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Corrigé de la Série 12

2.4. Fonctions Hyperboliques
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1. Démontrer que

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh x tanh(y)
.

En reprenant la définition de la tangente hyperbolique, suivi des règles d’addition
pour les fonctions hyperboliques, on obtient

tanh(x+ y) =
sinh(x+ y)

cosh(x+ y)
=

sinh(x) cosh(y) + cosh(x) sinh(y)

cosh(x) cosh(y) + sinh(x) sinh(y)

=

sinh(x)
cosh(x)

+ sinh(y)
cosh(y)

1 + sinh(x) sinh(y)
cosh(x) cosh(y)

(diviser par cosh(x) cosh(y))

=
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
.
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2. On se donne les points suivants das R2:

P (
√
2, 1), Q(

√
3,
√
2), R(2,

√
3).

(a) Vérifier que ces trois points se situent sur l’hyperbole d’équation x2 − y2 = 1.

(b) Trouver des paramètres tP , tQ et tR, tels que P = (cosh(tP ), sinh(tP )), Q =
(cosh(tQ), sinh(tQ)) et R = (cosh(tR), sinh(tR))

(a) l’hyperbole H d’équation x2 − y2 = 1 est le lieu des points P (x, y) dont les
coordonnées x et y vérifient précisément l’équation en question. On vérifie alors
pour chaque point:

• P (
√
2, 1):

(√
2
)2 − (1)2 = 2− 1 = 1. ⇒ P ∈ H.

• Q(
√
3,
√
2):

(√
3
)2 − (√

2
)2

= 3− 2 = 1. ⇒ Q ∈ H.

• R(2,
√
3): (2)2 −

(√
3
)2

= 4− 2 = 1. ⇒ R ∈ H.

(b) Pour trouver t ∈ R tel que (x, y) = (cosh(t), sinh(t)), on doit avoir par parité

cosh(t) + sinh(t) = exp(t) = x+ y, cosh(t)− sinh(t) = exp(−t) = x− y.

Noter que

• si l’égalité cosh(t) + sinh(t) = exp(t) = x+ y est vérifiée
• et si x2 − y2 = 1,
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alors la deuxième égalité, à savoir cosh(t) − sinh(t) = exp(−t) = x − y, sera
automatiquement vérifiée aussi, puisque

e−t =
1

et
=

1

x+ y
=

x2 − y2

x+ y
=

(x+ y)(x− y)

x+ y
= x− y.

Il suffit donc de résoudre

x+ y = et ⇔ t = ln(x+ y).

On a alors pour chaque point:
• tP = ln(

√
2 + 1),

• tQ = ln(
√
2 +

√
3),

• tR = ln(
√
3 + 2).
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(c)3. Résoudre

(a) sinh(x) = 1. (b) cosh(y) = 2. (c) tanh(t) = 1
2
.

(a) Par définition du sinh:

sinh(x) = 1 ⇔ 1

2

(
ex − e−x

)
= 1

⇔ ex − e−x = 2 ⇔ e2x − 2ex − 1 = 0.

On pose alors u = ex (noter que u > 0). Résolvons d’abord

u2 − 2u− 1 = 0 ⇔ u =
2±

√
8

2
= 1±

√
2.

Comme u = ex > 0, on ne retient que la solution positive: u = 1 +
√
2.

Par prise du logarithme, on obtient x = ln(1 +
√
2).

(b) Par définition du cosh:

cosh(y) = 2 ⇔ 1

2

(
ey + e−y

)
= 2

⇔ ey + e−y = 4 ⇔ e2y − 4ey + 1 = 0.

On pose alors u = ey (noter que u > 0). Résolvons d’abord

u2 − 4u+ 1 = 0 ⇔ u =
4±

√
12

2
= 2±

√
3.

Les deux valeurs de u sont positives et on a donc les deux solutions

y+ = ln(2 +
√
3), y− = ln(2−

√
3).(

On remarque d’ailleurs, que y+ = −y−, puisque

y− = ln(2−
√
3) = − ln(

1

2−
√
3
) = − ln(2 +

√
3) = −y+,

où on a amplifié la fraction argument du ln par 2 +
√
3.
)
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(c) Par définition de la tanh:

tanh(t) =
1

2
⇔ sinh(t)

cosh(t)
=

1

2
⇔ et − e−t

et + e−t
=

1

2

⇔ 2
(
et − e−t

)
= et + e−t ⇔ et − 3e−t = 0

⇔ e2t − 3 = 0.

On pose alors u = et (noter que u > 0). Résolvons d’abord

u2 − 3 = 0 ⇔ u = ±
√
3.

Comme u = et > 0, on ne retient que la solution positive: u =
√
3.

Par prise du logarithme, on obtient t = ln(
√
3) = 1

2
ln(3).�

�

�

�

4. Résoudre :

(a) coshx+ 2 sinhx = 3 (b) sinh
x

2
+ cosh

x

2
cothx = −7

6
e−

x
2

(a) En partant de la définition des fonctions hyperboliques on a

cosh(x) + 2 sinh(x) = 3 ⇔ 1

2

(
ex + e−x

)
+ 2

1

2

(
ex − e−x

)
= 3

⇔ 3ex − e−x − 6 = 0 ⇔ 3e2x − 1− 6ex = 0.

On pose u := ex > 0 et on résout d’abord

3u2 − 1− 6u = 0 ⇔ u =
6±

√
48

6
=

3± 2
√
3

3
,

dont on retient que la solution positive (u > 0) u = 3+2
√
3

3
. Après prise du

logarithme on trouve

x = ln(
3 + 2

√
3

3
) = ln(1 +

2√
3
).

(b) A cause de la présence de la coth(x), il faut faire attention au domaine de
définition. En effet, il faut se restreindre à Ddef = R∗.
Sur ce domaine, on part à nouveau des définitions:

sinh
x

2
+ cosh

x

2
cothx = −7

6
e−

x
2 ⇔ sinh

x

2
+ cosh

x

2

coshx

sinhx
= −7

6
e−

x
2

⇔ sinh
x

2
sinhx+ cosh

x

2
coshx = −7

6
e−

x
2 sinhx,

où pour la dernière étape, on a multilplié l’équation par sinhx.
Le terme de gauche peut maintenant se simplifier par la formule d’addition des
fonctions hyperboliques et on obtient

cosh
3x

2
= −7

6
e−

x
2 sinhx ⇔ 6

1

2

(
e

3x
2 + e

−3x
2

)
+ 7e−

x
2
1

2

(
ex − e−x

)
= 0

⇔ 6e
3x
2 − e

−3x
2 + 7e

x
2 = 0 ⇔ e

−3x
2

(
6e3x − 1 + 7e2x

)
= 0.
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Comme e
−3x
2 > 0 pour tout x ∈ R, on. doit résoudre 6e3x − 1 + 7e2x = 0.

A nouveau, on pose u = ex et l’équation devient 6u3 + 7u2 − 1 = 0. On
remarque que u = −1 est une solution particulière de cette équation qui peut
donc être factorisée par (u+ 1):

6u3 + 7u2 − 1 = 0 ⇔ (u+ 1)(6u2 + u− 1) = 0.

On calcule les racines pour la dernière parenthèse par le discriminant:

u± =
−1± 5

12
.

On a donc les solutions {−1, −1
2
, 1
3
}, dont on ne garde que la solution positive,

puisque u = ex. En appliquant le logarithme on trouve finalement

x = ln(
1

3
) = − ln(3).

�
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	5. Exprimer cosh(2x) en fonction de t = tanhx.

Par la formule des additions des fonction hyperboliques, on a

cosh(2x) = cosh(x) cosh(x) + sinh(x) sinh(x) = cosh2(x) + sinh2(x).

L’égalité cosh2(x)− sinh2(x) = 1 nous permet en plus de simplifier cette égalité en

cosh(2x) = 2 cosh2(x)− 1.

D’autre part,

t2 = tanh2(x) =
sinh2(x)

cosh2(x)
=

cosh2(x)− 1

cosh2(x)
,

où pour la dernière égalité nous avons à nouveau utilisé cosh2(x)− sinh2(x) = 1.
On peut donc extraire cosh2(x):

t2 =
cosh2(x)− 1

cosh2(x)
⇔ t2 cosh2(x) = cosh2(x)− 1

⇔ cosh2(x)
(
t2 − 1

)
= −1 ⇔ cosh2(x) =

1

1− t2
.

En combinant ces égalités, on obtient

cosh(2x) = 2 cosh2(x)− 1 et cosh2(x) =
1

1− t2

⇒ cosh(2x) =
2

1− t2
− 1 =

1 + t2

1− t2
.

#
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6. Démontrer que ∀x ∈ R et ∀n ∈ N,(
1 + tanh(x)

1− tanh(x)

)n

=
1 + tanh(nx)

1− tanh(nx)
.
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En partant de la définition de la tanh(x), on trouve

1 + tanh(x)

1− tanh(x)
=

1 + sinh(x)
cosh(x)

1− sinh(x)
cosh(x)

=

cosh(x)+sinh(x)
cosh(x)

cosh(x)−sinh(x)
cosh(x)

=
ex

e−x
= e2x,

où nous avons utilisé la parité des fonctions hyperboliques.
Similairement, si n ∈ N,

1 + tanh(nx)

1− tanh(nx)
=

1 + sinh(nx)
cosh(nx)

1− sinh(nx)
cosh(nx)

=

cosh(nx)+sinh(nx)
cosh(nx)

cosh(nx)−sinh(nx)
cosh(nx)

=
enx

e−nx
= e2nx.

Ainsi, (1 + tanh(x)

1− tanh(x)

)n

= (e2x)n = e2nx =
(1 + tanh(nx)

1− tanh(nx)

)
.
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7. Démontrer les inégalités suivantes:

(a) ∀x ∈ R+, sinh(x) ≥ x. (b) ∀x ∈ R, cosh(x) ≥ 1 + x2

2
.

(a) Dire que sinh(x) ≥ x revient à dire que sinh(x)− x ≥ 0.
On pose alors f(x) := sinh(x)− x.
Par dérivation on obtient f ′(x) = cosh(x)− 1.
Comme ∀x ∈ R, cosh(x) ≥ 1 on trouve que ∀x ∈ R, f ′(x) ≥ 0.
Par le théorème des accroissement finis, on trouve alors que pour 0 < x,

f(x) = f(0) + xf ′(ξ), pour un certain ξ ∈]0, x[.
Mais on vient de remarquer que f ′(ξ) ≥ 0, d’où f(x) ≥ f(0) = 0 pour tout
x > 0.
Bien sûr, f(0) = sinh(0)− 0 = 0 ≥ 0. On a donc bien

∀x ≥ 0, f(x) ≥ 0 ⇔ ∀x ≥ 0, sinh(x)− x ≥ 0

⇔ ∀x ≥ 0, sinh(x) ≥ x.

(b) Dire que cosh(x) ≥ 1 + 1
2
x2 revient à dire que cosh(x)− 1− 1

2
x2 ≥ 0.

On pose alors g(x) := cosh(x)− 1− 1
2
x2.

Par dérivation on obtient g′(x) = sinh(x)− x.
Or, on vient de montrer au point précédent que cette fonction est toujours
positive pour x ≥ 0.
On peut donc à nouveau invoquer le théorème des accroissements finis pour
conclure, que

∀x ≥ 0, g(x) ≥ g(0) = cosh(0)− 1 = 0.

On a donc bien

∀x ≥ 0, g(x) ≥ 0 ⇔ ∀x ≥ 0, cosh(x)− 1− 1

2
x2 ≥ 0

⇔ ∀x ≥ 0, cosh(x) ≥ 1 +
1

2
x2.

Par parité a pour x ≤ 0 (et donc −x ≥ 0)

cosh(x) = cosh(−x) ≥ +
1

2
(−x)2 = +

1

2
x2.


