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Corrigé de la Série 12

‘ 2.4. Fonctions Hyperboliques ‘

1.| Démontrer que
tanh(z) + tanh(y)

tanh
anh(z +y) = 1 + tanh z tanh(y)’

En reprenant la définition de la tangente hyperbolique, suivi des régles d’addition
pour les fonctions hyperboliques, on obtient

sinh(z + y) _ sinh(z) cosh(y) + cosh(x) sinh(y)
cosh(x +y)  cosh(x) cosh(y) + sinh(x) sinh(y)

sinh(z) sinh(y)
_ cosh(z) cosh(y)

tanh(z +y) =

(diviser par cosh(z) cosh(y))

sinh(z) sinh(y)
+ cosh(z) cosh(y)

_ tanh(z) + tanh(y)
"~ 1+ tanh(z) tanh(y) "

2. @ se donne les points suivants das R%: \
P(V21), QWEVI), R(2.3).
(a) Veérifier que ces trois points se situent sur ’hyperbole d’équation 2% — y* = 1.
(b) Trouver des paramétres tp, tg et tg, tels que P = (cosh(tp),sinh(tp)), Q@ =
(cosh(tg),sinh(tg)) et R = (cosh(tg),sinh(tg)) J

a perbole équation z° — y* = 1 est le lieu des points P(z, ont les

I’hyperbole H d’équati 2 9y? =1 est le lieu d ints P(z,y) dont 1
coordonngées x et y vérifient précisément 1’équation en question. On vérifie alors
pour chaque point:

e P(V2,1): (V2)'=(1)*=2-1=1. = PeH.
.Q(f\/’ ( V3 - (V2)'=3-2=1. = Qem.
e R(2,V3): (2 - (V3)'=4-2=1. = Re H.
(b) Pour trouver t € R tel que (z,y) = (cosh(t),sinh(¢)), on doit avoir par parité

cosh(t) + sinh(t) = exp(t) = v +y, cosh(t) —sinh(t) = exp(—t) =z —y.

Noter que
o si I'égalité cosh(t) + sinh(t) = exp(t) = x + y est vérifiée
o ctsix?—y?=1,
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alors la deuxiéme égalité, a savoir cosh(t) — sinh(t) = exp(—t) = = — y, sera
automatiquement vérifiée aussi, puisque

L1 1 22—y @ty —y)
e == = = =T —Y.
e T +y T +y T4y
Il suffit donc de résoudre
r+y=¢ & t=In(z+y).
On a alors pour chaque point:
[ tp = 11’1(\/54— 1),
o to=In(v2+V3),
o tp=In(v3+2).
(8) [Résoudre
(a) sinh(x) = 1. (b) cosh(y) = 2. (c) tanh(t) = 3.

(a) Par définition du sinh:

sinh(z) =1 < (" —e®) =1

N | —

& f—et=2 & -2"-1=0.
On pose alors u = €* (noter que u > 0). Résolvons d’abord

:2i2\/§:1¢\/§.

Ww=2u—-1=0 <

Comme u = e* > 0, on ne retient que la solution positive: u = 1 + /2.
Par prise du logarithme, on obtient z = In(1 + /2).

(b) Par définition du cosh:
1
cosh(y) =2 < 5 (e +e¥) =2
& teV=4 & ¥ —4eV+1=0.

On pose alors u = e¥ (noter que u > 0). Résolvons d’abord

4i\/
W —dut+l1l=0 & u= =243,

Les deux valeurs de u sont positives et on a donc les deux solutions
yy =In(2+v3), y_=1In(2-3).
(On remarque d’ailleurs, que y, = —y_, puisque

1
2—-4/3

ol on a amplifié la fraction argument du In par 2 + \/§>

y_ =1n(2 — v/3) = —In( )= —In(2+ V3) = —y,,
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(c) Par définition de la tanh:

1 sinh(t) 1
tanh(t) = - < - s - -
anh(?) 2 cosh(t) 2 el +et 2
& 2(et—e_t):et—|—e_t & e —3et'=0

s et —3=0.

On pose alors u = €' (noter que u > 0). Résolvons d’abord
W-3=0 & u==+V3

Comme u = €' > 0, on ne retient que la solution positive: u = v/3.

Par prise du logarithme, on obtient ¢ = In(v/3) = £ In(3).

4. (Résoudre :

o 7 .
(a) coshz +2sinhz =3 (b) sinhg + cosh g cothx = —66_5

(a) En partant de la définition des fonctions hyperboliques on a

cosh(z) + 2sinh(z) =3 < % (6" +e7*) + 2% (" —e®) =3

& 3" —e"-6=0 & 3 —-1-6e"=0.
On pose u := e* > 0 et on résout d’abord

648 3+2V3

ul—1—-6u=0 <

dont on retient que la solution positive (u > 0) u = %ﬁ Apreés prise du
logarithme on trouve

3423

3 )zln(1+i).

V3

(b) A cause de la présence de la coth(z), il faut faire attention au domaine de
définition. En effet, il faut se restreindre & Dy = R*.
Sur ce domaine, on part & nouveau des définitions:

x = In(

7 = h 7
sinhg + cosh g cothx = —66_5 & sinhg + cosh gz:ﬁhi = —66_5
LT x 7T o .
& smhismhx + coshgcoshx = _66 2 sinh z,

ou pour la derniére étape, on a multilplié ’équation par sinh x.
Le terme de gauche peut maintenant se simplifier par la formule d’addition des
fonctions hyperboliques et on obtient
3x 7T _s
cosh— = ——e"2sinhz & 6
2 6
3z —3z
& bez —e 2z +7e

—3z

(e%x + eT> + 76_§% (ez - e"”) =0
=

| —

=3z

e (6% —1+7e*) =0.

[SIE]

=0
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Comme e 2~ > 0 pour tout # € R, on. doit résoudre 6e3* — 1 + 7e2* = 0.

A nouveau, on pose u = e et I'équation devient 6u® + 7u? — 1 = 0. On
remarque que u = —1 est une solution particuliére de cette équation qui peut
donc étre factorisée par (u + 1):

6u +7u? —1=0 < (u+1)(6u*+u—1)=0.

On calcule les racines pour la derniére parenthése par le discriminant:

_ —1+5
U4 = 12 .

On a donc les solutions {—1, _71, %}, dont on ne garde que la solution positive,
puisque u = e*. En appliquant le logarithme on trouve finalement

x=In(z) = —1In(3).

5. [Exprimer cosh(2z) en fonction de ¢t = tanh z.

Par la formule des additions des fonction hyperboliques, on a
cosh(2z) = cosh(x) cosh(z) + sinh(x) sinh(z) = cosh?(z) + sinh?(z).
L’égalité cosh?(z) — sinh?(z) = 1 nous permet en plus de simplifier cette égalité en
cosh(2z) = 2 cosh?®(z) — 1.
D’autre part,
sinh*(z)  cosh?(z) — 1

t* = tanh*(z) = = :
an(z) cosh?() cosh?()

oil pour la derniére égalité nous avons a nouveau utilisé cosh?(x) — sinh?(z) = 1.
On peut donc extraire cosh?(x):

h?(z) — 1
2 _ M & t?cosh?(x) = cosh?(z) — 1

cosh?(z)
1
& cosh’(z) (P —1)=-1 <« cosh’(z) = Tt
En combinant ces égalités, on obtient
1
cosh(2x) = 2cosh’(x) —1 et cosh’(z) = T
2 1+ ¢
= h(2x) = —1= _
cosh(2x) T T

6. /Démontrer que Vo € R et Vn € N,

(1 + tanh(z) ) " _ L+ tanh(na)
1 — tanh(z) 1 — tanh(nz)
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En partant de la définition de la tanh(x), on trouve
sinh(z) cosh(z)+sinh(z)

1 + tanh(:p) o 1+ cosh(z) o cosh(z) B e* . €2m
1 — tanh(x) 1— sinh(z) cosh(z)—sinh(x) e~ )
cosh(x) cosh(z)

ol nous avons utilisé la parité des fonctions hyperboliques.
Similairement, si n € N,

sinh(nx) cosh(nz)+sinh(nz)

1+ tanh(nx) - 1+ cosh(nz) cosh(nz) _ e’ — 2w
_ o sinh(nz) = cosh(nz)—sinh(nz) =~ s—nz ’
1 tanh(naj) L= cosh(nz) cosh(nz) €
Ainsi,
1+ tanh(x)\" orn  9nw 1 + tanh(nx)
1 — tanh(x) 1 — tanh(nx)
7.(Démontrer les inégalités suivantes:
(a) Vxr € Ry, sinh(z) > z. (b) Yz € R, cosh(z) > 1+ %

(a) Dire que sinh(x) > z revient a dire que sinh(z) —z > 0.
On pose alors f(z) := sinh(z) — x.
Par dérivation on obtient f'(x) = cosh(z) — 1.
Comme Vz € R, cosh(z) > 1 on trouve que Va € R, f'(z) > 0.
Par le théoréme des accroissement finis, on trouve alors que pour 0 < x,

f(x) = f(0)+xf' (), pour un certain ¢ €0, z|.

Mais on vient de remarquer que f'(§) > 0, d’'ou f(z) > f(0) = 0 pour tout
x > 0.
Bien sir, f(0) = sinh(0) —0 =0 > 0. On a donc bien

Vx>0, f(x)>0 <& Vx>0, sinh(z)—2>0
& Vx>0, sinh(z) > z.

(b) Dire que cosh(z) > 1+ 12? revient a dire que cosh(z) — 1 — 1% > 0.
On pose alors g(z) := cosh(z) — 1 — 122,
Par dérivation on obtient ¢'(z) = sinh(x) — x.
Or, on vient de montrer au point précédent que cette fonction est toujours
positive pour x > 0.
On peut donc a nouveau invoquer le théoréme des accroissements finis pour
conclure, que

Vo > 0,g(x) > g(0) = cosh(0) — 1 = 0.

On a donc bien
1
Ve>0, g¢g(x)>0 < V>0, cosh(x)—1—§x220
1
& Vo >0, cosh(z)>1+ 51‘2.
Par parité a pour x < 0 (et donc —z > 0)

1 1
cosh(z) = cosh(—z) > —1—5(—17)2 = —|—§x2.



