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Corrigé de la Série 16

3.2. Termes de correction
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1. (a) Soit x > 0. A l’aide du terme de correction, montrer que

| sin(x)− x+
1

3!
x3| ≤ 1

5!
x5.

(b) Déduire du point précédent que

5

6
− 1

120
≤ sin(1) ≤ 5

6
+

1

120
.

(a) On rappelle que
∀n ∈ N, sin(n)(x) = sin(x+ n

π

2
).

Le développement limité du sin à l’ordre 4 autour de x0 = 0 s’écrit alors comme

sin(x) =
4∑

n=0

1

n!
sin(n)(0)xn +

1

5!
sin(5)(ξ)x5

= x− 1

3!
x3︸ ︷︷ ︸

Psin,0,4(x)

+
1

5!
cos(ξ)x5︸ ︷︷ ︸

rsin,0,4(x)

,

pour une valeur (inconnue) ξ ∈]0, x[ (remarquer que comme sin n’a que des
puissances impaires dans son polnôme de Taylor, Psin,0,3(x) = Psin,0,4(x)). On
a donc

| sin(x)− x+
1

3!
x3| = | 1

5!
cos(ξ)x5| ≤ 1

5!
x5.

(b) On remplace x par 1 dans le point précédent, ce qui donne

| sin(1)− 1 +
1

3!
| ≤ 1

5!
.

On en conclut que

1− 1

3!︸ ︷︷ ︸
5
6

− 1

5!︸︷︷︸
1

120

≤ sin(1) ≤ 1− 1

3!︸ ︷︷ ︸
5
6

+
1

5!︸︷︷︸
1

120

.
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2. (a) Soit x > 1. A l’aide du terme de correction, montrer que

| ln(x)− (x− 1) +
1

2
(x− 1)2| < 1

3
(x− 1)3.

(b) Déduire du point précédent la valeur de ln(1, 003) à 10−8 près.
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(a) On a déjà calculé les dérivées successives du logarithme:

∀n ≥ 1, ln(n)(x) = (−1)n−1(n− 1)!
1

xn
.

Le développement limité du logarithme (polynôme de Taylor plus terme de
correction) à l’ordre 2 autour de x0 = 1 s’écrit alors, selon le cours, comme

ln(x) = ln(1) + ln(1)(1)(x− 1) +
ln(2)(1)

2!
(x− 1)2 +

ln(3)(ξ)

3!
(x− 1)3

= (x− 1)− 1

2
(x− 1)2︸ ︷︷ ︸

Pln,1,2(x)

+
1

3ξ3
(x− 1)3︸ ︷︷ ︸

rln,1,2(x)

,

avec ξ ∈]1, x[. On a donc pour x > 1:

| ln(x)− (x− 1) +
1

2
(x− 1)2| = | 1

3ξ3
|(x− 1)3 <

1

3
(x− 1)3,

où on a utilisé que si ξ > 1, 1
ξ3

< 1.

(b) Pour x = 1, 003, et donc x− 1 = 3
1′000

, on a alors

| ln(1, 003)− 3

1′000
+

1

2

(
3

1′000

)2

| < 1

3

(
3

1′000

)3

⇔ | ln(1, 003)− 5′991

2′000′000
| < 9

1′000′000′000
< 10−8.

Donc, à 10−8 près (et même un peu mieux), ln(1, 003) ≈ 5′991
2′000′000
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3. (a) Calculer le polynôme de Taylor Pf,0,n(x) ainsi que le terme de reste rf,0,n(x) pour
f(x) = e−x.

(b) Montrer que pour f(x) = e−x,

∀x ∈ R, lim
n→∞

rf,0,n(x) = 0.

(a) Les dérivées de f(x) = exp(−x) sont données par

∀n ∈ (N), f (n)(x) = exp(−x)(−1)n.

Cela donne donc pour le polynôme de Taylor

Pexp(−x),0,n(x) = 1− x+
x2

2!
− x3

3!
+ . . .+ (−1)n

xn

n!

=
n∑

k=0

(−1)k
xk

k!
.

Le terme de correction sera alors

rexp(−x),0,n(x) = (−1)n+1 xn+1

(n+ 1)!
exp(−ξ),

pour un ξ ∈]0, x[( ou unξ ∈]x, 0[).
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(b) Fixons une valeur de x ∈ R et laissons tendre n vers l’infini. On observe
d’abord que

|rexp(−x),0,n(x)| =
|x|n+1

(n+ 1)!
exp(−ξ) pour un ξ ∈]0, x[ ou ξ ∈]x, 0[

≤ |x|n+1

(n+ 1)!
exp(|ξ|) ,car exp est croissante et −ξ ≤ |ξ|

≤ |x|n+1

(n+ 1)!
exp(|x|) ,car exp est croissante et |ξ| ≤ |x|.

Or, on a vu au cours que pour une valeur de x ∈ R fixée, limn→∞
|x|n+1

(n+1)!
= 0.

Comme exp(|x|) est une valeur fixe aussi, si x ∈ R fixé, on a que

∀x ∈ R, lim
n→∞

|rexp(−x),0,n(x)| = 0

et que donc
∀x ∈ R, lim

n→∞
rexp(−x),0,n(x) = 0

ou encore que
∀x ∈ R, lim

n→∞
Pexp(−x),0,n(x) = exp(−x).
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4. Exprimer le terme de correction rf,0,n(x) et montrer que pour x ∈ R fixé, on a

lim
n→∞

rf,0,n(x) = 0

pour

(a) f(x) = sin(x), (b) f(x) = sinh(x).

(a) Comme vu dans la série précédente on a que

∀n ∈ N, sin(n) = sin(x+ n
π

2
).

D’après le théorème du cours sur le terme de correction d’un polynôme de
Taylor, on sait que

rsin,0,n(x) =
xn+1

(n+ 1)!
sin(n+1)(ξ) =

xn+1

(n+ 1)!
sin(ξ + (n+ 1)

π

2
),

où ξ est un nombre (inconnu) dans l’intervalle ]0, x[ ou ]x, 0[, suivant si x ≥ 0
ou x ≤ 0.

Si on fixe maintenant la valeur de x et que l’on fait augmenter la valeur de
n (autrement dit on ajoute de plus en plus de termes au polynôme de Taylor
Psin,0,n(x)) on trouve que

|rsin,0,n(x)| = | xn+1

(n+ 1)!
sin(ξ + (n+ 1)

π

2
)|

=
|x|n+1

(n+ 1)!
| sin(ξ + (n+ 1)

π

2
)| ≤ |x|n+1

(n+ 1)!
,
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puisque , même sans connaître plus précisément la valeur de ξ, on sait que la
valeur du sinus est toujours majorée par 1.
Or, comme vu au cours, si on fixe la valeur de x, donc aussi celle de |x|, on
sait que

lim
n→∞

|x|n

n!
= 0.

Par conséquent,

lim
n→∞

|rsin,0,n(x)| ≤ lim
n→∞

|x|n+1

(n+ 1)!
= 0

et on a donc
∀x ∈ R, lim

n→∞
Psin,0,n(x) = sin(x).

(b) D’après le théorème du cours sur le terme de correction d’un polynôme de
Taylor, on sait que

rsinh,0,n(x) =
xn+1

(n+ 1)!
sinh(n+1)(ξ) =

xn+1

(n+ 1)!

1

2

(
eξ + (−1)n+2e−ξ

)
,

où ξ est un nombre (inconnu) dans l’intervalle ]0, x[ ou ]x, 0[, suivant si x ≥ 0
ou x ≤ 0.

Si on fixe maintenant la valeur de x et que l’on fait augmenter la valeur de
n (autrement dit on ajoute de plus en plus de termes au polynôme de Taylor
Psinh,0,n(x)) on trouve que

|rsinh,0,n(x)| = | xn+1

(n+ 1)!

1

2

(
eξ + (−1)n+2e−ξ

)
|

=
|x|n+1

(n+ 1)!
|1
2

(
eξ + (−1)n+2e−ξ

)
|

≤ |x|n+1

(n+ 1)!

1

2

(
|eξ|+ |e−ξ|

)
=

|x|n+1

(n+ 1)!
cosh(ξ) ≤ |x|n+1

(n+ 1)!
cosh(|x|),

puisque , même sans connaître plus précisément la valeur de ξ, on sait que
ξ ∈]0, x[ ou ξ ∈]x, 0[, et donc on a |ξ| ≤ |x|.
Or, comme vu au cours, si on fixe la valeur de x, donc aussi celle de |x|, on
sait que

lim
n→∞

|x|n

n!
= 0.

Par conséquent,

lim
n→∞

|rsinh,0,n(x)| ≤ lim
n→∞

|x|n+1

(n+ 1)!
cosh(|x|)︸ ︷︷ ︸
val. fixée

= 0

et on a donc
∀x ∈ R, lim

n→∞
Psinh,0,n(x) = sinh(x).
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5. (a) Déterminer le développement limité, c’est -à-dire le polynôme de Taylor et le terme
de correction, au voisinage de x0 = 0 et à l’ordre 4 de la fonction f(x) = cosh(x) :

(b) Utiliser le point précédent pour étudier si la fonction :

f(x) =
24 cosh(x)− 24− 12x2 − 2x4

x4
, Deff = R∗

est prolongeable par continuité au voisinage de x0 = 0 .

(a) Les quatre première dérivées de cosh(x) sont

cosh(1)(x) = sinh(x), cosh(2)(x) = cosh(x),

cosh(3)(x) = sinh(x), cosh(4)(x) = cosh(x).

Après évaluation en x0 = 0 et division par k! on trouve les coefficients

a0 = cosh(0) = 1, a1 = cosh(1)(0) = 0, a2 =
cosh(2)(0)

2!
=

1

2
,

a3 =
cosh(3)(0)

3!
= 0, a4 =

cosh(4)(0)

4!
=

1

24
.

Ainsi,

Pcosh,0,4(x) = 1 +
1

2
x2 +

1

24
x4.

Le terme de correction est donné par

rcosh,0,4(x) =
x5

5!
cosh(5)(ξ) =

x5

120
sinh(ξ),

avec ξ ∈]0, x[. Par conséquent, le développement limité de cosh(x) autour de
x0 = 0 à l’ordre 4 est

cosh(x) = 1 +
1

2
x2 +

1

24
x4 +

x5

120
sinh(ξ).

(b) Evaluons la limite limx→0 f(x):

lim
x→0

f(x) = lim
x→0

24 cosh(x)− 24− 12x2 − 2x4

x4

= lim
x→0

24
(
1 + 1

2
x2 + 1

24
x4 + x5

120
sinh(ξ)

)
− 24− 12x2 − 2x4

x4

= lim
x→0

(
−x4 + x5

5
sinh(ξ)

x4

)
= lim

x→0

(
−1 +

x

5
sinh(ξ)

)
.

Comme sinh(x) est continue et que ξ ∈]0, x[, on a que limx→0 ξ = limx→0 x = 0
et

lim
x→0

sinh(ξ) = lim
ξ→0

sinh(ξ) = 0.
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Donc, limx→0
x
5
sinh(ξ) = 0 et limx→0 f(x) = −1.

La fonction f(x) est donc continûment prolongeable en x = 0 si on pose

f(0) = −1.'
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6. (a) Déterminer le polynôme de Taylor et le terme de correction de la fonction arcsin(x)
à l’ordre 2 au voisinage de x0 =

1
2
.

(Indication: arcsin(1)(x) = 1√
1−x2 .)

(b) Utiliser le point précédent pour calculer la limite suivante :

lim
x→ 1

2

√
3 arcsin(x)− π

2
√
3
+ 5

6
− 4

3
x− 2

3
x2

(x− 1
2
)2

.

(a) Les dérivées successives de arcsin(x) sont

arcsin(1)(x) =
1√

1− x2
= (1− x2)−1/2, arcsin(2)(x) = x(1− x2)−3/2,

arcsin(3)(x) =

(
d

dx
x

)
(1− x2)−3/2 + x

(
d

dx
(1− x2)−3/2

)
= (1− x2)−3/2 + 3x2(1− x2)−5/2 = (1 + 2x2)(1− x2)−5/2.

En évaluant en x0 =
1
2

et en divisant par k! nous donne les coefficients

a0 = arcsin(
1

2
) =

π

6
, a1 = arcsin(1)(

1

2
) =

2√
3
,

a2 =
arcsin(2)(1

2
)

2!
=

1

4

23
√
3
3 =

2

3
√
3
.

Ainsi, on a le polynôme de Taylor

Parcsin, 1
2
,2(x) =

π

6
+

2√
3
(x− 1

2
) +

2

3
√
3
(x− 1

2
)2.

Le terme de correction se calcule selon la théorie comme

rarcsin, 1
2
,2(x) = (x− 1

2
)3
arcsin(3)(ξ)

3!
= (x− 1

2
)3

1 + 2ξ2

6(1− ξ2)5/2
.

On obtient ainsi

arcsin(x) =
π

6
+

2√
3
(x− 1

2
) +

2

3
√
3
(x− 1

2
)2︸ ︷︷ ︸

P
arcsin, 12 ,2

(x)

+(x− 1

2
)3

1 + 2ξ2

6(1− ξ2)5/2︸ ︷︷ ︸
r
arcsin, 12 ,2

(x)

.
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(b) Par le point précédent,

√
3 arcsin(x)− π

2
√
3
+

5

6
− 4

3
x− 2

3
x2

=
π

2
√
3
+ 2(x− 1

2
) +

2

3
(x− 1

2
)2 +

√
3rarcsin, 1

2
,2(x)−

π

2
√
3
+

5

6
− 4

3
x− 2

3
x2

= 2x− 1 +
2

3
(x2 − x+

1

4
) +

√
3rarcsin, 1

2
,2(x) +

5

6
− 4

3
x− 2

3
x2

= −5

6
+

4

3
x+

2

3
x2 +

√
3rarcsin, 1

2
,2(x) +

5

6
− 4

3
x− 2

3
x2

=
√
3rarcsin, 1

2
,2(x).

Par conséquent

lim
x→ 1

2

√
3 arcsin(x)− π

2
√
3
+ 5

6
− 4

3
x− 2

3
x2

(x− 1
2
)2

.

= lim
x→ 1

2

√
3rarcsin, 1

2
,2(x)

(x− 1
2
)2

= lim
x→ 1

2

√
3(x− 1

2
)3 1

3!
arcsin(3)(ξ)

(x− 1
2
)2

= lim
x→ 1

2

1

2
√
3
(x− 1

2
) arcsin(3)(ξ) = 0,

puisque limx→ 1
2

1
2
√
3
(x− 1

2
) = 0 et que arcsin(3)(ξ), étant une fonction continue,

reste bornée sur tout l’intervalle [1
2
, x].


