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Corrigé de la Série 16

\ 3.2. Termes de correction \

1. (a) Soit z > 0. A l'aide du terme de correction, montrer que
|sin(z) —x 4+ —x

(b) Déduire du point précédent que

5
K 6 12

(a) On rappelle que
Vn € N, sin™(z) = sin(z + ng)

Le développement limité du sin a ’ordre 4 autour de xy = 0 s’écrit alors comme

4
1 1

sin(z) = Z ] sin™(0)z™ + ol sin® (€)a®
n=0 '

1 1
=z — gx?’ +o cos(§)x”,
—_——— — —

Pyin,0,4(x) Tsin,0,4(T)

pour une valeur (inconnue) ¢ €]0,z[ (remarquer que comme sin n’a que des
puissances impaires dans son polnéme de Taylor, Py 03(x) = Pisinoa(z)). On
a donc

1 5

. 1 1
|sin(z) —x + 5:1:3] = \acos(é’)xsl < il

(b) On remplace x par 1 dans le point précédent, ce qui donne

1

) 1
|sm(1)—1+§| < o

On en conclut que

1 1 ) 1 1
——— — <sin(1)<1—=+4 — .
3L 5! 3L 5!
— =~ — =~
: 0 : 0

2./ (a) Soit z > 1. A l'aide du terme de correction, montrer que

n(z) — (z — 1) + %(1‘ S 1)< %(:p Sy

éduire du point précédent la valeur de In a 107° pres.
(b)Dd' du point p d | 1 dl(1,003) 108p
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(a) On a déja calculé les dérivées successives du logarithme:
vn>1, Wm"(z)=(-1)""(n—-1)—.

Le développement limité du logarithme (polynéme de Taylor plus terme de
correction) a l'ordre 2 autour de zy = 1 s’écrit alors, selon le cours, comme

n® (1 In®
in(e) = In(1) + (1) — 1)+ 2B 12 B gy
1 2, 1 3
Pln,1,2($) Tln,:;(z)
avec £ €]1,z[. On a donc pour z > 1:
Ina) — (2= 1)+ 3@ — 1] = [z — 1) < 3 ( — 1)°
n(z) — (x — —(x — = |—|(z — —(x —
2 3¢3 3 ’
ol on a utilisé que si & > 1, 5% < 1.
(b) Pour x = 1,003, et donc x — 1 = ﬁ, on a alors
3 1/ 3\, 1/ 3\
In(1,003) — - < =
I n(1,003) = 37500 + 3 (1/000) <3 (1/000)
5991 9
& |In(1,003) — < <107°.
| In(1, ) 2’000’000| 17000000000
C1O-8 . : ~ 5991
Donc, & 1078 prés (et méme un peu mieux), In(1, 003) ~ 0007000 -

3./ (a) Calculer le polynome de Taylor Pyg,(x) ainsi que le terme de reste s, (x) pour
flx) =e™.
(b) Montrer que pour f(z) =e %,

Ve e R, lim 79,(z) =0.
n—00

(a) Les dérivées de f(x) = exp(—=z) sont données par
vne (N), f"(z)=exp(~z)(~1)".

Cela donne donc pour le polynéme de Taylor
7 n T
Pexp(—$),0,n(x) :1—I+§—§++(—1> ﬁ

n k
N1

Le terme de correction sera alors

l.nJrl

(n+1)!
pour un £ €]0, z[( ou uné €]z, 0[).

Texp(—x),O,n (x) - <_1)n+1

exp(—§),
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(b) Fixons une valeur de z € R et laissons tendre n vers 'infini. On observe

d’abord que
n+1
|Pexp(—a),0 ()] = % exp(—¢)  pour un § €]0, [ ou § €]z, 0]
ol
= (n+ 1) exp(|{]) ,car exp est croissante et —& < [¢]
n !
o] |
TS exp(|z]) ,car exp est croissante et |£] < |z|.
n !
Or, on a vu au cours que pour une valeur de z € R fixée, lim,, 22\:;1! 0

Comme exp(|z|) est une valeur fixe aussi, si € R fixé, on a que
Ve € R, lm |recp(—a)0n(z)] =0
n—oo
et que donc
Ve € R, lim Texp(—a)0mn(®) =0
n—oo

ou encore que
Ve € R, lim Pup(—a)0n(T) = exp(—z).
n—oo

4. @primer le terme de correction 7, () et montrer que pour x € R fixé, on a

M rron(®) =0

pour

@) f(z) = sin(x), (b) f(x) = sinh(z).

a) Comme vu dans la série précédente on a que
(a) p q
T
VneN, sin®™ = sin(z + n§)

D’aprés le théoréeme du cours sur le terme de correction d’un polynéme de
Taylor, on sait que

n+1 l.nJrl

x T
. — 7 gty = T g -
Tsm,O,n(x) - (TL + 1)' S1n (f) - (TZ n 1)| Sln(g + (n + 1) 2)7
ou £ est un nombre (inconnu) dans Uintervalle |0, z[ ou |z, 0], suivant si z > 0
oux <0.

Si on fixe maintenant la valeur de x et que 'on fait augmenter la valeur de
n (autrement dit on ajoute de plus en plus de termes au polyndéme de Taylor
Piinon(x)) on trouve que

xn—i—l ] T
|Tsin,0,n($)| = |m sm(f + (TL + 1)§)|
B ||+ ||+

Isin(e+ (n+ D < =

 (n41)

(n+ 1)V
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puisque , méme sans connaitre plus précisément la valeur de &, on sait que la
valeur du sinus est toujours majorée par 1.

Or, comme vu au cours, si on fixe la valeur de x, donc aussi celle de |z|, on
sait que

[

lim =0.

n—oo n!

Par conséquent,

o
) _ < g
7}1_{1;10 |Tsln,0,n( )l nh_>Holo (n + 1)

et on a donc
Ve e R, lm Py, o,(z) = sin(z).
n—oo

D’apres le théoréme du cours sur le terme de correction d'un polynoéme de
Taylor, on sait que

n+1 n+1
T a L (ef 4+ (—1)*"2e7)

Tsinh,(),n<x> = = m§

ou £ est un nombre (inconnu) dans U'intervalle |0, z[ ou |z, 0], suivant si z > 0
oux <0.

Si on fixe maintenant la valeur de x et que 'on fait augmenter la valeur de
n (autrement dit on ajoute de plus en plus de termes au polynéme de Taylor
Piinhon (7)) on trouve que

xn—i—l 1

(n+1)12
|x|"+1 ’_(
(n+ 2

[ 1 (
= (n+1)2
|x|n+1

- (n+1)!

|rsinh,0,n(x)| = | (6§ + (_1)n+26_£) |

+(=1)"e7) |

€]+ [e7¢])
I |n+1
(n+1)!

puisque , méme sans connaitre plus précisément la valeur de &, on sait que
¢ €]0,z[ ou & €]x,0], et donc on a [¢| < |x|.

Or, comme vu au cours, si on fixe la valeur de x, donc aussi celle de |z|, on
sait que

cosh(§) < cosh(|z]),

[

lim =0.
n—oo M!
Par conséquent,
‘I|n+1
. . < iy ETT _
A Irammon ()] < Jip, oy gohll) =0

val. fixée

et on a donce
Ve e R, lim Pyynon(x) = sinh(z).
n—oo
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5. @) Déterminer le développement limité, c¢’est -a-dire le polynéme de Taylor et le ter@
de correction, au voisinage de zp = 0 et a l'ordre 4 de la fonction f(z) = cosh(x) :
(b) Utiliser le point précédent pour étudier si la fonction :

24 cosh(x) — 24 — 122% — 22*

f(x) ,  Defy =R"

& est prolongeable par continuité au voisinage de xg = 0. /

(a) Les quatre premiére dérivées de cosh(x) sont
coshD(z) = sinh(z), cosh®(z) = cosh(z),
cosh®(z) = sinh(z), cosh®(z) = cosh(x).

Aprés évaluation en zy = 0 et division par k! on trouve les coefficients

h?0) 1
ap = cosh(0) =1, a; = cosh(0) =0, ay= CO:# =5
h® h® 1
0 = cosh'™(0) _0, = cosh'”(0) _ 1
3! 4! 24

Alinsi,
Pronoa(®) = 14 50”4+ -a
cos xr) = - —2X .
h,0,4 5 71
Le terme de correction est donné par
5 5
Teosh,0,4(2) = % cosh® (&) = %O sinh(¢),

avec ¢ €0, z[. Par conséquent, le développement limité de cosh(x) autour de
2o = 0 a ’ordre 4 est

cosh(z) =1+ 1x2 + ! zt + x5 sinh(§)
a 2 24 120 ‘

(b) Evaluons la limite lim, o f(2):

24 cosh(z) — 24 — 1222 — 22*

lim f(z) = lim

z—0 z—0 x4
24 (14 Ja + ot + g5 sinh(€) ) — 24 — 1207 — 20
- }:IE(IJ x4
—a2* + Z sinh(¢) T
s 5 I o o
—}g%( ) =l (e S

Comme sinh(x) est continue et que & €]0, z[, on a que lim, ,o& = lim, ,ox =0
et
lim sinh(§) = lim sinh(§) = 0.

z—0 £—0
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Donc, lim, 0 £ sinh(§) = 0 et lim, o f(2) = —1.

La fonction f(z) est donc continiment prolongeable en z = 0 si on pose

£(0) = —1.

ﬂi) Déterminer le polynéme de Taylor et le terme de correction de la fonction arcsin(x)
a l'ordre 2 au voisinage de xg = %

(Indication: arcsin®(z) = \/11_7)

(b) Utiliser le point précédent pour calculer la limite suivante :

lim V3 arcsin(z) — o5+ 5y — 2,2

K z—1 (x — 5)2 J

(a) Les dérivées successives de arcsin(z) sont

1
arcsin(l)(aj) = ——=(1- IE2)_1/2, arcsin(Q)(x) =x(l - 952)—3/27

Vi—a?
d d
i - () 1)
= (]_ — x2>—3/2 + 3.@2(1 o x2)—5/2 — (1 + 2.T2)(1 . x2)—5/2.

En évaluant en o = % et en divisant par k! nous donne les coefficients

1
ap = arcsin(g) = %, ap = arcsin(l)(g)

—
~

arcsin®(1) 1 23 2
a2 —= = - =

2! 4\/§3 3V3

Ainsi, on a le polynéme de Taylor

T2 1 2 1,
6+%($—§)+ﬁ<x—§)

Le terme de correction se calcule selon la théorie comme

Parcsin,%,2 (1:) =

1 in® 1 Lt 962
Tarcsin,%Q(I) =(z— = sarcsin'”/(€) npY:

_ 7 = RN 3—
On obtient ainsi
. T 2 1 2 Lo lg 1428
arcsin(z) = 5 + —3(x — 5) + ﬁ(x - 5) + (z — 5) 6(1 — e2)5/2

-~

rarcsin, % ,2 (3?)
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(b) Par le point précédent,
5 4 2
V3 arcsin(z) — % + - — 3T §x2
m 1,2 T 5 4 2
T Y - w5 42,
2\/§+ (l’ 2>+3< ) +\/_Tarcsm72( ) 2\/§+6 31’ 3.1,’
2 5 4 2
_21'—1—}—3(x —T+ )+\/_Tarcsin,%,2('r>+6_gx_§x2
5 4 2 5 4 9
- _6 + gl‘ + §LU2 + \/grarcsin,lQ(x) + 6 - gm - ng
- \/_rarcsm = 2( )
Par conséquent
. V3 arcsin(z) — o+ 3 g 22
o EE
— lim \/grarcsin,%ﬂ(x) — lim \/§<l’ — %)3% aI'CSiIl(B) (é)
ot (2= 5)? o= (z —3)?
T 3¢y —
= lim (x — =)arcsin™(§) =0,

a1 2/3 2

puisque lim,,_, 1 2\}(x — 1) =0 et que arcsin® (¢), étant une fonction continue,

reste bornée sur tout lintervalle [1, z].



