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Corrigé de la Série 15

3.1. Polynômes de Taylor

'

&

$

%

1. (a) Trouver le polynôme de Taylor Pf,0,4(x) d’une fonction f qui satisfait

f(0) = 0, f (1)(0) = 1, f (2)(0) = 2, f (3)(0) = 3, f (4)(0) = 4.

(b) Trouver le polynôme de Taylor Pg,1,4(x) d’une fonction g qui satisfait

g(1) = 0, g(1)(1) = 1, g(2)(1) = 2, g(3)(1) = 3, g(4)(1) = 4.

Par définition, le polynôme de Taylor à l’ordre 4 autour de x0 est

Pf,0,4(x) = f(0)+f ′(0)(x−x0)+
f (2)(0)

2!
(x−x0)

2+
f (3)(0)

3!
(x−x0)

3+
f (4)(0)

4!
(x−x0)

4.

Remarquons qu’il suffit de connaître les valeurs successives des dérivées de f en x0

pour pouvoir écrire le polynôme de Taylor. Ceci nous donne donc dans ces deux
cas:

(a) Si x0 = 0, tous les termes en (x − x0)
k seront substitués par xk et les termes

f (k)(x0)
k!

seront remplacés par f (k)(0)
k!

. on obtient alors

Pf,0,4(x) = x+ x2 +
1

2
x3 +

1

6
x4.

(b) Si x0 = 1, tous les termes en (x − x0)
k seront substitués par (x − 1)k et les

termes g(k)(x0)
k!

seront remplacés par g(k)(1)
k!

. on obtient alors

Pg,1,4(x) = x− 1 + (x− 1)2 +
1

2
(x− 1)3 +

1

6
(x− 1)4.�

�

�

�
2. Calculer le polynôme de Taylor P√

x,x0,1(x), puis évaluer P√
x,x0,1(2) pour

(a) x0 =
25
16

, (b) x0 =
49
25

.

Puisqu’on cherche le polynôme de Taylor à l’ordre 1 il faut calculer la première
dérivée de

√
x qu’on va ensuite évaluer en x0 = 0. La dérivée de

√
x est 1

2
x−1/2. Le

polynôme de Taylor à l’ordre 1 sera donc

P√
x,x0,1(x) =

√
x0 +

1

2
x
− 1

2
0 (x− x0).

En évaluant dans les valeurs de x0 différentes, puis en posant x = 2, on obtient

(a)

P√
x, 25

16
,1(x) =

5

4
+

1

2

4

5
(x− 25

16
) =

5

4
+

2

5
(x− 25

16
),

⇒x=2 P√
x, 25

16
,1(2) =

5

4
+

2

5

7

16
=

5

4
+

7

40
=

57

40
(= 1, 425).
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(b)

P√
x, 49

25
,1(x) =

7

5
+

1

2

5

7
(x− 49

25
) =

7

5
+

5

14
(x− 49

25
),

⇒x=2 P√
x, 49

25
,1(2) =

7

5
+

5

14

1

25
=

7

5
+

1

70
=

495

350
(= 1, 414′285 . . .).
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3. Calculer les polynômes de Taylor à l’ordre 4 des fonctions suivantes autour de x0 = 0:

(a) f(x) = 1
1−x

− ex. (b) g(x) =
√
1 + x−

√
1− x.

Puisqu’on cherche le polynôme de Taylor à l’ordre 4 il faut calculer les quatre pre-
mières dérivées des fonctions f et g qu’on va ensuite évaluer en x0 = 0.

(a) Les quatre premières dérivées de f(x) sont

f(x) =
1

1− x
− ex, f (1)(x) =

1

(1− x)2
− ex, f (2)(x) =

2

(1− x)3
− ex,

f (3)(x) =
3 · 2

(1− x)4
− ex, f (4)(x) =

4 · 3 · 2
(1− x)5

− ex.

En évaluent en x0 = 0 et en divisant par k! nous donnent les coefficients ak du
polynôme de Taylor:

a0 = f(0) = 0, a1 = f (1)(0) = 0, a2 =
f (2)(0)

2!
=

1

2
,

a3 =
f (3)(0)

3!
=

5

6
, a4 =

f (4)(0)

4!
=

23

24
.

Cela nous donne donc le polynôme de Taylor

Pf,0,4(x) =
1

2
x2 +

5

6
x3 +

23

24
x4.

(b) Les quatre premières dérivées de g(x) sont

g(x) =
√
1 + x−

√
1− x, g(1)(x) =

1

2

(
1√
1 + x

+
1√
1− x

)
,

g(2)(x) = −1

4

(
(1 + x)−

3
2 − (1− x)−

3
2

)
,

g(3)(x) =
3

8

(
(1 + x)−

5
2 + (1− x)−

5
2

)
,

g(4)(x) = −15

16

(
(1 + x)−

7
2 − (1− x)−

7
2

)
.

En évaluent en x0 = 0 et en divisant par k! nous donnent les coefficients ak du
polynôme de Taylor:

a0 = g(0) = 0, a1 = g(1)(0) = 1, a2 =
g(2)(0)

2!
= 0,

a3 =
g(3)(0)

3!
=

1

8
, a4 = 0.



EPFL - CMS Analyse II

Cela nous donne donc le polynôme de Taylor

Pg,0,4(x) = x+
1

8
x3.'

&

$

%

4. Pour x ∈ R \ {−1, 1} on considère f(x) = 1
1−x

.

(a) Montrer par récurrence que f (n)(x) = n!
(1−x)n+1 et trouver le polynôme de Taylor

autour de x0 = 0 à l’ordre n.

(b) Montrer que f(x)− Pf,0,n(x) =
xn+1

1−x
.

(c) Pour quelles valeurs de x a-t-on donc limn→∞ Pf,0,n(x) = f(x)?

(a) Les premières dérives donnent (attention à tenir compte de la dérivée interne):

f (0)(x) =
1

1− x
, f (1)(x) =

1

(1− x)2
, f (2)(x) =

2

(1− x)3
.

On devine que pour n ≥ 0,

f (n)(x) =
n!

(1− x)n+1
.

Puisqu’on a déjà initialisé cette égalité pour n = 0, 1, 2, il suffit maintenant de
vérifier l’hérédité:

f (n+1)(x) =
d

dx
f (n)(x) =

hyp. réc

d

dx

n!

(1− x)n+1

=
(n+ 1)n!

(1− x)n+2
=

(n+ 1)!

(1− x)n+2
.

qui est bien la formule annoncée pour n+ 1.
Pour trouver les coefficients ak du polynôme de Taylor, on doit évaluer f (k)(x0)
en x0 = 0 et diviser par k!:

a0 = 1, ak =
k!

1k+1

1

k!
= 1.

On obtient alors pour le polynôme de Taylor

P 1
1−x

,0,n(x) = 1 + x+ x2 + . . .+ xn =
n∑

k=0

xk.

(b) Le polynôme de Taylor pour 1
1−x

n’est donc autre que la série géométrique
partielle à l’ordre n.
Or, on sait du premier semestre (séries géométriques), que

n∑
k=0

xk =
1− xn+1

1− x
.

Ainsi,

f(x)− Pf,0,n(x) =
1

1− x
−

n∑
k=0

xk

=
1

1− x
− 1− xn+1

1− x
=

xn+1

1− x
.



EPFL - CMS Analyse II

(c) Pour un x ∈ R \ {±1} fixé, on trouve par le point précédent:∣∣ 1

1− x
− P 1

1−x
,0,n(x)

∣∣ = | x
n+1

1− x
| = |x|n+1

|1− x|
.

La valeur de 1
1−x

est fixée pour un x fixé lui aussi. Par contre,

lim
n→∞

|x|n+1 =

{
0 si |x| < 1,

∞ si |x| > 1.

On a donc que

lim
n→∞

∣∣ 1

1− x
− P 1

1−x
,0,n(x)

∣∣ = 0 ssi |x| < 1.

Par conséquent,

lim
n→∞

P 1
1−x

,0,n(x) =
1

1− x
ssi |x| < 1.

Cela confirme la convergence de la série géométrique.'

&

$

%

5. (a) Montrer par récurrence que

∀k ∈ N, sin(k)(x) = sin(x+ k
π

2
).

En déduire le polynôme de Taylor Psin,0,n(x).

(b) Montrer par récurrence que

∀k ∈ N, sinh(k)(x) =
1

2

(
ex + (−1)k+1e−x

)
.

En déduire le polynôme de Taylor Psinh,0,n(x).

(a) La formule sin(k)(x) = sin(x + k π
2
) est clairement vraie pour k = 0. Cela

initialise le raisonnement par récurrence.
Montrons l’hérédité:

sin(k+1)(x) =
d

dx
sin(k)(x) =

hyp. réc.

d

dx
sin(x+ k

π

2
)

= cos(x+ k
π

2
) = cos(x− π

2
+ (k + 1)

π

2
)

= cos(
π

2
− x− (k + 1)

π

2
) = sin(x+ (k + 1)

π

2
),

qui est bien la formule attendue pour k+ 1. On peut donc conclure par récur-
rence.
Les coefficients du polynôme de Taylor seront donc

ak =
sin(k)(0)

k!
=

sin(0 + k π
2
)

k!
=

{
0 si k = 2l,
(−1)l

(2l+1)!
si k = 2l + 1.

On en déduit donc que

Psin,0,n(x) =
∑

0≤2l+1≤n

(−1)l

(2l + 1)!
x2l+1.
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(b) La formule

sinh(k)(x) =
1

2

(
ex + (−1)k+1e−x

)
est sûrement vraie pour k = 0, puisqu’elle se lit dans ce cas là:

sinh(0)(x) =
1

2

(
ex + (−1)1e−x

)
= sinh(x).

Cela initialise le raisonnement par récurrence.
Montrons l’hérédité:

sinh(k+1)(x) =
d

dx
sinh(k)(x) =

hyp. réc.

d

dx

1

2

(
ex + (−1)k+1e−x

)
=

1

2

(
ex − (−1)k+1e−x

)
=

1

2

(
ex + (−1)k+2e−x

)
,

qui est bien la formule annoncée pour k + 1. On conclut par récurrence.
Les coefficients du polynôme de Taylor seront donc

ak =
sinh(k)(0)

k!
=

1
2

(
e0 − (−1)k+1e−0

)
k!

=
1
2

(
1− (−1)k+1

)
k!

=

{
0 si k = 2l,

1
(2l+1)!

si k = 2l + 1.

On en déduit donc que

Psinh,0,n(x) =
∑

0≤2l+1≤n

1

(2l + 1)!
x2l+1.
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6. (a) Vérifier par récurrence que

dn

dxn

√
x = (−1)n−1 (2n− 2)!

22n−1(n− 1)!
x

1
2
−n.

(b) Ecrire le polynôme de Taylor pour
√
x autour de x0 = 1 à l’ordre n.

(a) Pour n = 1, on a

(−1)n−1(2n− 2)!

22n−1(n− 1)!
x

1−2n
2

∣∣
n=1

=
(−1)1−1(2− 2)!

22−1(1− 1)!
x

1−2
2 =

1

2
x

1
2 ,

ce qui est bien la première dérivée de
√
x.
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On suppose maintenant le résultat vrai pour n et on calcule

dn+1

dxn+1

√
x =

d

dx

( dn

dxn

√
x
)

=hyp. réc
d

dx

((−1)n−1(2n− 2)!

22n−1(n− 1)!
x

1−2n
2

)
=

(−1)n−1(2n− 2)!

22n−1(n− 1)!
x

1−2n
2

−11− 2n

2

=
(1− 2n)(−1)n−1(2n− 2)!

22n−1+1(n− 1)!
x

1−2n−2
2

=
(2n− 1)(−1)n+1−1(2n− 2)!

22n(n− 1)!
x

1−2n−2
2

=
(−1)n+1−12n(2n− 1)(2n− 2)!

2n22n(n− 1)!
x

1−2n−2
2

=
(−1)n+1−1(2(n+ 1)− 2)!

22(n+1)−1((n+ 1)− 1)!
x

1−2(n+1)
2 ,

qui est bien la formule attendue pour n+ 1.

(b) Pour x0 = 1, on a donc

P√
x,1,n(x) =

√
1 +

n∑
k=1

1

k!
(
dk

dxk

√
x)
∣∣
x=1

(x− 1)k

= 1 +
n∑

k=1

(−1)k−1(2k − 2)!

22k−1(k − 1)!k!
(x− 1)k.


