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Corrigé de la Série 17

‘ 3.3. Regles de calcul ‘

~

1. | Exprimer la fonction

_2x2—3m+1

f(@) 2 —2x+1

comme f(x)=a+ Pl

Puis, utiliser la régle de calcul d’addition des polynémes de Taylor pour trouver celui de
(x) autour de xy = 0 a l'ordre n.

On cherche des nombres a et b pour que

222 — 3x+ 1 b
)= o1 =% -1
Mais:
R Ny e e
r) = =
2 =2z +1 22— 2 +1
r—1 x—1 1
PR St B VI Sk B S
+x2—2x—|—1 +(x_1)2 11—z
On a donc
1
f(z)=g(x)+ h(x) avec g(x)=2, h(x):_l—x'

Le polynome de Taylor pour —ﬁ est moins la série géométrique et celui de g(x) = 2,
un polynoéme, est g(x) lui-méme. Additionnant ces deux polynémes de Taylor on a

donc
Pron(x)= _2 +\—1—x2—£3—...—:17”
PZ,O,n(Z) P 1 On(w)
I—z
=1—x—a?—.. . —2"

2. [Calculer le polynéme de Taylor Py ,(z) pour

(a) f(z) =17 (b) f(z) = 17m-

(a) La fonction = — = peut se voir comme la composition de y ﬁ = f(y)
avec y = 2 = g(z). On peut donc composer deux polynémes de Taylor déja
connus:

n
_ 2 n o__ k
Piogn)=1+y+y*+...+y —kz;y,
Pr2gn(x) = 22,

_ 2k
= Pﬁ,O,n<Px2,0,n<x)) - Z.T .
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Ici la composition des deux polyndémes de Taylor nous donne un polynéme de
degré 2n. On doit donc omettre tous les termes de degré supérieur a n:

P, on(®) = [Pﬁ,oyn(Pz%o,n(x))}n = Z %,

11—z
0<2k<n

(b) La fonction  — L peut se voir comme la composition de y — ﬁ = f(y)

avec y = —x* = g(x). On peut donc composer deux polynémes de Taylor déja

connus:

_ 2 n o__ k
Piogny)=1+y+y*+...+y —gy,

P_agn(x) =—2",

Uy

= P (Poaign(2)) = > (=1)Fat,

Ici la composition des deux polyndémes de Taylor nous donne un polynéme de
degré 4n. On doit donc omettre tous les termes de degré supérieur a n:

P_. 0,n<x) = [Pﬁ,o,n(P—m‘l,O,n('T))]n = Z (_1)kx4k

1+x4 ’
0<4k<n

3.| Calculer le polynome de Taylor Py, () pour f(z) = In(1££) en écrivant f(z) comme la
différence de deux fonctions.

On peut commencer par observer que

1+z

|
n(l—a:

)=In(l1+2)—In(1l — ).

Ceci est donc une somme de deux fonctions, dont les polynémes de Taylor sont
facilement calculables.

En effet, In(1 4 x) est la composition de f(y) = In(y) et g(z) =y = 1+ z, alors que
= 1—uz.

In(1 + z) est la composition de f(y) = In(y) et h(z) =y =
On a donc:
1 1 n— n
Puin(®) = (=1 =50 =1+ 30— 1" =+ ()" gy = 1),
ng()’n(x) =1 + xZ,
Ph,[),n<x) =1- Z,
1 2 1 3 n—1 1 n
Rn(l-{—x),o,n(x) = [-Pln 1n(1 + x)]n =T — Zx" + gm - + ( ]-) Em ’
1 1 1
Rn(l—:c),o,n(x) - [-Pln,l,n(l - x)]n = —T — §I2 - §$3 .. ﬁxn

La différence de ces deux polynomes de Taylor nous donne donc le polyndéme de
Taylor pour f(x) = In(£%).

11—z
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Cette différence est obtenue en remarquant, que les puissances paires apparais-
sent avec un signe opposé et vont donc s’annuler, alors que les puissances impaires
s’additionnent:

2 2 2
Pugupion®) =2+ 204 2t = 3 gl
0<2k+1<n

Le fait que seul des puissances impaires apparaissent dans le polynéome de Taylor
pour xg = 0 traduit 'imparité de la fonction f(x):

1—2z 1+z
fex) = () = () = )
4. /U/tiliser la définition du polynéme de Taylor et comparer a \

1 1 1 1
Parctan,O,Q(l') =T — 51‘3 + 51‘5 — ?377 + 5:59

pour trouver les valeurs de

@) arctan("(0), (b) arctan®(0). J

Par définition, pour une fonction 9 fois dérivable:

Proo(x) = f(0) + f(0) + %f@(O)ax2 oot % FO0)27 + .. + % FO0)°.

En comparant avec

1 1 1 1
Parctan,0,9<x) =T — §3§'3 + 51'5 — ?$7 + 5.779

on trouve 1 1 1 1
== arctan”(0) et oi arctan® (0) = 9

Ainsi,

(a) arctan(™(0) = —6!, (b) arctan®(0) = 8!.

5. (On considére le polynéome de Taylor de f(x) = In(cos(x)) a 'orde 5 autour de xy = 0:

1 1
Pin(cos(z = ——2® — —z".
In(eos(@),0,5 () = —52° = 5
Si on dérive ce Pyos(x) donné ci-dessus, on obtient le polydéme de Taylor pour quelle

onction et & quelle ordre?

Par la regle de calcul des dérivées, on a

d

%Pln(cos(m)),o,5 (I) = P% 1n(cos(z)),0,4<x> =P tan(z),OA(x)-

On obtient ainsi

1
P tan(x),0,4(x> = —T — 5373
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6. @ rappelle ici que \

Prain(®) =1+ Z(_l)“z%(—zl](gk_—zi!)!k! =1~

(a) Utiliser la régle de dérivation pour trouver le Pﬁm(ﬂ?)
(b) Composer pour trouver le P+, ().

1—127

w) Utiliser la régle d’intégration pour trouver le Piyesino.n (). J

(a) La régle de dérivation nous dit que

d

%Pf,lo,n-i-l(x) = Pf(l),zo,n(x)'

La dérivée de f(z) = /x est fD(z) = %\/LE Pour obtenir le polynome de

Taylor pour \/LE a 'ordre n autour de xy = 1, on calcule alors

d
P%,l,n(x) = QEP\/E,LnH(x)

x

d s L (2k—2)!
- 2% (1 + Z(_l)k 22k(1(k _ i)”{'(x - 1>k>

Lo (k=2 o
_2;(_1) 22k<—1(k— i)!k!k(x_ D
&, o (2k—2)
:;(_” 2D
Sy L (2k =2 N P12k i
:Z(_1> 22k—2<k_1)(x_1) :Z(_l) 2Tk(k><l'—1)

k=1 k=0

(b) Pour trouver le P_1 _, (z) on remarque que ﬁ est la composition de

: iz
f(y) = L avec g(x) =y =1 — a2,

De plus, yo = g(xg) = 1 si zp = 0. Ceci est important pour la composition des
polynomes de Taylor. Il faut composer le polynéome de f autour yo avec celui
de g autour de xg, avec la condition que yo = f(x0)-

On est donc en droit d’appliquer la régle de composition. Pour obtenir P_1 . (z)

\/17127

on va composer P (y) avec Pi_y2 zo—0.(7) et retenir que les termes de

\}y’y0:17n
puissance < n:



EPFL - CMS Analyse 11

Pion(®) = [P an(Prizzon(®)],
== (L)),
S )

L__ on va utiliser la régle d’intégration pour trouver

inM
(¢) Comme arcsin'” (z) = =
le Parcsin,O,n<x>:

P, csinon(z) = arcsin(0 +/ P . n_q(t)dt
0, ( ) ( ) o \/@’0’ 1()

v 1 (2k\ o 12K\ [7 o
= — t°vdt = — v dt
Iz (%) > ()

0 g<2kp<n—1 0<2k<n—1
_ Z i 2k 1 L2k
4k \ k) 2k +1
0<2k<n—1

_ Z i 2k 1 22k
4\ k )2k +1 ’

1<2k+1<n



