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Corrigé de la Série 15

‘ 3.1. Polynémes de Taylor ‘

1.| (a) Trouver le polynome de Taylor Prg4(z) d'une fonction f qui satisfait
F(0) =0, fU(0) =1, f&(0) = 2, F9(0) = 3, F(0) = 4.

(b) Trouver le polynéme de Taylor P,; 4(x) d’'une fonction g qui satisfait

_ g(1)=0,49(1) =1, ¢?(1) =2, g¥(1) =3, §V(1) = 4.
Par définition, le polynéme de Taylor a 'ordre 4 autour de z( est
2 (0 @) (0 ) (0
Proa(e) = 1O+ £ O —20)+ D o+ T gt TP ot

Remarquons qu’il suffit de connaitre les valeurs successives des dérivées de f en z

0
pour pouvoir écrire le polynéme de Taylor. Ceci nous donne donc dans ces deux
cas:

k

(a) Si zyg = 0, tous les termes en (z — x¢)* seront substitués par z* et les termes

(k) (k) :
fk—(!xo) seront remplacés par fk—!(o). on obtient alors

1 1
Pf,074(x) =z + 132 + 51’3 + BZLA.

(b) Si 7 = 1, tous les termes en (z — x)* seront substitués par (x — 1)* et les

(k) ) (k) (1 .
termes £—20) seront remplacés par 2. on obtient alors

k! k!
9 1 3, 1 4
Poigz)=2—1+(z—1) —1—5(33—1) +6(x—1).

2.(Calculer le polynéme de Taylor P , i(z), puis évaluer P s, 1(2) pour

(a) Lo = %7 (b) Ty = 421_2

Puisqu’on cherche le polyndéme de Taylor a l'ordre 1 il faut calculer la premiére
dérivée de \/z qu'on va ensuite évaluer en zo = 0. La dérivée de /z est 1271/2. Le
polynoéme de Taylor a ’ordre 1 sera donc

1 _1
Priwa(x) = Vxo+ 51’0 * (@ — ).
En évaluant dans les valeurs de x( différentes, puis en posant x = 2, on obtient

(a)

5 14 25 5 2 25
Pz (x) = Z+§5($_1_6) = 1_1+5($__16)’
5 27 ) 7 57
=a=2 Pz 1756 a2t w L)
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7 15, 49 7 5 49
P — —_ —_— _ f— —_ _ -
v () 5270 5) 5@ )
7 51 7 1 49
.0 P 9) = 4+ =4 = (=1,414'285..)).
=2 Faga) st 5t T O )

3.[Calculer les polynémes de Taylor a l'ordre 4 des fonctions suivantes autour de xy = 0:

(a) f(z) == —e". (b) g(x) =V1+z—+1—u.

Puisqu’on cherche le polynéme de Taylor a 'ordre 4 il faut calculer les quatre pre-
miéres dérivées des fonctions f et ¢ qu’on va ensuite évaluer en x5 = 0.

(a) Les quatre premiéres dérivées de f(x) sont

1 1 2
f(aj‘) — 1 — _ €I7 f(l)(x) — (1 — l‘)2 _ el'? f(2)(1') — (1 — x)g _ 61"
3.9 4-3-2
fO() = RS fA) = (S

En évaluent en zy = 0 et en divisant par k! nous donnent les coefficients a; du
polynoéme de Taylor:

@0 1
w0=FO)=0. a=f0) =0, a=T""_1

fP0) _5 fU0) _23

as = = = g4 = = —.

3! 6 4! 24

Cela nous donne donc le polynéme de Taylor
1 5 23
Proa(z) = §x2 + Ex?’ + ﬂx4.

(b) Les quatre premiéres dérivées de g(z) sont

o) = VIT7 - VIma, o) = (=t =),

9¥(a) == (@4t - -2y ),

09 (@) = g (G+o) i r—o)t

0D (z) = —% (142 i-a-27F).

En évaluent en xq = 0 et en divisant par k! nous donnent les coefficients a; du
polynéme de Taylor:

N—




EPFL - CMS Analyse 11

Cela nous donne donc le polynéme de Taylor

1
Pyoa(z) =2+ §x3.
4. (Pour x € R\ {—1,1} on considére f(z) = 1.
(a) Montrer par récurrence que f™(x) = W et trouver le polynéme de Taylor

autour de o = 0 a 'ordre n.

(b) Montrer que f(x) — Pyon(z) = £

1—x°
(c) Pour quelles valeurs de x a-t-on donc lim,,_,o Pron(x) = f(x)?

(a) Les premiéres dérives donnent (attention & tenir compte de la dérivée interne):

f(o)(ﬂﬁ)_lix, fO(x) = ﬁa fO(x) = ﬁ

On devine que pour n > 0,

n!
(1 — x)”“'

£(@) =

.....

vérifier 'hérédité:

d d n!
(n+1) — ¢ - - =
f (x) dﬂ?f (33) hyp. réc dx (1 — x)"‘H

(n+Dnl  (n+1)!

- (I—z)m2  (1—z)t2
qui est bien la formule annoncée pour n + 1.
Pour trouver les coefficients a; du polynoéme de Taylor, on doit évaluer f*)(z)
en o = 0 et diviser par k!:

K1
I
On obtient alors pour le polynéme de Taylor

a0:17 ap =

Pﬁ,o,n(x):1+SII+SL’2+...—|—$":Z$’?_

(b) Le polynéme de Taylor pour ﬁ n’est donc autre que la série géométrique

partielle a I'ordre n.
Or, on sait du premier semestre (séries géométriques), que

1 — gttt
Zx =

Ainsi,

1 1— $n+1 xn—i—l

1—=x -z 1—=z
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(c¢) Pour un z € R\ {£1} fixé, on trouve par le point précédent:

1

1—2 _Pﬁ,O,n(x)‘ = |

T

n+1 ‘x’n—l-l

-2 |l—2z|

La valeur de ﬁ est fixée pour un z fixé lui aussi. Par contre,

lim

On a donc que

ot =3
n—00 o0

Jim |7 =P ,()
Par conséquent,
. 1
Jim P on(?) =7

si |z| < 1,
si|z| > 1.

ssi

ssi x| < 1.

lz| < 1.

Cela confirme la convergence de la série géométrique.
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5. @) Montrer par récurrence que

vk €N,

(b) Montrer par récurrence que

sin® (z) = sin(

Vk eN, sinh®™(z) =

En déduire le polynéme de Taylor Py 0.0 ().

1
2

K En déduire le polynome de Taylor Piyp o.n().

s
k=).
T+ 2)

(ex + (_1)k+1€—x) .

/

(a) La formule sin®(z) = sin(z + k%) est clairement vraie pour k = 0. Cela
initialise le raisonnement par récurrence.

Montrons I'hérédité:
d

sin® ) () = o sin® ()

T

= cos(x + kg) = cos(

= cos(5 — = (b+1)3) = sin(z + (5 + 1)2),

2

. ™
hyp‘:réc. % Sln(l‘ + k§>
™ ™
_ k 1)—
=2 (k1))

2

qui est bien la formule attendue pour £+ 1. On peut donc conclure par récur-

rence.

Les coefficients du polynéme de Taylor seront donc

sin®(0)  sin(0

+kT)

ap =

k!

On en déduit donc que

Psin,O,n<x) = Z

k! -

0<L2l+1<n

0
(=1
@i+1)!

(=1)
2l

)

si k=2,
sik=20+1.
21+1
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(b) La formule

1
sinh®™ (z) = 5 (e” + (—1)Fe™™)

est stirement vraie pour k = 0, puisqu’elle se lit dans ce cas la:

1
sinh® () = 3 (¢” + (=1)'e™") = sinh(x).
Cela initialise le raisonnement par récurrence.
Montrons I’hérédité:

d 1

d
sinh ™+ () = . sinh® (z) e T2 3 (e + (=1)*e™™)
€T yp. réc. AT

= % (e" = (-1)**'e™) = % (e" + (—1)"2e™),

qui est bien la formule annoncée pour k + 1. On conclut par récurrence.
Les coefficients du polynéome de Taylor seront donc

sinh®(0) 1 (e” — (=1)*1e?)
a’k’ —= —=

k! k!
L1 = (=1)k) {o si k=21,

G Sik=2+1

On en déduit donc que

_ 1 2l+1
Psinh,O,n(x) - Z —<2l i 1)'.’13' .

0<2l+1<n

6./ (a) Vérifier par récurrence que

dn (-2 .
R — _1 n—1__\='"" “/* n'
d:v”\/E (=1) 22n—1(n — 1)!x2

(b) Ecrire le polynome de Taylor pour y/z autour de 2o = 1 a l'ordre n.

(a) Pour n =1, on a

()@= 1

(—1)"‘1(271 — 2)' % o - 1
n=1 22-1(] — 1) S 2

22n=1(p —1)!

ce qui est bien la premiére dérivée de /.
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On suppose maintenant le résultat vrai pour n et on calcule
drti d ,d"
Ve = (Vi)
B d (=1)"12n —2)! 12
“hyp. réC@( 22n—1(n _ 1)! T2 )
. (—1)”_1(271 — 2)! %711 — 2n
2n—1(p — 1) 2
. (1 — 2n)(—1)”_1(2n — 2)' 1—22n—2
- 22n—1+1(n _ 1)! x
(2n — 1)(—1)”*1_1(2n — 2)' 17227172
= x
22n(n — 1)!

(=)™ 12n(2n —1)(2n — 2)! 1-20-0
= T
|

2n227(n — 1)!
B (=) 2(n+1) —2)! 1-2(n+1)
220t )=1((n + 1) — 1)!

Y

qui est bien la formule attendue pour n + 1.

(b) Pour x5 = 1, on a donc

u 1 d’“
k:l

"L (=) 12k — 2)! 3
1+Z Pk 1) (z — 1)
k=1
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