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Corrigé de la Série 20

Nombres complexes: division euclidienne
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1. Parmi les équations pour z ∈ C suivantes, déterminer si elle sont polynômiales ou non:

(a) 1 = 1
zz

,

(b) z3 − 2z + 1 = 0,

(c) 1 = 1
2−zz

,

(d) zz + z + z = 0.

(a) Ce n’est pas une équation polynômiale à cause de la présence du complexe
conjugué et parce qu’on divise par z.
Si on s’intéresse aux solutions de cette équation (ce qui n’est pas explicitement
demandé), on doit résoudre zz = 1, ou encore |z|2 = 1. En représentation
polaire cela revient à écrire l’ensemble solutions comme {eiφ :φ∈]−π,π]}, qui n’est
autre que le cercle de rayon 1, centré en zΩ = 0.

(b) Cela est une équation polynômiale.
Si on s’intéresse aux solutions de cette équation (ce qui n’est pas explicitement
demandé), on remarque que z = 1 en est une solution manifeste. On a ensuite
la factorisation z3 − 2z + 1 = (z − 1)(z2 + z − 1) et les solutions du deuxième
facteur s’écrivent comme z± = −1±

√
5

2
.

(c) Ce n’est pas une équation polynômiale à cause de la présence du complexe
conjugué et parce qu’on divise par z.
Si on s’intéresse aux solutions de cette équation (ce qui n’est pas explicitement
demandé), on doit résoudre 2−|z|2 = 1, ou encore 1 = |z|2, ce qui est à nouveau
le cercle de rayon 1, centré en zΩ = 0.

(d) Ce n’est pas une équation polynômiale à cause de la présence du complexe
conjugué.
Si on s’intéresse aux solutions de cette équation (ce qui n’est pas explicitement
demandé), on doit résoudre zz + z + z = 0, ou encore zz + z + z + 1 = 1,
ou encore (z + 1)(z + 1) = 1, c’est-à-dire |z + 1|2 = 1, ou encore |z + 1| = 1,
ou finalement z + 1 = eiφ, qui n’est autre que le cercle de rayon 1, centré en
zΩ = −1:

{z ∈ C : z = −1 + eiφ, φ ∈ R}.�
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2. Calculer la division euclidienne de

(a) P (X) = X4 + 5X3 + 12X2 + 19X − 7 par Q(X) = X2 + 3X − 1,

(b) P (X) = X4 + 4iX3 + 9X2 + 27iX + 38 par Q(X) = −X2 − iX − 7.

(a) Le tableau de la division euclidienne donne
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P (X)︷ ︸︸ ︷
X4 + 5X3 + 12X2 + 19X − 7

X4 + 3X3 − X2

2X3 + 13X2 + 19X − 7

2X3 + 6X2 − 2X

7X2 + 21X − 7

7X2 + 21X − 7

0

−

−

−

Q(X)︷ ︸︸ ︷
X2 + 3X − 1

X2 + 2X + 7

Le résultat est donc D(X) = X2 + 2X − 7 et le reste est nul.

(b) X4 + 4iX3 + 9X2 + 27iX + 38 par −X2 − iX − 7. Le tableau de la division
euclidienne donne

P (X)︷ ︸︸ ︷
X4 + 4iX3 + 9X2 + 27iX + 38

X4 + iX3 + 7X2

3iX3 + 2X2 + 27iX + 38

3iX3 − 3X2 + 21iX

5X2 + 6iX + 38

5X2 + 5iX + 35

iX + 3

−

−

−

Q(X)︷ ︸︸ ︷
−X2 − iX − 7

−X2 − 3iX − 5

Le résultat est donc D(X) = −X2 − 3iX − 5 et le reste est R(X) = iX + 3.
Le reste est de degré inférieur à Q(X).#
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3. (a) Soient a, b ∈ R et R(X) le reste de la division euclidienne de P (X) par (X−a)(X−b).
Exprimer R(X) en fonction de P (a) et P (b).

(b) Soient a ∈ R et R(X) le reste de la division euclidienne de P (X) par (X − a)2.
Exprimer R(X) en fonction de P (a) et P ′(a).

(a) Puisqu’on divise le polynôme P (X) par un polynôme Q(X) = (X − a)(X − b)
de degré 2, le reste R(X) sera un polynôme de degré 1.
On cherche donc à déterminer les coefficients a1 et a0 de

R(X) = a1X + a0.

On sait de plus que

P (X) = D(X)(X − a)(X − b) +R(X),

⇒ P (a) = R(a) et P (b) = R(b).
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On obtient alors{
a1a+ a0 = P (a),

a1b+ a0 = P (b)
⇔

{
a1a+ a0 = P (a),

a1(b− a) = P (b)− P (a)

⇔

{
a0 = P (a)− aP (b)−P (a)

b−a
,

a1 =
P (b)−P (a)

b−a

Ainsi,

R(X) =
P (b)− P (a)

b− a
(X − a) + P (a).

(b) Puisqu’on divise le polynôme P (X) par un polynôme Q(X) = (X − a)2 de
degré 2, le reste R(X) sera un polynôme de degré 1.
On cherche donc à déterminer les coefficients a1 et a0 de

R(X) = a1X + a0.

On sait de plus que

P (X) = D(X)(X − a)2 +R(X),

⇒ P ′(X) = D′(X)(X − a)2 +D(X)2(X − a) +R′(X),

⇒ P (a) = R(a) et P ′(a) = R′(a).

On obtient alors{
a1a+ a0 = P (a),

a1 = P ′(a)
⇔

{
a0 = P (a)− aP ′(a),

a1 = P ′(a)
.

Ainsi,
R(X) = P ′(a)(X − a) + P (a).'
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4. Calculer le reste de la division euclidienne de

P (X) = (X + 1)n −Xn − 1

par

(a) Q(X) = X2 + 3X + 2. (b) Q(X) = X2 − 2X + 1.

(a) Le polynôme Q(X) se factorise comme Q(X) = (X + 2)(X + 1). Si

P (X) = D(X)(X + 1)(X + 2) +R(X)

alors on voit que P (−1) = R(−1) = (−1)n+1 − 1 et P (−2) = R(−2) =
(−1)n − (−2)n − 1.
R(X) étant de degré 1, puisque Q(X) est de degré 2, on doit alors avoir

R(X) =
R(−2)−R(−1)

−2− (−1)
(X + 1) +R(−1)

=
(
(−1)n+1 − 1 + (−1)n+1 + (−2)n + 1

)
(X + 1) + (−1)n+1 − 1

=
(
(−2)n + 2(−1)n+1

)
(X + 1) + (−1)n+1 − 1.



EPFL - CMS Analyse II

(b) Le polynôme Q(X) se factorise comme Q(X) = (X − 1)2. Si

P (X) = D(X)(X − 1)2 +R(X)

alors on voit que P (1) = R(1) = 2n − 2. De plus,

P ′(X) = D′(X)(X − 1)2 +D(X)2(X − 1) +R′(X)

et P ′(1) = R′(1) = n(X + 1)n−1 − nXn−1
∣∣
X=1

= n2n−1 − n.

R(X) étant de degré 1, puisque Q(X) est de degré 2, on doit alors avoir

R(X) = R′(1)(X − 1) +R(1) (polynôme de Taylor en X0 = 1)

= n(2n−1 − 1)(X − 1) + 2n − 2.
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5. Soient P1(X), P2(X), Q(X) des polynômes et soient R1(X), R2(X) les restes de la divi-
sion de P1(X) par Q(X) et de P2(X) par Q(X) respectivement. Parmi les affirmations
suivantes, déterminer si elles sont vraies ou fausses. Si elles sont fausses, donner un
contre-exemple.

(a) Le reste de la division de P1(X) + P2(X) par Q(X) est R1(X) +R2(X).

(b) Le reste de la division de P1(X)× P2(X) par Q(X) est R1(X)×R2(X).

(c) Le reste de la division de P1(X) par Q2(X) est le reste de la division de R1(X) par
Q(X).

(d) Le reste de la division de P1(X) × P2(X) par Q(X) est le reste de la division de
R1(X)×R2(X) par Q(X).

(a) Vrai.

(b) Faux. Par exemple si P1(X) = (X − 1), P2(X) = (X − 2) et Q(X) = (X −
1)(X−2), alors R1(X) = (X−1), R2(X) = (X−2), mais le reste de la division
de P1(X)× P2(X) par Q(X) est nul.

(c) Faux. Si P1(X) = (X−1)(X−2) et Q(X) = (X−1), alors le reste R1(X) = 0,
alors que le reste de P (X) par Q(X)2 est (1−X).

(d) Vrai. En effet, si on écrit P1(X) = D1(X)Q(X)+R1(X) et P2(X) = D2(X)Q(X)+
R2(X), alors

P1(X)× P2(X) = D1(X)D2(X)Q2(X) +D1(X)R2(X)Q(X) +D2(X)R1(X)Q(X)︸ ︷︷ ︸
multiple de Q(X)

+R1(X)R2(X).

Le reste de la division de P1(X)×P2(X) par Q(X) sera donc celui de R1(X)R2(X)
par Q(X).�
�

�
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6. (a) Le polynôme (X − 1)2 divise-t-il Xn −Xn−1 −X + 1?

(b) Le polynôme (X − 1)3 divise-t-il 2Xn + (n− n2)X2 + (2n2 − 2n)X + n− n2 − 2?
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(a) Pour n ≤ 1, on ne peut évidemment pas diviser P (X) par (X − 1)2.
Pour n ≥ 2, en écrivant P (X) comme son polynôme de Taylor autour de
X0 = 1, on trouve

P (X) =
P (n)(1)

n!
(X − 1)n + . . .+

P (2)(1)

2!
(X − 1)2︸ ︷︷ ︸

multiple de (X−1)2

+P ′(1)(X − 1) + P (1)︸ ︷︷ ︸
non divisible par (X−1)2

.

On remarque alors que (X − 1)2 divise P (X) ssi P (1) = P ′(1) = 0.
Vérifions alors cela:

P (1) = Xn −Xn−1 −X + 1
∣∣
X=1

= 1− 1− 1 + 1 = 0,

P ′(1) = nXn−1 − (n− 1)Xn−2 − 1
∣∣
X=1

= n− (n− 1)− 1 = 0.

(X − 1)2 divise donc P (X).

(b) Pour n ≤ 2, on ne peut évidemment pas diviser P (X) par (X − 1)3.
Pour n ≥ 3, en écrivant P (X) comme son polynôme de Taylor autour de
X0 = 1, on trouve

P (X) =
P (n)(1)

n!
(X − 1)n + . . .+

P (3)(1)

3!
(X − 1)3︸ ︷︷ ︸

multiple de (X−1)3

+
P (2)(1)

2!
(X − 1)2 + P ′(1)(X − 1) + P (1)︸ ︷︷ ︸

non divisible par (X−1)3

.

On remarque alors que (X − 1)3 divise P (X) ssi P (1) = P ′(1) = P (2)(1) = 0.
Vérifions alors cela:

P (1) = 2Xn + (n− n2)X2 + (2n2 − 2n)X + n− n2 − 2
∣∣
X=1

= 2 + n− n2 + 2n2 − 2n+ n− n2 − 2 = 0,

P ′(1) = 2nXn−1 + 2(n− n2)X + 2n2 − 2n
∣∣
X=1

= 2n+ 2n− 2n2 + 2n2 − 2n ̸= 0,

P (2)(1) = 2n(n− 1)Xn−2 + 2(n− n2)
∣∣
X=1

= 2n2 − 2n+ 2n− 2n2 = 0.

(X − 1)3 ne divise donc pas P (X).


