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Le théoreme fondamental de I’algebre

Définition. Un polynéome P € K[X]|* est dit irréductible si les seuls diviseurs de P
sont soit des constantes, soit des multiples de P.

Il est immédiat que tout polynéme peut s’écrire comme un produit de polynémes
irréductibles; si P n’est pas sous forme de produit irréductibles, c’est qu’il peut
s’écrire comme P = F| F,, avec deg(F;) < deg(P). En procédant donc a un argument
de récurrence sur le degré du polynéme P, on peut par suite écrire les F; sous
forme irréductibles, ce qui conduit finalement a 1’écriture de P comme un produit
d’irréductibles.

Il se trouve que si K = C, la situation est particulierement simple. Pour commencer,
on va interpréter un élément de C[X] comme une fonction de C dans C. Posons la

Définition. Une suite complexe est une fonction de N dans C. On notera {z, },en
les éléments de la suite.

Une suite complexe {z,},cy converge vers un nombre complexe z ssi la suite des
partie réels, respectivement des parties imaginaires, de {z,},cny converge vers la
partie réelle, respectivement la partie complexe, de z.

Une fonction complexe f : C — C est dite continue en z, ssi lim,, ., f(2,) = f(20)
pour toute suite complexe {z,},en telle que lim,, o 2, = 20.

Il est facile de vérifier, que la limite de la somme de deux suites complexes conver-
gentes est la somme de leur limite et que la limite du produit de deux suites com-
plexes est le produit de leur limites. La somme ou le produit de deux fonctions
complexes et continues et encore une fonction complexe continue. On a alors le

Lemme. Tout polynéme P € C[X] est une fonction complexe continue. Similaire-
ment, la fonction z — |P(z)| est continue.

De plus, si P(Z) = a,Z" + ...+ ap et si |z] > R, avec R = 1 + 2nmaxXo<x<n—1{|ax
alors

2

Démonstration. Comme un polynome est une somme de monomes, il est suffisant
de montrer, que z — 2" est une fonction continue pour tout n € N. Or, 2" est n fois le
produit de z avec lui-méme, et il suffit alors de remarquer, que z — z est continue.
Clairement, lim,,_.o, 2, = 2 ssi lim,,_, 2, = Z, ce qui implique, que z — Z est conti-
nue. De plus, z — P(z) est une somme de fonctions continue est donc elle-méme
continue. Puis, |P(2)]? = P(2)P(z) est continue et |P(z)| = +/|P(z)|? I'est consé-
quemment aussi.

Si P(z) =Y ,_,axz" alors on a pour z # 0,

n—1
(PG| = [2]"an = D _(=ar)z" "] > |2["K(2),
k=0
ot K(2) = |an| — 31—, |ax| |2/" ™. Dans la somme qui suit |a,| dans la définition

de K(z), on voit que les puissances de |z| sont toutes négatives. Ainsi, si |z| est
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suffisamment grand, i.e. pour |z| > R donné dans ’énnoncé de ce lemme, K(z) >
lanl et |P(2)] > |2|" 2.

O

Théoréme. Soit P = a,2" + ...+ ay € C[z]. Alors,
un certain z, i.e.

P(z)| atteint un minimum pour
dzp € C tel que Vz € C, |P(z0)| < |P(2)].

Démonstration. Posons
m :=inf{|P(z)| t.q. z € C}.

D’apres le lemme précédent,
choisi
Si |P(0)] = 0, alors on pose z; = 0 et le théoréme est prouvé. Sinon, on choisit

1/n
R’ := max{R, (ﬁ]P(O)D }, et on saura que si |z| > R, alors |P(z)| > |P(0)|. Ainsi,

P(z)] > |z|”@ si |z| > R avec un R judicieusement

m = inf{|P(z)| z € C} = inf{|P(2)| |z| < R'}.

Par définition de I'infimum, il existe pour tout k& € N* un z; tel que |P(z)| —m < 1.
Ecrivons z, = [ry, ¢x]. Comme 0 < r, < R/, il existera une ss-suite z; de z; telle que
r; converge vers un r < R’. Puis, il existera dans cette ss-suite une ss-suite z; telle
que les ¢; convergent vers un . On aura donc que limy;_,..[r, @] = [r,¢] = 2o et
m = limy_, |P(2z)] = |P(limy_e 21)| = |P(20)]- O

Théoréme. Si P € C[z]| et deg(P) = n > 1, alors il existe un z € C tel que P(z) = 0.

Démonstration. Par le théoreme précédant, on sait que qu’il existe un z; € C tel

que pour tout nombre complexe z, |P(z)| > |P(z9)| = m. Supposons que |P(z)| # 0.
On pose alors Q(z) := P(z+z) = by + bx2* + ...+ b,2" avec by # 0. De plus, |by| = m.
Posons encore ¢ € C tel que ¢ = —by /by, et f(t) := |Q(ct)| ou t est un parameétre réel.

On a
ft) = |bo — bt + cpat™ ™ + ..+ et

avec ¢; = b;c?. Si0 < ¢ < 1, on estime que
F@) <ml =)+t g + .o et <m+t(—m + Nt),

avec N = |cg41| + ... + |c,|. Si on choisit maintenant ¢ < min{l, 5%}, on aura que
f(t) < m, et on en conclut, que f(t) = |Q(ct)| = |P(z + ct)] < m, ce qui est une
contradiction. D’ou P(z,) = 0. O

Une conséquence tres importante de ce dernier théoreme est le

Théoreme fondamental de l'algebre. Soit P(z) = a,2" + ... + a9 € C[Z] et
n > 0. Alors, il existe kK nombres complexes rq, ..., 7, et k entiers naturels non nuls
ny,...,nk, tels que ny + ... +np = n et tels que

P(z)=an(z—r)™ ... (2 —rp)"™.
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Démonstration. On procede par récurrence sur le degré de P(z).

Sin=1, P(z) = a1z + ap, avec a1 # 0, et P(z) = ai(z — ).

Supposons le résultat vérifié pour n et soit P(z) = a,,12" " +...+ap, un polynéme a
coefficients complexes d’ordre n+1. Par le théoreme précédent, il existe un nombre

2o, tel que P(zp) = 0. Une division euclidienne nous livre alors
P(z) = M(2)(z — z0) + R,

ou R est un nombre complexe. Puisque P(z) = 0, il faut que R = 0, et ainsi,
P(z) = M(z)(z — z). Le degré de M (z) étant égal a n, on a par l’hypothése de
récurrence, que M (z) = my(z — 7)™ ...(z — )™ et ny + ... +nx = n. De plus, il est
facile de voir, que m,, = a,,. Ainsi, P(2) = an(z — 20)(z — )™ ... (2 — rg)"™. O



