Cours 11

4 Fonction logarithmes et exponetielles

4.1 Fonction logarithme naturel

Un logarithme nous aide a exprimer I’exposant a auquel il faut élever un nombre

b pour obtenir un nombre ¢, c’est-a-dire b* = c.

Exemple 4.1

Soit f(z) une fonction telle que 37*) = z.

On a 3 =9, donc f(9) = 2.

On a 30 = 27, donc f(27) = 3.

Remarquons que 3O+ — 3F(9) . 3F(27) = 9. 27 = 3/(927) ¢t donc

FO)+f27) = £(9-27).

On va définir des fonctions avec cette propriété, en commencant par la définition

géométrique suivante.

1
Considérons le graphe de y = n pour t > 0.
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On regarde l'aire délimitée par les droites y = 0, ¢ = 1, ¢ = z, et la courbe
Yy = e L’aire signée est considérée comme positive si x > 1 et négative si

O<z<l1.



Définition 4.2

La fonction logarithme naturel, notée In, est donnée par

In:]0,4+o0[— R

1
x +— l'aire signée du domaine délimité par y =0,t =1,t =z, et y = n

Remarque 4.3
1 R
L’aire non signée sous la courbe y = n entre a et b avec 0 < a < b peut étre

déduite de la fonction In, par la formule In(b) — In(a).
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Afin d’étudier les propriétés du logarithme, définissons I’application suivante.

Pour o > 0,

T, : R? - R?

(z,y) — (aw, %)

Une propriété utile de T, est que T, préserve les aires des domaines.
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En particulier, cette application préserve I'aire d’'un domaine sous la courbe 7
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On peut maintenant déduire quelques propriétés basiques de In.

o Puisque T, préserve l'aire du domaine entre 1 et x sous la courbe 7 on a

In(z) = In(az) — In(a) et donc In(z) + In(a) = In(ax).

¢

bn (x)= din (X))~ bnlet)

On a alors
In(z) + In(y) = In(xy), Vz,y > 0.
« In(1) = 0.
. 1 1
o Puisque 0 =In(1) =1n (—x) =In <—> +In(x), on a
x x



« Puisque In (E> =In(z) + In (l> = In(z) —In(y), on a
Y Y

o In(z?P) = pln(x), Yz > 0, p € Q.

Voici la preuve de cette derniere affirmation.

Preuve. Pour p € N, on procede par récurrence.

e p=20:In(2")=In(1) =0=0-In(x).

« En supposant que c’est vrai pour p, ¢’est-a-dire In(z”) = pIn(z), montrons le
pour p + 1:
In(zP™) = In(z - 2P) = In(x) + In(z?) = In(z) + pIn(z) = (p + 1) In(z).

o La formule est donc vraie pour tout p € N par récurrence.

1
Pour p € N, on a In(z™?) = In (—) = In(1) — In(z?) = —pln(x), et donc la

xP
formule est vraie pour tout p € Z.

Pour p € Z, g € N*,

In(z) =1n (I%) =gqln (xé), donc In (I%) = aln(:z:), d’ou
In (17%) =In ((mé)p)
~p- < Infa)
= gln(az)
La formule est donc vraie pour tout p € Q. O

Proposition 4.4

(1) Iln est strictement croissant.

(2) In est continue sur son domaine de définition |0, 4o00].



(3) In est une bijection ]0, +o00[ — R.
(4) lim In(z) =400 et lim In(z) = —oc.

T—+00 x—07t

1
(5) In(z) est dérivable sur son domaine de définition et In'(z) = = Vo > 0.

Preuve.

(1) ln est strictement croissant:
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Si 1 < x9, alors ’aire signée sous la courbe n entre 1 et x; est strictement

plus petite que laire signée entre 1 et 3, et donc In(z1) < In(zq).
(2) In est continue sur son domaine de définition |0, 4+o0l:

On établit d’abord la continuité en zyg = 1. Pour z > 1, on a

(x—1)§<1n(x)<(x—1)-1




En prenant lim , on a
z—11

1
< lim In(z) < lim (z—1)=0

r—1t X z—1t z—1t

et on a donc lim+ In(z) = 0 par le théoreme des deux gendarmes.
rz—1

On montre que lim In(z) = 0 par un raisonnement similaire. Ainsi,
T—1—

lirn1 In(z) =0 =In(1) et In(z) est donc continue en 1.
—

Pour zg € |0, +00[, g # 1, on a

lim In(z) = lim [In(z) — In(zo) + In(zo)]

T—x0 T—T0
. x
= lim {ln (—) + ln(xo)}
Tr—To fZ‘,‘O
=In(1) + In(zg)

= In(xg)

et donc In(z) est continue sur ]0, +o0|.

In est une bijection ]0, +oo] — R:
Une fonction strictement croissante et continue est forcément bijective sur

son image. Le prochain point montre que I'image est R.

lim In(z) = +oo:
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Pour z > 2™, on a

1 1 1
ln(‘”)>§+§+1+"‘+2n
1 1 1 1 1 1 1 1 1 1
>§+<Z+Z>+<§+§+§+g>+ '(2—n+2—n+ +2—n)
111 1 1
BRI R R

On a donc lim In(z) > lim n_ +00, done  lim In(z) = 4o0.
r— 400 n—-+oo 2 r——+o0

lim 1 = —o0:
Jim, n(z) = —oc

1
On écrit lim In(z) = lim {— In (—)] = lim —In(z) = —o0, en posant

z—0t z—0t z—+4o00

la substitution z = —.
T

1
In(x) est dérivable sur son domaine de définition et In'(z) = - Yz > 0:

1
On établit d’abord que lim1 n(xi =1. On a, pour z > 1:
r—1 1 —
1 1 1
—-1—-<hh@)<(z-1) 1= -< n(xi < 1. Le théoreme des deux
x x —
1 1
gendarmes implique que lim M =1, et on montre que lim M =1
=1t —1 z—1- 2 —1

d’une maniere similaire.

Soit xy € ]0,400[. On a

lim In(zg + h) — In(zg) — lim 1 In (:1:0 +h

h—0 h h—0 To )
h
= lim —In <1+—)
h—0 Zo
In (1 + %)
=i -
hli&) h/(Eo i)
1 1
= — . lim n(z)
g z2—12— 1
B 1
=
e _ h
On a utilisé la substitution z =1 + —.
Zo

1
La fonction In(z) est donc dérivable en tout ¢ €]0, +o00[ et In(z) = ~.
x



Remarques 4.5
+ Puisque In(x) est une fonction bijective, on a In(z) =In(y) <= = =y.

1
« On a constaté que lim n(z) =1.
z—=1x —1

1
« In'(z) = = > 0 Va > 0 implique que In(z) est strictement croissant, mais avec
x

un taux de croissance qui devient de plus en plus faible.

« In(z) = 1 pour exactement un nombre réel, In(e) = 1 ou e est le nombre
de Fuler, e = 2.718281828... (un nombre irrationnel). Ce nombre e est

appelé la base du logarithme naturel In. Remarquons qu’on peut montrer que

e= lim (1 + l) (cf. Analyse I).
n

n—oo

¢

Voici le graphe de In(z).

Exemples 4.6

« Résoudre In(1 — z) + In(z) < 2.



Ddef:{$€R|1*!E>0€t$>0}:]071[,

In(1 —z) +1In(z) <2 <= In[(1 —2)x] <2 =2In(e) = In(e?)
< (1—2)z <e* car In croissant

— 22—z +e2>0

Le discriminant est A = 1 —4e? < 0, et donc 22 —z + €2 > 0 Vz € R.

La solution est donc S = RN Dgey =0, 1].
20+ 1

o Calculer l'aire du domaine délimité par la courbe y = et les droites

y=0,xr=2et z=3.

g/
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20+ 1
T

On a

1
= 2+ —, et donc Daire est donnée par 2 + In(3) — In(2).
x



