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Le théorème fondamental de l’algèbre

Définition. Un polynôme P ∈ K[X]∗ est dit irréductible si les seuls diviseurs de P

sont soit des constantes, soit des multiples de P .

Il est immédiat que tout polynôme peut s’écrire comme un produit de polynômes
irréductibles ; si P n’est pas sous forme de produit irréductibles, c’est qu’il peut
s’écrire comme P = F1F2, avec deg(Fi) < deg(P ). En procédant donc à un argument
de récurrence sur le degré du polynôme P , on peut par suite écrire les Fi sous
forme irréductibles, ce qui conduit finalement à l’écriture de P comme un produit
d’irréductibles.
Il se trouve que si K = C, la situation est particulièrement simple. Pour commencer,
on va interpréter un élément de C[X] comme une fonction de C dans C. Posons la

Définition. Une suite complexe est une fonction de N dans C. On notera {zn}n∈N
les éléments de la suite.
Une suite complexe {zn}n∈N converge vers un nombre complexe z ssi la suite des
partie réels, respectivement des parties imaginaires, de {zn}n∈N converge vers la
partie réelle, respectivement la partie complexe, de z.
Une fonction complexe f : C → C est dite continue en z0 ssi limn→∞ f(zn) = f(z0)

pour toute suite complexe {zn}n∈N telle que limn→∞ zn = z0.

Il est facile de vérifier, que la limite de la somme de deux suites complexes conver-
gentes est la somme de leur limite et que la limite du produit de deux suites com-
plexes est le produit de leur limites. La somme ou le produit de deux fonctions
complexes et continues et encore une fonction complexe continue. On a alors le

Lemme. Tout polynôme P ∈ C[X] est une fonction complexe continue. Similaire-
ment, la fonction z 7→ |P (z)| est continue.
De plus, si P (Z) = anZ

n + . . . + a0 et si |z| ≥ R, avec R = 1 + 2nmax0≤k≤n−1{|ak|},
alors

|P (z)| ≥ |z|n |an|
2

.

Démonstration. Comme un polynôme est une somme de monômes, il est suffisant
de montrer, que z 7→ zn est une fonction continue pour tout n ∈ N. Or, zn est n fois le
produit de z avec lui-même, et il suffit alors de remarquer, que z → z est continue.
Clairement, limn→∞ zn = z ssi limn→∞ zn = z, ce qui implique, que z 7→ z est conti-
nue. De plus, z 7→ P (z) est une somme de fonctions continue est donc elle-même
continue. Puis, |P (z)|2 = P (z)P (z) est continue et |P (z)| =

√
|P (z)|2 l’est consé-

quemment aussi.
Si P (z) =

∑n
k=0 akz

k alors on a pour z ̸= 0,

|P (z)| = |z|n|an −
n−1∑
k=0

(−ak)z
k−n| ≥ |z|nK(z),

où K(z) = |an| −
∑n−1

k=0 |ak| |z|k−n. Dans la somme qui suit |an| dans la définition
de K(z), on voit que les puissances de |z| sont toutes négatives. Ainsi, si |z| est
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suffisamment grand, i.e. pour |z| > R donné dans l’énnoncé de ce lemme, K(z) ≥
|an|
2

et |P (z)| ≥ |z|n |an|
2

.

Théorème. Soit P = anz
n + . . . + a0 ∈ C[z]. Alors, |P (z)| atteint un minimum pour

un certain z0, i.e.
∃z0 ∈ C tel que ∀z ∈ C, |P (z0)| ≤ |P (z)|.

Démonstration. Posons
m := inf{|P (z)| t.q. z ∈ C}.

D’après le lemme précédent, |P (z)| ≥ |z|n |an|
2

, si |z| > R avec un R judicieusement
choisi
Si |P (0)| = 0, alors on pose z0 = 0 et le théorème est prouvé. Sinon, on choisit

R′ := max{R,
(

2
|an| |P (0)|

)1/n

}, et on saura que si |z| > R′, alors |P (z)| ≥ |P (0)|. Ainsi,

m := inf{|P (z)| z ∈ C} = inf{|P (z)| |z| ≤ R′}.

Par définition de l’infimum, il existe pour tout k ∈ N∗ un zk tel que |P (zk)| −m < 1
k
.

Ecrivons zk = [rk, φk]. Comme 0 ≤ rr ≤ R′, il existera une ss-suite zj de zk telle que
rj converge vers un r ≤ R′. Puis, il existera dans cette ss-suite une ss-suite zl telle
que les φl convergent vers un φ. On aura donc que liml→∞[rl, φl] = [r, φ] ≡ z0 et
m = liml→∞ |P (zl)| = |P (liml→∞ zl)| = |P (z0)|.

Théorème. Si P ∈ C[z] et deg(P ) = n ≥ 1, alors il existe un z ∈ C tel que P (z) = 0.

Démonstration. Par le théorème précédant, on sait que qu’il existe un z0 ∈ C tel
que pour tout nombre complexe z, |P (z)| ≥ |P (z0)| = m. Supposons que |P (z0)| ≠ 0.
On pose alors Q(z) := P (z+ z0) = b0 + bkz

k + . . .+ bnz
n avec bk ̸= 0. De plus, |b0| = m.

Posons encore c ∈ C tel que ck = −b0/bk et f(t) := |Q(ct)| où t est un paramètre réel.
On a

f(t) = |b0 − b0t
k + ck+1t

k+1 + . . .+ cnt
n|,

avec cj = bjc
j. Si 0 < t < 1, on estime que

f(t) ≤ m(1− tk) + tt+1|ck+1 + . . .+ cnt
n−k−1| ≤ m+ tk(−m+Nt),

avec N = |ck+1| + . . . + |cn|. Si on choisit maintenant t < min{1, m
2N

}, on aura que
f(t) < m, et on en conclut, que f(t) = |Q(ct)| = |P (z0 + ct)| < m, ce qui est une
contradiction. D’où P (z0) = 0.

Une conséquence très importante de ce dernier théorème est le

Théorème fondamental de l’algèbre. Soit P (z) = anz
n + . . . + a0 ∈ C[Z] et

n > 0. Alors, il existe k nombres complexes r1, . . . , rk et k entiers naturels non nuls
n1, . . . , nk, tels que n1 + . . .+ nk = n et tels que

P (z) = an(z − r1)
n1 . . . (z − rk)

nk .
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Démonstration. On procède par récurrence sur le degré de P (z).
Si n = 1, P (z) = a1z + a0, avec a1 ̸= 0, et P (z) = a1(z − a0

a1
).

Supposons le résultat vérifié pour n et soit P (z) = an+1z
n+1+ . . .+a0, un polynôme à

coefficients complexes d’ordre n+1. Par le théorème précédent, il existe un nombre
z0, tel que P (z0) = 0. Une division euclidienne nous livre alors

P (z) = M(z)(z − z0) +R,

où R est un nombre complexe. Puisque P (z0) = 0, il faut que R = 0, et ainsi,
P (z) = M(z)(z − z0). Le degré de M(z) étant égal à n, on a par l’hypothèse de
récurrence, que M(z) = mn(z − r1)

n1 . . . (z − rk)
nk et n1 + . . .+ nk = n. De plus, il est

facile de voir, que mn = an. Ainsi, P (z) = an(z − z0)(z − r1)
n1 . . . (z − rk)

nk .


