à cette équation est une
fonction f : I → R, définie sur un intervalle ouvert I, n fois dérivable sur celui-ci et telle que
(x, f(x), . . . , dn

dxnf(x)) ∈ D pour tout x ∈ I.
Une équation différentielle ordinaire explicite de degré n est une équation

dn

dxn
y = G(x, y,

d

dx
y, . . . ,

dn−1

dxn−1
y),

où G : E → R est une fonction avec E ⊂ Rn+1. Une solution à cette équation est une fonction
f : I → R, n fois dérivable et telle que (x, f(x), . . . , dn−1

dxn−1f(x)) ∈ E pour tout x dans
l’ouvert I ⊂ R.
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La question de l’existence et de l’unicité de tels équations est une question classique en
mathématiques. Un premier résultat a été obtenu par Peano en 1886 :

Théorème 5.1.2. Soit D ⊂ R× R un ouvert et soit G : D → R une fonction continue. Alors
l’équation

y′ = G(x, y), y(x0) = y0, (x0, y0) ∈ D

possède une solution f : I → R où x0 ∈ I et I est un ouvert de R.

Il est hors de question de prouver ce théorème ici. Remarquons que le théorème ne dit rien sur
l’unicité de la solution. Il existe d’ailleurs des exemples ou on peut avoir plusieurs solutions,
même si on garde les conditions initiales y0 = y(x0) identiques. On donnera comme exemple
l’équation y′ = 3( 3

√
y)2 avec y(0) = 0, qui possède les solutions y = 0 et y = x3.

Si on veut l’unicité, il faut ajouter des conditions sur G plus sévères. On a par exemple le
théorème de Cauchy-Lipschitz :

Théorème 5.1.3. Si G : E → R avec E ⊂ R2 un ouvert est telle que pour tout (x1, x2) ∈ E il
existe un ouvert U ∋ (x1, x2) et un nombre positif M tel que pour tout couple (t, w), (t, v) ∈
U ⊂ E, |G(t, w) − G(t, v)| ≤ M |w − v|, alors l’équation y′ = G(x, y) avec y(x0) = y0 et
(x0, y0) ∈ E possède une unique solution sur un certain intervalle ouvert I ∋ x0.

Il peut aussi paraître étonnant de constater qu’il a fallu attendre presque deux siècles pour
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obtenir un tel résultat. En effet, le sujet des équations différentielles a été introduit vers le
début du dix-huitième siècle afin de calculer et de prédire des mouvements d’objets soumis à
des forces. Ceci indique la difficulté de cette discipline.
Pourtant, les équations différentielles ont depuis considérablement étendu leur domaines
d’application et il ne reste presque plus de disciplines scientifiques où elles n’apparaissent
pas sous une forme ou une autre. Des découvertes sur leur natures précise sont souvent
célébrées comme des avancées centrales en mathématiques et récompensées par des prix
prestigieux.
Nous allons ici nous bornés à une introduction à ce vaste sujet et étudier des équations diffé-
rentielles pour lesquelles des résultats sur les solution sont connues.
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5.2 Les équations différentielles linéaires de premier ordre

La première classe d’équations différentielles que nous allons étudier sont les celles dites
linéaires. On va en plus commencer par celles dites de premier ordre,. Cela signifie, que dans
l’équation différentielle, seul vont apparaître les dérivées de premier ordre.

Définition 5.2.1. Une équation différentielle ordinaire et linéaire de premier ordre
(EDOL1) est une équation du type

y′ + py = q,

où p, q : D → R sont continues et D ⊂ R.
Une fonction f : I → R en est une solution, si I ⊂ D est un ouvert de R et si f ′+pf = q

pour tout x ∈ I.
Une EDOL1 est dite homogène si q = 0.

Une solution f d’une EDOL1 est donc dérivable sur un ouvert I. La question est alors de
savoir, dans quels cas une solution existe et si elle est unique. On va commencer par la partie
la plus simple d’une EDOL1, c’est à dire qu’on va étudier les équations homogènes : soit
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p : D → R continue et considérons l’équation différentielle

y′ + py = 0.

Remarquons que si f et g sont deux solutions à cette équation, définies sur un ouvert I ⊂ D,
alors f + λg sera encore une solution de cette équation pour n’importe quel λ ∈ R. C’est là
l’origine de l’appellation de ces équations.
En effet

(f + λg)′ + p(f + λg) =

= = 0.

Les solutions à une EDOL1 homogène peuvent donc se combiner linéairement. Mais comment
en trouver une ?
mettons pour l’instant de côté la rigueur mathématique et essayons de travailler l’équation
y′ + py = 0. Essayons de la résoudre en séparant fonctions connues, i.e. p et fonctions
inconnue, i.e. y :

y′ + py = 0 ⇔ ⇔
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On ne se soucie pas pour l’instant de savoir, si y ̸= 0 et faisons le pari que tout ira bien.
Pour autant que y > 0, on reconnaît y′

y
comme étant d

dx
ln(y). A partir de là on procède à des

calculs pour isoler y :

y′

y
= −p ⇔ ⇔

⇔ y = A exp

(
−
∫ x

x0

p(t)dt

)
, avec A ∈ R.

A posteriori, on voit que notre hypothèse y ̸= 0 s’est avérée correcte, pour autant que A ̸= 0.
On peut d’ailleurs vérifier que y(x) est en effet une solution à y′ + py = 0 :

d

dx
y(x) =

d

dx
A exp

(
−
∫ x

x0

p(t)dt

)
= = y(x) · (−p(x))

⇔ y′ + py = 0.
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De plus, on a

y(x0) = A exp

(
−
∫ x0

x0

p(t)dt

)
= A.

On vient donc de trouver une solution à l’EDOL1, pour autant que p soit continue sur un
intervalle qui contient x0 et x. En fait, sous de telles hypothèses, on vient de trouver toutes
les solutions à l’EDOL1 homogène :

Théorème 5.2.2. Soit p : I → R une fonction continue définie sur l’intervalle ouvert I et
soient x0 ∈ I et y0 ∈ R. Alors

f(x) := y0 exp(−
∫ x

x0

p(t)dt)

est l’unique solution à l’EDOL1 homogène f ′ +pf = 0 définie sur I telle que f(x0) = y0.

Démonstration. On a déjà montrer que f était une solution à l’EDOL1 homogène

y′ + py = 0 avec f(x0) = y0.

Soit maintenant une solution à cette EDOL1 homogène, telle que f(x0) = y0. On considère
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la fonction

g : I → R, x 7→ g(x) := f(x) exp(

∫ x

x0

p(t)dt).

On a alors,

d

dx
g(x) =

=

= = 0.

Sur un intervalle ouvert, les seules fonctions de dérivée nulle sont les fonctions constantes.
Ceci implique que g(x) = λ = cste. On a donc que

f(x) = A exp

(
−
∫ x

x0

p(t)dt

)
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pour un certain A réel. De plus,

f(x0) = A exp

(∫ x0

x0

p(t)dt

)
= λ.

Si (x0, y0) ∈ I × R et si f est une solution à y′ + py = 0 avec f(x0) = y0, on voit qu’on doit
avoir A = y0.

On a donc complètement résolu le problème d’une EDOL1 homogène. Le couple (x0, y0) est
appelé une condition initiale pour l’EDOL1 homogène.

Remarques.

1. La condition que I soit un intervalle est cruciale à l’unicité de la solution. En effet,
considérons l’équation différentielle

y′ −
1

|x|
y = 0

définie sur R∗. Imposons encore la condition initiale x0 = 1 et y0 = 1. On a alors deux
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solutions à cette équation sur R∗ qui satisfont la même condition initiale :

f1(x) =

{
|x| si x > 0,
1
x

si x < 0
et f2(x) =

{
|x| si x > 0,

0 si x < 0
.

2. L’ensemble des solutions à l’EDOL1 homogène y′ +py = 0 sur l’intervalle ouvert I sans
restrictions sur la condition initiale s’écrit comme

S = {λφh(x), : λ ∈ R},

avec φh(x) = exp(−
∫ x

x0
p(t)dt) et x0 ∈ I arbitraire. En fait, cela rappelle la description

d’une droite paramètrisée en géométrie analytique.

3. Deux choix distincts d’un x0 sur l’intervalle I vont donner deux solutions φh(x) diffé-
rentes, mais proportionnelles entre elles : en effet, soient x0 et x̃0 ∈ I. On aura alors

φh(x) = exp

(
−
∫ x

x0

p(t)dt

)
= exp

(
−
∫ x̃0

x0

p(t)dt−
∫ x

x̃0

p(t)dt

)
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= exp

(
−
∫ x̃0

x0

p(t)dt

)
︸ ︷︷ ︸

cste

exp

(
−
∫ x

x̃0

p(t)dt

)
︸ ︷︷ ︸

φ̃h(x)

= λφ̃h(x).

Exemples.

1. Un exemple de la physique

Considérons un problème qu’on rencontre
en électricité, qui est celui d’un condensa-
teur en décharge. On suppose qu’on ait un
circuit, dont le fil relie les deux plaques d’un
condensateur.

C

Le fil a une résistance de R Ohm et le condensateur une capacité de C. Supposons de
plus une charge Q0 placée sur le condensateur à un temps initial t0 = 0.

On va laisser cette charge se propager le long du circuit. Au temps t, la tension au bornes
du condensateur sera de U(t) = Q(t)

C
.

Les lois de l’électricité nous disent, que

U(t) = RI(t),
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où I(t) est le courant dans le circuit. Il faut choisir un sens au courant. On le choisira
dans le sens trigonométrique.
Si on chosit ce sens pour le courant, celui-ci correspond à la variation de charges par
unité de temps, i.e.

I(t) = .

Le signe négatif vient de ce que le courant augmente, si le condensateur se décharge.
On a ainsi

RI(t)−
Q(t)

C
= 0 ⇐⇒ .

Ceci est une EDOL1 (on le reconnaît malgré la notation chère à la physique) homogène,
et on en connait donc toutes les solution, qui auront la forme

où nous avons posé τ := (RC)−1. Q(0) = Q0 est notre condition initiale, qui nous
conduit à poser

Q(t) = .
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Physiquement, cela signifie, qu’un condensateur laissé libre se déchargera exponentiel-
lement rapidement, avec un temps caractéristique τ qui est inversement proportionnel
à la résistance du circuit et à la capacité du condensateur.

2. Résoudre y′ + cot(x)y = 0, y(π
2
) = 1.

C’est clairement une EDOL1 homogène, avec p(x) = cot(x). On sait donc que toutes
les solutions sur l’intervalle ]0, π[ seront du type

f(x) = =

= λ exp

(
− ln(sin(x)) + ln(sin(

π

2
))

)
=

λ

sin(x)
.

Comme on cherche la solution avec y(π
2
) = 1, on pose et on trouve

f(x) =
1

sin(x)
.
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3. Trouver toutes les fonctions f ∈ C1(R∗
+), telles que f(xy) = yf(x).

Si on dérive une fois cette équation selon y on trouve

f(xy) = yf(x) ⇒
d

dy
f(xy) =

d

dy
yf(x)

⇔ ⇔

⇔ ⇔

On pose maintenant y = 1 et on a par conséquent

f ′(x)x ln(x) = f(x).

pour x > 0 cette équation peut se réécrire comme
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qui est une EDOL1 homogène sur R∗
+ avec p(x) = − 1

x ln(x)
.

La présence de 1
x

dans p(x) est heureuse, car c’est la dérivée de ln(x). Ainsi,

−p(x) = = .

Les solutions à notre EDOL1 homogène semblent donc être la fonction nulle et

λ exp(ln(| ln(x)|)) = λ| ln(x)|.

Mais attention : le théorème précédent nous dit que la solution à une EDOL1 homogène
est proportionnelle à

φ(x) =

φ(x) est donc définie strictement sur un intervalle sur lequel p(x) est intégrable, donc
définie. Dans notre cas, p(x) = − 1

x ln(x)
, qui n’est pas défini en x = 1. On a donc deux

familles de solutions :

• Sur l’intervalle I1 =]0, 1[ : sur cet intervalle, | ln(x)| = − ln(x) et les solutions à
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l’EDOL1 homogène s’écrivent comme

φ(x) = −λ ln(x), λ ∈ R.

• Sur l’intervalle I1 =]1,∞[ : sur cet intervalle, | ln(x)| = ln(x) et les solutions à
l’EDOL1 homogène s’écrivent comme

φ(x) = µ ln(x), µ ∈ R.

On voit en fait que deux éléments de ces familles peuvent facilement se raccorder en
x = 1 si on choisit µ = −λ. On aura alors des solutions dans C1(R∗

+), qui seront de la
forme

φ(x) = λ ln(x), λ ∈ R.

Ce sont là les seules fonctions continûment dérivables sur R∗
+ et qui vérifient φ(xy) =

yφ(x).

Revenons à notre EDOL1. Il faut encore discuter le cas inhomogène, i.e. quand q ̸= 0.
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On va à nouveau chercher une solution particulière, puis en conclure la forme générale d’une
solution à cette équation.
On sait déjà, que λφh(x) est une solution de l’équation homogène. Supposons maintenant
qu’on écrive

f(x) := λ(x)φh(x),

où λ(x) est une fonction dérivable sur un ouvert I ⊂ D. On a alors

f ′ =

et si on impose que f soit une solution de l’EDOL1, on doit avoir

λ′(x)φh(x) + λ(x)φ′(x)h︸ ︷︷ ︸
f ′(x)

+p(x)λ(x)φh(x)︸ ︷︷ ︸
f(x)

= q(x).

Mais φ′
h(x) + p(x)φh(x) = 0, et on doit donc avoir

⇔ .
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Cette dernière équation est facile à résoudre. En effet, si I est un intervalle ouvert et si
x0, x ∈ I, on a comme solution

λ(x) =

qui est définie sur tout I. On pose maintenant

φp(x) = λ(x)φ(x)

= exp(−
∫ x

x0

p(t)dt)︸ ︷︷ ︸
φh

(∫ x

x0

q(t) exp(

∫ t

x0

p(s)ds)dt

)
︸ ︷︷ ︸

λ(x)

,

qui sera une solution particulière à l’EDOL1 y′ +py = q, définie sur un intervalle ouvert I.
De plus, φp(x0) = 0, puisqu’alors la deuxième intégrale est réduite à un intervalle de lon-
gueur nulle.
La technique qu’on vient d’illustrer est appelée la variation des constantes. Cette solution
particulière génère en fait toutes les autres, comme le montre le
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Lemme 5.2.3. Si f et g sont des fonctions dérivables sur un ouvert I ⊂ D et qu’elles
sont solutions de l’EDOL1 inhomogène

y′ + py = q

avec p, q : D → R des fonctions continues, alors f − g est solution de l’EDOL1 homo-
gène

y′ + py = 0

sur I.

Démonstration. Par un calcul direct,

(f − g)′ + p(f − g) =

= = .
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On sait dès lors, que toute solution de l’EDOL1 y′ + py = q doit s’écrire sous la forme

f = φp + λφh,

avec φp une solution particulière et φh une solution à l’équation homogène. On a donc le

Théorème 5.2.4. Soit p, q : I → R deux fonctions continues sur un intervalle ouvert I.
Alors sur I, toute solution f(x) à l’EDOL1 y′(x) + q(x)y(x) = q(x) est de la forme

f(x) = φp(x) + λφh(x),

où

φh(x) = exp

(
−
∫ x

x0

p(t)dt

)
, φp(x) = φh(x)

∫ x

x0

q(t)

φh(t)
dt.

De plus, si (x0, y0) ∈ I × R, alors

y(x) = φp(x) + y0φh(x)

est l’unique solution telle que y(x0) = y0
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Démonstration. On sait déjà que
f = φp + λφh

est une solution à l’EDOL1 inhomogène.
Si f est dérivable sur I et est solution de l’EDOL1 inhomogène, alors on sait par le lemme
précédent que toute f − φp est solution à l’EDOL1 homogène. On a donc

f − φp = λφh ⇔

De plus, si f(x0) = y0 et comme φ(x0) = 0 et φh(x0) = 1, on doit poser qui
donnera donc l’unique solution à l’EDOL1 vérifiant la condition initiale (x0, y0).

Exemples.

1. Condensateur forcé

On reprend l’exemple du condensateur qui se décharge mais cette fois avec en plus une
source de tension U :
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En choisissant à nouveau le sens trigonomé-
trique pour le courant, on arrive au bilan des
tensions:

RI − U −
Q

C
= 0.

U C

l’équation du mouvement pour les charges devient

−U −
Q(t)

C
−R

d

dt
Q(t) = 0 ⇔

Ceci est une EDOL1 inhomogène, dont la solution à la partie homogène à déjà été calcu-
lée :

φh(x) = exp(−τt), avec τ =
1

RC
.

Il suffit donc de trouver une solution particulière à cette équation par la variation des
constantes. On trouve

φp(t) = exp(−τt)︸ ︷︷ ︸
φh

∫ t

0

exp(τs)︸ ︷︷ ︸
1/φh

(−U
R

)
︸ ︷︷ ︸

q

ds
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= =

= UC (exp(−τt)− 1) .

La solution satisfaisant Q(0) = Q0 sera alors

Q(t) = UC (exp(−τt)− 1) +

On voit dès lors, qu’à des temps très grand, la charge va se stabiliser à une valeur de
−UC.

2. Retrouver l’EDOL1 à partir de ses solutions

On sait qu’une EDOL1 à comme ensemble solutions

S = {φp + λφh, : λ ∈ R},

ou φp est une solution particulière à l’EDOL1 et ou φh en est solution de la partie homo-
gène.
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Supposons alors que cet ensemble soit

S =
{λ + e−x2

1 + ex
, : λ ∈ R

}
.

On peut y lire les solutions homogènes et particulière :

φh(x) = φp(x) =

Si on dérive la solution homogène on trouve :

d

dx
φh(x) =

d

dx

1

1 + ex
=

= =
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La partie homogène de notre EDOL1 doit donc être

φ′
h(x)+

ex

1 + ex︸ ︷︷ ︸
p(x)

φh(x) = 0.

On insère maintenant φp(x) dans cette équation pour obtenir le terme inhomogène
q(x) :

φ′
p(x) +

ex

1 + ex
φp(x) =

(
d

dx

e−x2

1 + ex

)
+

ex

1 + ex

e−x2

1 + ex

=

(
−2xe−x2

(1 + ex)− e−x2
ex

(1 + ex)2

)
+

exe−x2

(1 + ex)2

=
−2e−x2

(1 + ex)2
(x + xex) ≡



EPFL - CMS Analyse II p.244

On a donc retrouvé notre EDOL1 :

y′(x)−
ex

1 + ex
y(x) =

−2xe−x2

(1 + ex)
.

Remarque. On vient de voir que pour une EDOL1 définie sur un intervalle ouvert I, l’en-
semble des solutions est S = {f : I → R| f = φp + λφ}. En fait, ceci rappelle l’équation
vectorielle d’une droite. On peut en effet voir φp comme un point fixé dans S et φ comme
un vecteur directeur. Cette droite est évidemment pas une droite dans Rn, mais plutôt dans
l’espace des fonctions définies sur I, qui est un ensemble bien plus vaste.
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5.3 La séparation des variables

La suite logique est maintenant d’étudier des équations différentielles qui ne seraient pas
linéaires. Il y a un cas de non-linéarité bien connu :

Définition 5.3.1. Une équation différentielle ordinaire à variables séparées, ou une
EDOv.s., est une équation différentielle qui est sous la forme

f ′(x)h(f(x)) = g(x),

où g : D → R et h : E → R sont des fonctions continues.
f est une solution de cette équation si

• f : I → R est dérivable sur un ouvert I ⊂ D,

• son image est inclue dans E : {(f(x)|x ∈ I} ⊂ E,

• et h(f)f ′ = g(x).

On va d’abord voir ce qu’une telle solution implique : supposons donc que f : I → R soit une
fonction qui satisfasse les trois derniers points de la définition.
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Supposons encore que f(x0) = y0 avec x0 ∈ I et y0 ∈ E. On a alors

h(f(x))f ′(x) = g(x) ⇒
∫ x

x0

h(f(t))f ′(t)dt =

∫ x

x0

g(t)dt

⇔
f(t)=y, f ′(t)dt=dy

∫ f(x)

y0

h(y)dy =

∫ x

x0

g(t)dt

C’est là d’ailleurs l’origine de l’appellation séparation des variables : on peut, formellement,
écrire une EDOv.s. en séparant les termes en y des termes en x.
Si H(y) est une primitive de h(y) et G(x) une primitive de g(x) on alors que

h(f(x))f ′(x) = g(x) ⇒ H(f(x))−H(y0) = G(x)−G(x0)

⇔ H(f(x)) = G(x)−G(x0) + H(y0).

Pour autant que H soit inversible, la solution sera ainsi donnée par

f(x) = H−1(G(x)−G(x0) + H(x0)).

On a donc déjà une bonne idée d’une solution à l’équation f ′(x)h(f(x)) = g(x). On va main-
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tenant dériver cette solution de manière rigoureuse, ajouter les conditions pour l’existence et
étudier son unicité.

Théorème 5.3.2. Soient :

• g : I1 → R une fonction continue sur l’intervalle ouvert I1.

• h : I2 → R∗ une fonction continue sur l’intervalle ouvert I2.

• (x0, y0) ∈ I1 × I2.

Il existe alors une fonction f : J → I2 définie sur un intervalle ouvert x0 ∈ J ⊂ I1, telle
que f(x0) = y0 et telle que

∀x ∈ J, h(f(x))f ′(x) = g(x).

De plus, si f̃ : J̃ → I2 est une fonction définie sur un intervalle x0 ∈ J̃ ⊂ I1 telle que
f̃(x0) = y0 et telle que h(f̃(x))f̃ ′ = g(x) pour x ∈ J̃ , alors

∀x ∈ J ∩ J̃ , f(x) = f̃(x).

Démonstration. Comme I2 est un ouvert et comme y0 ∈ I2, on peut pour y ∈ I2 définir la
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fonction

H(y) :=

∫ y

y0

h(s)ds.

Cette fonction est clairement continue, dérivable de dérivée h et H(y0) = 0 ∈ Im(H). De
plus, comme h(y) ̸= 0 pour tout y ∈ I2, on a que H(y) est strictement monotone sur I2. Par
conséquent,

H−1 : Im(H)→ I2 existe et(
H−1

)′
= =

En plus, comme H est une bijection continue, Im(H) est elle-même un intervalle ouvert.

On définit maintenant une fonction G : I1 → R sur l’intervalle ouvert I1 ∋ x0

G(x) :=

∫ x

x0

g(t)dt.

Clairement, G est continue et G(x0) = 0. Ainsi, la pré-image G−1[Im(H)] est un un ouvert
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non-vide, puisqu’on a x0 ∈ G−1[Im(H)].

On définit alors l’intervalle J comme le plus grand intervalle ouvert qui contient x0 et tel que
J ⊂ G−1[Im(H)].

Sur cet intervalle on pose
f(x) := H−1(G(x)).

Manifestement, f(x0) = y0. Par un calcul directe, on obtient

d

dx
f(x) = =

d’où on déduit que f ′h(f) = g.

Soit maintenant f̃ : J̃ → I2 une fonction définie sur un intervalle ouvert x0 ∈ J̃ , telle que
f̃ ′h(f̃) = g et telle que f̃(x0) = y0.

Alors, pour x ∈ J ∩ J̃ , H(f̃(x)) =
∫ f̃(x)

y0
h(s)ds est bien définie, puisque f̃ est continue et
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que donc Im(f̃) est contenue dans un intervalle ouvert de I2 et contient y0. Mais alors,

H(f̃(x)) =

∫ f̃(x)

y0

h(s)ds =

∫ x

x0

h(f̃(t))f̃ ′(t)dt ( substitution s = f̃(t))

=

∫ x

x0

g(t)dt =

∫ x

x0

h(f(t))f ′(t)dt =

∫ f(x)

y0

h(s)ds = H(f(x)),

et comme H est une bijection, f̃(x) = f(x).

Fixons alors la marche à suivre pour résoudre l’EDOv.s.

h(y)y′ = g, f(x0) = y0,

sous les hypothèses que

• g : I1 → R une fonction continue sur l’intervalle ouvert I1.

• h : I2 → R∗ une fonction continue sur l’intervalle ouvert I2.

• (x0, y0) ∈ I1 × I2.
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1. Poser G : I1 → R par

G(x) :=

∫ x

x0

g(t)dt.

2. Poser H : I2 → R par

H(y) :=

∫ y

y0

h(s)ds.

3. Chercher le plus grand intervalle ouvert J tel que x0 ∈ J et J ⊂ G−1(Im(H)).

4. La solution f(x) recherchée sera

J ∋ x 7→ f(x) := H−1(G(x)).

Exemples.

1. Trouver la solution à l’EDOv.s.

y′ =
cos(y)

x

telle que y(1) = π.
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Commençons par la mettre sous forme séparée :

On identifie

g(x) = , h(y) = et

Pour se placer dans les hypothèses de la marche à suivre, on doit choisir pour les inter-
valles I1 et I2 :

x0 = 1 ∈ I1, ⇒ I1 =

y0 = π ∈ I2, ⇒ I2 =

On suit maintenant les quatre points de la résolution :
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1. Pour x > 0,

G(x) =

∫ x

1

1

t
dt = .

2. Pour y ∈]π
2
, 3π

2
[,

H(y) =

∫ y

π

1

cos(s)
ds =

∫ y

π

cos(s)

cos2(s)
ds =

= par éléments simples

= =
1

2
ln

(
1 + sin(y)

1− sin(y)

)
.

3. Comme la dérivée de H(y) est 1
cos(y)

et pour y ∈ I2 =]π
2
, 3π

2
[ celle-ci est toujours

strictement négative, on a que H(y) est strictement décroissante.
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Un calcul de limite montre que

lim
y→π

2
+
H(y) = lim

y→π
2
+

1

2
ln

(
1 + sin(y)

1− sin(y)

)
= =

lim
y→3π

2

−
H(y) = lim

y→3π
2

−

1

2
ln

(
1 + sin(y)

1− sin(y)

)
= =

On a donc que Im(H) = R et donc

G−1(Im(H)) = =

On a alors
x0 = 1 ∈ J = R∗

+.

4. Sur J = R∗
+ la solution à l’EDOv.s. est donnée par

f(x) = H−1(G(x)).
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Calculons alors H−1(x) : pour y ∈]π
2
, 3π

2
[, on a

x = H(y) ⇔ x =
1

2
ln

(
1 + sin(y)

1− sin(y)

)

⇔ ⇔

⇔ ⇔

⇔ y = π − Arcsin

(
exp(2x)− 1

exp(2x) + 1

)
On a alors

f(x) = H−1(G(x)) = π − Arcsin

(
x2 − 1

x2 + 1

)
.

2.
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Considérons un récipient cylindrique
de section S contenant de l’eau qui
peut s’échapper par une petite ouver-
ture de section s située en bas de ce
récipient Notons y(t) la hauteur dans
le récipient de l’eau à l’instant t.
Nous allons établir une équation dif-
férentielle pour y(t).

y

section s

section S

Liquide

g⃗

v⃗(B)

•A

•
B

On suppose g constant le long du récipient et on suppose que l’eau est incompressible
et parfaite, de sorte que sa densité est constante et qu’on peut négliger les effets de
la viscosité. De plus, l’écoulement de l’eau sera stationnaire et S ≫ s. Considérons un
petit volume d’eau se dèplaçant sur une ligne de courant (en bleu sur la figure ).
Le théorème de Bernouilli exprime alors la conservation de la densité d’énergie :

pA + ρgy +
1

2
ρv2(A, t) = pB +

1

2
ρv2(B, t),

où
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• pA, pB est la pression aux endroits A et B respectivement, qu’on supposera égales
à la pression atmosphérique.

• v(A, t) et v(B, t) sont les vitesses en valeurs absolues à l’instant t et aux endroits
A et B respectivement. En A, cette vitesse vaut manifestement

v(A, t) = |
d

dt
y(t)| ≡ |ẏ| = −ẏ.

Par conservation de la masse, on doit avoir

ρS v(A, t) = ρ s v(B, t).

Ainsi, après simplifications, Bernouilli nous dit que

gy +
1

2
(ẏ)2 =

1

2
(ẏ

S

s
)2

⇔ 2gy = =
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⇔
(ẏ)2

y
= ⇔ |ẏ|

1
√
y

= k,

avec k2 = 2gs2

S2−s2
.

Pour enlever la valeur absolue on va faire le choix physique de prendre ẏ < 0. Cela
revient à supposer que le niveau d’eau descend avec le temps. Prendre ẏ > 0 revien-
drait à dire que le niveau d’eau monte avec le temps, ou encore descend avec le temps
renversé. On a donc comme EDO :

ẏ
1
√
y

= −k, y(0) = y0 > 0, t0 = 0.

On vérifie les hypothèses de la marche à suivre avec

• g : R→ R, g(t) = .

• h : R∗
+ → R∗, h(y) = .

• (0, y0) ∈ R× R∗
+.

On peut alors tranquillement appliquer la démarche à suivre :
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1. On pose

R ∋ t 7→ G(t) =

∫ t

0

g(s)ds =

2. On calcule

R∗
+ ∋ y 7→ H(y) =

∫ y

y0

h(u)du =

3. On calcule

Im(H) = ⇒ G−1(Im(H)) = ]−∞,
2
√
y0

k
[.

Ceci est déjà un intervalle ouvert qui possède t0 = 0 comme élément. On pose alors

J = ]−∞,
2
√
y0

k
[.

4. Sur J , la solution à notre EDOv.s. sera donnée par

y(t) = H−1(G(t)) ⇔ H(y(t)) = G(t)
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⇔ ⇔

⇔ y(t) =

(
√
y0 −

k

2
t

)2

.

Ainsi, le récipient se vide en un temps

τ =
√
y0

2

k
=

√
2y0

g

√
S2 − s2

s
.

3. Une EDOv.s. peut être cachée.

Considérons l’équation différentielle

xy′ = y + cos2(
y

x
), y(1) =

π

4
.

Telle quelle, ceci n’est pas une EDOv.s. Mais on peut la transformer pour la rendre à
variable séparée.
Notons d’abord que l’ensemble de définition de cette équation est R∗. Sur cet ensemble,
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on est en droit de poser

z(x) :=
y(x)

x
,

On aura donc

y = xz ⇒

et l’équation différentielle devient

x(z + xz′) = xz + cos2(z), z(1) =
π

4

⇔ z(1) =
π

4

⇔︸︷︷︸
R∗

z(1) =
π

4
.
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On retrouve donc une EDOv.s. avec

h(z) = g(x) = x0 = 1, y0 =
π

4
.

On applique alors tranquillement la démarche à suivre :

1. On pose

R∗
+ ∋ x 7→ G(x) =

∫ x

1

1

t2
dt =

2. On calcule

]−
π

2
,
π

2
[∋ y 7→ H(y) =

∫ y

π/4

1

cos2(s)
ds =

3. On calcule
Im(H) = ⇒ G−1(Im(H)) =

Ceci est déjà un intervalle ouvert qui possède x0 = 1 comme élément. On pose
alors

J = R∗
+.



EPFL - CMS Analyse II p.263

4. Sur J , la solution à notre EDOv.s. sera donnée par

y(t) = H−1(G(t)) ⇔ H(y(t)) = G(t)

⇔ ⇔

⇔ y(x) = arctan(2−
1

x
).

Remarque. On peut observer, que si on connait les conditions initiales à un moment donné
t0 et si les lois de la nature peuvent se mettre sous une forme d’équation différentielle, alors,
l’évolution d’un système est en principe univoque et connu pour tout temps t. Ceci est une
formulation du déterminisme, c’est-à-dire que le future, ainsi que le passé, est complètement
déterminé par le présent. En citant Laplace :
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"Nous devons donc envisager l’état présent de l’univers comme l’effet de son état
antérieur et comme la cause de celui qui va suivre. Une intelligence qui, pour un
instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation
respective des êtres qui la composent, si d’ailleurs elle était assez vaste pour sou-
mettre ces données à l’analyse, embrasserait dans la même formule les mouvements
des plus grands corps de l’univers et ceux du plus léger atome : rien ne serait incer-
tain pour elle et l’avenir, comme le passé serait présent à ses yeux."

L’avènement au XXème siècle de la théorie du chaos a quelque peu ébranlé ce système de
pensée. La mécanique quantique semble l’avoir rendu définitivement obsolète et à ce jour, il
semble plutôt qu’on ne reviendra plus jamais à un déterminisme absolu en science.
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