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Corrigé de la Série 17

3.3. Règles de calcul
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1. Exprimer la fonction

f(x) =
2x2 − 3x+ 1

x2 − 2x+ 1
comme f(x) = a+

b

x− 1
.

Puis, utiliser la règle de calcul d’addition des polynômes de Taylor pour trouver celui de
f(x) autour de x0 = 0 à l’ordre n.

On cherche des nombres a et b pour que

f(x) =
2x2 − 3x+ 1

x2 − 2x+ 1
= a

b

x− 1

Mais:

f(x) =
2x2 − 3x+ 1

x2 − 2x+ 1
=

2x2 − 4x+ 2− 1 + x

x2 − 2x+ 1

= 2 +
x− 1

x2 − 2x+ 1
= 2 +

x− 1

(x− 1)2
= 2− 1

1− x
.

On a donc

f(x) = g(x) + h(x) avec g(x) = 2, h(x) = − 1

1− x
.

Le polynôme de Taylor pour − 1
1−x

est moins la série géométrique et celui de g(x) = 2,
un polynôme, est g(x) lui-même. Additionnant ces deux polynômes de Taylor on a
donc

Pf,0,n(x) = 2︸︷︷︸
P2,0,n(x)

+−1− x2 − x3 − . . .− xn︸ ︷︷ ︸
P −1

1−x ,0,n
(x)

= 1− x− x2 − . . .− xn.�
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2. Calculer le polynôme de Taylor Pf,0,n(x) pour

(a) f(x) = 1
1−x2 (b) f(x) = 1

1+x4 .

(a) La fonction x 7→ 1
1−x2 peut se voir comme la composition de y 7→ 1

1−y
= f(y)

avec y = x2 = g(x). On peut donc composer deux polynômes de Taylor déjà
connus:

P 1
1−y

,0,n(y) = 1 + y + y2 + . . .+ yn =
n∑

k=0

yk,

Px2,0,n(x) = x2,

⇒ P 1
1−y

,0,n(Px2,0,n(x)) =
n∑

k=0

x2k.
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Ici la composition des deux polynômes de Taylor nous donne un polynôme de
degré 2n. On doit donc omettre tous les termes de degré supérieur à n:

P 1
1−x2

,0,n(x) =
[
P 1

1−y
,0,n(Px2,0,n(x))

]
n
=

∑
0≤2k≤n

x2k.

(b) La fonction x 7→ 1
1+x4 peut se voir comme la composition de y 7→ 1

1−y
= f(y)

avec y = −x4 = g(x). On peut donc composer deux polynômes de Taylor déjà
connus:

P 1
1−y

,0,n(y) = 1 + y + y2 + . . .+ yn =
n∑

k=0

yk,

P−x4,0,n(x) = −x4,

⇒ P 1
1−y

,0,n(P−x4,0,n(x)) =
n∑

k=0

(−1)kx4k.

Ici la composition des deux polynômes de Taylor nous donne un polynôme de
degré 4n. On doit donc omettre tous les termes de degré supérieur à n:

P 1
1+x4

,0,n(x) =
[
P 1

1−y
,0,n(P−x4,0,n(x))

]
n
=

∑
0≤4k≤n

(−1)kx4k.
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3. Calculer le polynôme de Taylor Pf,0,n(x) pour f(x) = ln(1+x

1−x
) en écrivant f(x) comme la

différence de deux fonctions.
On peut commencer par observer que

ln(
1 + x

1− x
) = ln(1 + x)− ln(1− x).

Ceci est donc une somme de deux fonctions, dont les polynômes de Taylor sont
facilement calculables.
En effet, ln(1+ x) est la composition de f(y) = ln(y) et g(x) = y = 1+ x, alors que
ln(1 + x) est la composition de f(y) = ln(y) et h(x) = y = 1− x.
On a donc:

Pln,1,n(y) = (y − 1)− 1

2
(y − 1)2 +

1

3
(y − 1)3 − . . .+ (−1)n−1 1

n
(y − 1)n,

Pg,0,n(x) = 1 + x,

Ph,0,n(x) = 1− x,

Pln(1+x),0,n(x) = [Pln,1,n(1 + x)]n = x− 1

2
x2 +

1

3
x3 − . . .+ (−1)n−1 1

n
xn,

Pln(1−x),0,n(x) = [Pln,1,n(1− x)]n = −x− 1

2
x2 − 1

3
x3 − . . .− 1

n
xn.

La différence de ces deux polynômes de Taylor nous donne donc le polynôme de
Taylor pour f(x) = ln(1+x

1−x
).
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Cette différence est obtenue en remarquant, que les puissances paires apparais-
sent avec un signe opposé et vont donc s’annuler, alors que les puissances impaires
s’additionnent:

Pln( 1+x
1−x

),0,n(x) = 2x+
2

3
x3 +

2

5
x5 + . . . =

∑
0≤2k+1≤n

2

2k + 1
x2k+1.

Le fait que seul des puissances impaires apparaîssent dans le polynôme de Taylor
pour x0 = 0 traduit l’imparité de la fonction f(x):

f(−x) = ln(
1− x

1 + x
) = − ln(

1 + x

1− x
) = −f(x).
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4. Utiliser la définition du polynôme de Taylor et comparer à

Parctan,0,9(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9

pour trouver les valeurs de

(a) arctan(7)(0), (b) arctan(9)(0).

Par définition, pour une fonction 9 fois dérivable:

Pf,0,9(x) = f(0) + f (1)(0) +
1

2!
f (2)(0)x2 + . . .+

1

7!
f (7)(0)x7 + . . .+

1

9!
f (9)(0)x9.

En comparant avec

Parctan,0,9(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9

on trouve
−1

7
=

1

7!
arctan(7)(0) et

1

9!
arctan(9)(0) =

1

9
.

Ainsi,

(a) arctan(7)(0) = −6!, (b) arctan(9)(0) = 8!.'
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5. On considère le polynôme de Taylor de f(x) = ln(cos(x)) à l’orde 5 autour de x0 = 0:

Pln(cos(x)),0,5(x) = −1

2
x2 − 1

12
x4.

Si on dérive ce Pf,0,5(x) donné ci-dessus, on obtient le polyôme de Taylor pour quelle
fonction et à quelle ordre?

Par la règle de calcul des dérivées, on a

d

dx
Pln(cos(x)),0,5(x) = P d

dx
ln(cos(x)),0,4(x) = P− tan(x),0,4(x).

On obtient ainsi

P− tan(x),0,4(x) = −x− 1

3
x3 (= −Ptan(x),0,3(x)).
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6. On rappelle ici que

P√
x,1,n(x) = 1 +

n∑
k=1

(−1)k−1 (2k − 2)!

22k−1(k − 1)!k!
(x− 1)k.

(a) Utiliser la règle de dérivation pour trouver le P 1√
x
,1,n(x).

(b) Composer pour trouver le P 1√
1−x2

,0,n(x).

(c) Utiliser la règle d’intégration pour trouver le Parcsin,0,n(x).

(a) La règle de dérivation nous dit que

d

dx
Pf,x0,n+1(x) = Pf (1),x0,n(x).

La dérivée de f(x) =
√
x est f (1)(x) = 1

2
1√
x
. Pour obtenir le polynôme de

Taylor pour 1√
x

à l’ordre n autour de x0 = 1, on calcule alors

P 1√
x
,1,n(x) = 2

d

dx
P√

x,1,n+1(x)

= 2
d

dx

(
1 +

n+1∑
k=1

(−1)k−1 (2k − 2)!

22k−1(k − 1)!k!
(x− 1)k

)

= 2
n+1∑
k=1

(−1)k−1 (2k − 2)!

22k−1(k − 1)!k!
k(x− 1)k−1

=
n+1∑
k=1

(−1)k−1 (2k − 2)!

22k−2(k − 1)!(k − 1)!
(x− 1)k−1

=
n+1∑
k=1

(−1)k−1 1

22k−2

(
2k − 2

k − 1

)
(x− 1)k−1 =

n∑
k=0

(−1)k
1

22k

(
2k

k

)
(x− 1)k.

(b) Pour trouver le P 1√
1−x2

,0,n(x) on remarque que 1√
1−x2 est la composition de

f(y) = 1√
y

avec g(x) = y = 1− x2.

De plus, y0 = g(x0) = 1 si x0 = 0. Ceci est important pour la composition des
polynômes de Taylor. Il faut composer le polynôme de f autour y0 avec celui
de g autour de x0, avec la condition que y0 = f(x0).

On est donc en droit d’appliquer la règle de composition. Pour obtenir P 1√
1−x2

,0,n(x)

on va composer P 1√
y
,y0=1,n(y) avec P1−x2,x0=0,n(x) et retenir que les termes de

puissance ≤ n:
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P 1√
1−x2

,0,n(x) =
[
P 1√

y
,1,n(P

√
1−x2,0,n(x))

]
n[

P 1√
y
,1,n(1− x2))

]
n
=
[ n∑

k=0

(−1)k
1

22k

(
2k

k

)
(−x2)k

]
n

=
[ n∑

k=0

1

4k

(
2k

k

)
x2k
]
n
=

∑
0≤2k≤n

1

4k

(
2k

k

)
x2k.

(c) Comme arcsin(1)(x) = 1√
1−x2 , on va utiliser la règle d’intégration pour trouver

le Parcsin,0,n(x):

Parcsin,0,n(x) = arcsin(0)︸ ︷︷ ︸
=0

+

∫ x

0

P 1√
1−t2

,0,n−1(t)dt

=

∫ x

0

∑
0≤2k≤n−1

1

4k

(
2k

k

)
t2kdt =

∑
0≤2k≤n−1

1

4k

(
2k

k

)∫ x

0

t2kdt

=
∑

0≤2k≤n−1

1

4k

(
2k

k

)
1

2k + 1
x2k+1

=
∑

1≤2k+1≤n

1

4k

(
2k

k

)
1

2k + 1
x2k+1.


