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Corrigé 4

1. Calculer sans machine les valeurs suivantes :

a) cos(7π
12
)

b) sin( π
12
)

c) tan(5π
12
)

d) tan(π
8
)

a) En utilisant les formules d’addition, on obtient un résultat de forme plus
agréable qu’en utilisant les formules de bissection.

� Décomposition de 7π
12

en une somme de deux valeurs remarquables

7π

12
=

4π + 3π

12
=

4π

12
+

3π

12
=

π

3
+

π

4
.

� Calcul de A = cos
(
7π
12

)
A = cos

(
7π
12

)
= cos

(
π
3
+ π

4

)
= cos

(
π
3

)
· cos

(
π
4

)
− sin

(
π
3

)
· sin

(
π
4

)
=

1

2
·
√
2

2
−

√
3

2
·
√
2

2

=

√
2

4

(
1−

√
3
)

= −
√
2

4

(√
3− 1

)
.

X

Y

OA

P
(
7π
12

)

b) � Décomposition de π
12

en une différence de deux valeurs remarquables

π

12
=

4π − 3π

12
=

4π

12
− 3π

12
=

π

3
− π

4
.

� Calcul de B = sin
(

π
12

)
B = sin

(
π
12

)
= sin

(
π
3
− π

4

)
= sin

(
π
3

)
· cos

(
π
4

)
− cos

(
π
3

)
· sin

(
π
4

)
=

√
3

2
·
√
2

2
− 1

2
·
√
2

2

=

√
2

4

(√
3− 1

)
.

X

Y

O

B
P
(

π
12

)
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On constate que B = −A . On aurait pu le vérifier directement :

B = sin
(

π
12

)
= sin

(
7π
12

− π
2

)
= − sin

(
π
2
− 7π

12

)
= − cos

(
7π
12

)
= −A .

c) � Décomposition de 5π
12

en une somme de deux valeurs remarquables

5π

12
=

3π + 2π

12
=

3π

12
+

2π

12
=

π

4
+

π

6
.

� Calcul de C = tan
(
5π
12

)
C = tan

(
5π
12

)
= tan

(
π
4
+ π

6

)
=

tan(π
4
) + tan(π

6
)

1− tan(π
4
) tan(π

6
)

=
1 +

√
3
3

1− 1 ·
√
3
3

=
3 +

√
3

3−
√
3

=

(
3 +

√
3
)2

9− 3

=
9 + 6

√
3 + 3

6

= 2 +
√
3 .

X

Y

O

P
(
5π
12

)

C

d) Ne pouvant pas décomposer π
8
en une somme ou une différence de deux valeurs

remarquables, on utilise les formules de bissection.

P
(
π
8

)
appartient au premier quadrant, donc tan

(
π
8

)
est positif.

D = tan
(
π
8

)
= tan

(
π/4
2

)
= +

√
1− cos

(
π
4

)
1 + cos

(
π
4

)
=

√√√√1−
√
2
2

1 +
√
2
2

=

√
2−

√
2

2 +
√
2
.

Et en amplifiant, sous la racine, par le conjugué du
dénominateur,

D =

√
(2−

√
2)2

4− 2
=

∣∣2−√
2
∣∣

√
2

=
2−

√
2√

2
=

√
2−1 .

X

Y

O

P
(
π
8

)
D
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2. Calculer le sinus et le cosinus de l’angle 2x dans les deux cas suivants :

a) sinx = ±3
5
, π

2
≤ x ≤ π b) cot x = ±2

√
2 , 3π ≤ x ≤ 7π

2

a) sinx = ±3
5
, π

2
≤ x ≤ π .

Pour calculer le sinus et le cosinus de l’angle 2x nous avons besoin de sinx
et de cosx .

π
2
≤ x ≤ π ⇒ P (x) ∈ II ⇔ sinx ≥ 0 et cosx ≤ 0 .

D’où sinx = 3
5

et cosx = −
√

1− sin2 x = −4
5
.

� sin(2x) = 2 sinx cosx = −24
25
,

� cos(2x) = cos2 x− sin2 x = 7
25
.

X

Y

O

P (x)

P (2x)

b) cotx = ±2
√
2 , 3π ≤ x ≤ 7π

2
.

On détermine sin x et cos x en deux étapes.

� Signe de sinx et de cosx .

3π ≤ x ≤ 7π
2

⇒ P (x) ∈ III ⇔ sinx ≤ 0 et cosx ≤ 0 .

� Calcul de | sinx| et | cosx| à l’aide de
l’angle géométrique aigu α défini par
cotα = 2

√
2 .

sinα =
1

3
et cosα =

2
√
2

3

α

2
√
2

1
3

En Conclusion : sinx = −1

3
et cosx = −2

√
2

3
.

D’où : sin(2x) = 2 sinx cosx =
4
√
2

9
et cos(2x) = cos2 x− sin2 x =

7

9
.

X

Y

O

P (x)

P (2x)

2
√
2
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3. Calculer le sinus et le cosinus de l’angle x
2

dans les deux cas suivants :

a) cos x = ±3
5
, −7π

2
< x < −3π b) tan x = −4

3
, 7π

2
< x < 9π

2

a) cos x = ±3
5
, −7π

2
< x < −3π .

Localisation de P (x) :

−7π
2
< x < −3π ⇒ P (x) ∈ II ⇔ cosx ≤ 0 , donc cosx = −3

5
.

Localisation de P (x
2
) :

x ∈ ]− 7π
2
, −3π [ ⇔ x

2
∈ ]− 7π

4
, −3π

2
[ ⇒ P (x

2
) ∈ I .

D’où : sin x
2
≥ 0 et cos x

2
≥ 0 .

Calcul de sin x
2

et de cos x
2
:

sin x
2
= +

√
1−cosx

2
=

√
1+3/5

2
= 2

√
5

5
et cos x

2
= +

√
1+cosx

2
=

√
1−3/5

2
=

√
5
5
.

b) L’angle x est défini par tan x = −4
3

et 7π
2
< x < 9π

2
.

� Localisation de P (x) :

7π
2
< x < 9π

2
⇒ P (x) ∈ I ∪ IV ⇒ cosx ≥ 0 .

� Calcul de cosx

tanx = −4

3
⇔ sinx

cosx
= −4

3
⇔ ∃ λ ∈ R∗ tel que

{
sinx = −4λ
cosx = 3λ

On détermine le coefficient de proportionnalité λ à l’aide de Pythagore :

cos2 x+sin2 x = 1 ⇔ (3λ)2+(−4λ)2 = 1 ⇔ 25·λ2 = 1 ⇔ λ = ±1

5
.

cosx ≥ 0 , cosx = +
3

5
.

� Localisation de P (x
2
) :

7π
2
< x < 9π

2
⇔ 7π

4
< x

2
< 9π

4
⇒ P (x

2
) ∈ I ∪ IV .

Cette localisation de P (x
2
) est insuffisante pour déterminer le signe de

sin x
2

et de cos x
2
. On recommence en essayant d’être plus précis.

7π
2
< x < 9π

2
et tan x < 0 ⇔ 7π

2
< x < 4π ⇔ 7π

4
< x

2
< 2π

⇒ P (x
2
) ∈ IV ⇒ sin x

2
≤ 0 et cos x

2
≥ 0 .

� Calcul de sin x
2

et de cos x
2
:

◦ sin x
2
= −

√
1−cosx

2
= −

√
1−3/5

2
= −

√
1
5
= −

√
5
5
,

◦ cos x
2
= +

√
1+cosx

2
=

√
1+3/5

2
=

√
4
5
= 2

√
5

5
.
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4. Si tanx = 1
3

et tan y = −1
7
, calculer sans machine, l’angle φ = 2x− y

a) sachant que x et y sont compris entre −π
2

et π
2
,

b) sachant que x et y sont compris entre π
2

et 3π
2
.

Pour déterminer la valeur exacte de l’angle φ = 2x− y , nous allons

� calculer une fonction trigonométrique de φ ,

� puis localiser P (φ) sur le cercle trigonométrique de façon suffisamment précise
pour en déduire la valeur de φ .

Connaissant tanx et tan y , il est plus simple de calculer tanφ plutôt que cosφ
ou sinφ .

tanφ = tan(2x− y) =
tan(2x)− tan y

1 + tan(2x) tan y
avec tan(2x) =

2 tanx

1− tan2 x
=

3

4

tanφ =
3
4
− (−1

7
)

1 + 3
4
(−1

7
)
= 1 . D’où : φ =

π

4
+ k π , k ∈ Z .

Pour trouver la bonne détermination de φ , il faut localiser l’angle φ à l’aide des
localisations données de x et de y .

a) Les angles x et y sont compris entre −π
2

et π
2
.

Donc 2x ∈ [−π , π ]

et −y ∈ [−π
2
, π

2
] ,

d’où φ ∈ [−3π
2
, 3π

2
] .

Cette localisation de P (φ) sur un tour
et demi n’est pas assez précise pour con-
clure.

X

Y

O

tanφ = 1

π
4

−3π
4
, 5π

4

−3π
2

3π
2

Il faut recommencer en essayant d’être plus précis.

x ∈ [−π
2
, π

2
] , mais tanx > 0 ,

donc x ∈ ] 0 , π
2
[ .

y ∈ [−π
2
, π

2
] , mais tan y < 0 ,

donc y ∈ ]− π
2
, 0 [ .

D’où 2x ∈ ] 0 , π [

et −y ∈ ] 0 , π
2
[

⇒ φ ∈ ] 0 , 3π
2
[ .

Cette localisation de φ n’est toujours
pas assez précise pour conclure.

X

Y

O

tanφ = 1

π
4

5π
4

0

3π
2
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On recommence en essayant d’être encore plus précis.

x ∈ [−π
2
, π

2
] , mais 0 < tanx < 1 ,

donc x ∈ ] 0 , π
4
[ .

y ∈ [−π
2
, π

2
] , mais −1 < tan y < 0 ,

donc y ∈ ]− π
4
, 0 [ .

D’où 2x ∈ ] 0 , π
2
[ et −y ∈ ] 0 , π

4
[

⇒ φ ∈ ] 0 , 3π
4
[ .

On peut donc conclure :

tanφ = 1 et φ ∈ ] 0 , 3π
4
[ ⇒ φ = π

4
.

X

Y

O

tanφ = 1

π
4

0

3π
4

b) Les angles x et y sont compris entre π
2

et 3π
2
.

On procède de façon analogue.

x ∈ [ π
2
, 3π

2
] , mais 0 < tanx < 1 , donc x ∈ ] π , 5π

4
[ .

De même y ∈ [ π
2
, 3π

2
] , mais −1 < tan y < 0 , donc y ∈ ] 3π

4
, π [ .

D’où 2x ∈ ] 2π , 5π
2
[ et −y ∈ ]− π , −3π

4
[ ⇒ φ ∈ ] π , 7π

4
[ .

On peut donc conclure : tanφ = 1 et φ ∈ ] π , 7π
4
[ ⇒ φ = 5π

4
.

X

Y

O

tanφ = 1

5π
4

π

7π
4

5. Calculer sans calculatrice la valeur de tan(x+ y) sachant que tanx = −
√
2
2

et que y est défini par sin y = cos(y
3
) avec 19π

4
≤ y ≤ 5π .

tan(x+ y) =
tanx+ tan y

1− tanx tan y
. On connâıt tanx , il faut donc déterminer tan y .

Pour cela, on cherche à résoudre l’équation sin y = cos(y
3
) sur l’intervalle [ 19π

4
, 5π ] .
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sin y = cos(y
3
) ⇔ sin y = sin(π

2
− y

3
) ⇔


y = π

2
− y

3
+ 2kπ

ou

y = π − (π
2
− y

3
) + 2kπ

⇔


4y
3
= π

2
+ 2kπ

ou
2y
3
= π

2
+ 2kπ

⇔

 y = 3π
8
+ 3kπ

2

ou

y = 3π
4
+ 3kπ

k ∈ Z

L’intervalle de résolution [ 19π
4

, 5π ] est ”petit”, on cherche les solutions par tâtonnement.

� Les solutions de type y = 3π
4
+3kπ , k ∈ Z n’appartiennent pas à [ 19π

4
, 5π ] ,

car

◦ si k = 1 , y = 3π
4
+ 3π = 15π

4
< 19π

4
,

◦ si k = 2 , y = 3π
4
+ 6π > 5π .

� Observons les solutions de type y = 3π
8
+ 3kπ

2
pour différentes valeurs de k ∈ Z :

◦ si k = 2 , 3π
8
+ 3π = 27π

8
< 19π

4
,

◦ si k = 3 , y = 3π
8
+ 9π

2
= 19π

4
+ π

8
∈ [ 19π

4
, 5π ] ,

◦ si k = 4 , y = 3π
8
+ 6π > 5π .

L’unique solution appartenant à l’intervalle [ 19π
4

, 5π ] est y = 19π
4

+ π
8
= 39π

8
.

Et tan(39π
8
) = tan(5π − π

8
) = tan(−π

8
) = − tan π

8
= 1−

√
2 . (exercice 1. d))

tan(x+ y) =
tanx+ tan y

1− tanx tan y
=

−
√
2
2
+ (1−

√
2)

1− (−
√
2
2
) (1−

√
2)

=
−
√
2 + 2 (1−

√
2)

2 +
√
2 (1−

√
2)

=
−3

√
2 + 2√
2

= −3 +
√
2 .

6. Factoriser les expressions suivantes :

a) sin(5x)− sinx b) cos2(3x)− cos2 x

a) On utilise les formules de transformation Sommes - Produits.

sin(5x)− sinx = 2 cos(5x+x
2

) sin(5x−x
2

) = 2 cos(3x) sin(2x) .

b) cos2(3x)− cos2 x = [cos(3x)− cosx] [cos(3x) + cos x]

= [−2 sin(2x) sin x] [2 cos(2x) cos x] = −4 sin(2x) cos(2x) sin x cosx

= − sin(4x) sin(2x) .
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7. Factoriser avant de résoudre les équations suivantes :

a) sin(3x) + sin x = sin(2x)

b) cos(3x) + cos(5x) = cos x

c) sin2(5x) = sin2 x

d) (1 + tanx) [cos(7x) + cos x] = 0

a) sin(3x) + sin x = sin(2x) , Ddef = R .

Factorisation

sin(3x) + sin x = sin(2x) ⇔ 2 sin
(
3x+x

2

)
cos

(
3x−x

2

)
= sin(2x)

⇔ 2 sin(2x) cos x = sin(2x)

⇔ 2 sin(2x) cos x− sin(2x) = 0

⇔ sin(2x) [ 2 cosx− 1 ] = 0 .

Résolution

sin(3x)+sinx = sin(2x) ⇔ sin(2x) [ 2 cosx−1 ] = 0 ⇔


sin(2x) = 0
ou
2 cos x− 1 = 0

� Résolution de l’équation sin(2x) = 0

sin(2x) = 0 ⇔ 2x = kπ

⇔ x =
kπ

2
, k ∈ Z .

� Résolution de l’équation 2 cosx− 1 = 0

2 cosx− 1 = 0 ⇔ cosx =
1

2

⇔ cosx = cos
(
π
3

)
⇔ x = ±π

3
+ 2kπ , k ∈ Z .

X

Y

P (0)

P (π
2
)

P (π)

P (3π
2
)

P (π
3
)

P (−π
3
)

O

On en déduit l’ensemble solution : S =

{
kπ

2
, −π

3
+ 2kπ ,

π

3
+ 2kπ , k ∈ Z

}
.

b) cos(3x) + cos(5x) = cos x , Ddef = R .

Factorisation

cos(5x) + cos(3x) = cos x ⇔ 2 cos
(
5x+3x

2

)
cos

(
5x−3x

2

)
= cosx

⇔ 2 cos(4x) cos x = cosx

⇔ 2 cos(4x) cos x− cosx = 0

⇔ cosx [ 2 cos(4x)− 1 ] = 0 .
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Résolution

cos(3x)+cos(5x) = cos x ⇔ cosx [ 2 cos(4x)−1 ] = 0 ⇔


cosx = 0
ou
2 cos(4x)− 1 = 0

� Résolution de l’équation cosx = 0

cosx = 0 ⇔ x =
π

2
+ kπ , k ∈ Z .

� Résolution de l’équation 2 cos(4x)− 1 = 0

2 cos(4x)− 1 = 0 ⇔ cos(4x) =
1

2

⇔ cos(4x) = cos
(
π
3

)
⇔ 4x = ±π

3
+ 2kπ

⇔ x = ± π

12
+

kπ

2
, k ∈ Z .

X

Y

O

D’où l’ensemble solution : S =

{
π

2
+ kπ , − π

12
+

kπ

2
,

π

12
+

kπ

2
, k ∈ Z

}
.

c) sin2(5x) = sin2 x , Ddef = R .

Factorisation

sin2(5x)− sin2 x = 0 ⇔ [sin(5x)− sinx] · [sin(5x) + sin x] = 0

⇔ [2 cos(3x) sin(2x)] · [2 sin(3x) cos(2x)] = 0

⇔ [2 sin(3x) cos(3x)] · [2 sin(2x) cos(2x)] = 0

⇔ sin(6x) sin(4x) = 0 .

Résolution

sin2(5x) = sin2 x ⇔ sin(6x) sin(4x) = 0 ⇔


sin(6x) = 0
ou
sin(4x) = 0

� Résolution de l’équation sin(6x) = 0

sin(6x) = 0 ⇔ 6x = kπ

⇔ x =
kπ

6
, k ∈ Z .

� Résolution de l’équation sin(4x) = 0

sin(4x) = 0 ⇔ 4x = kπ

⇔ x =
kπ

4
, k ∈ Z .

X

Y

O
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On en déduit l’ensemble solution :

S =

{
kπ

6
,
kπ

4
, k ∈ Z

}
=

{
kπ

2
,
π

6
+

kπ

2
,
π

4
+

kπ

2
,
π

3
+

kπ

2
, k ∈ Z

}
.

Remarque

On aurait aussi pu résoudre les équations sin(5x)− sinx = 0 et

sin(5x) + sin x = 0 comme des équations élémentaires en sinus :

� sin(5x) = sin x ⇔


5x = x+ 2kπ
ou
5x = π − x+ 2kπ

k ∈ Z ⇔ · · ·

� sin(5x) = − sinx ⇔ sin(5x) = sin(−x) ⇔ · · ·

d) (1 + tanx) [cos(7x) + cos x] = 0 , Ddef = R \ {π
2
+ kπ , k ∈ Z} .

(1 + tanx) [cos(7x) + cos x] = 0 ⇔


1 + tan x = 0
ou
cos(7x) + cos x = 0

� Résolution de l’équation 1 + tan x = 0

1 + tan x = 0 ⇔ tanx = tan
(
−π

4

)
⇔ x = −π

4
+ kπ , k ∈ Z .

� Résolution de l’équation cos(7x)+cosx = 0

cos(7x) + cos x = 0

⇔ 2 cos(4x) cos(3x) = 0

⇔ cos(4x) = 0 ou cos(3x) = 0

⇔ 4x =
π

2
+ kπ ou 3x =

π

2
+ kπ

⇔ x =
π

8
+

kπ

4
ou x =

π

6
+

kπ

3
, k ∈ Z .

X

Y

O

Attention ! Les valeurs x = π
6
+ kπ

3
, k ∈ Z ne sont pas toutes contenues

dans le domaine de définition.

S =

{
−π

4
+ kπ ,

π

8
+

kπ

4
,
π

6
+ kπ ,

5π

6
+ kπ , k ∈ Z

}
.

Remarque :

On aurait aussi pu résoudre l’équation cos(7x)+cosx = 0 comme une équation
élémentaire en cosinus :

cos(7x)+cos x = 0 ⇔ cos(7x) = − cosx ⇔ cos(7x) = cos(π−x) ⇔ · · ·
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8. Démontrer l’identité suivante : tan(x
2
) =

sinx

1 + cos x
.

Domaine de définition

� L’expression tan
(
x
2

)
est définie si et seulement si x

2
̸= π

2
+ kπ , k ∈ Z ,

en d’autres termes, si et seulement si x ̸= π + 2kπ , k ∈ Z .

� L’expression
sinx

1 + cos x
est définie si et seulement si 1 + cosx ̸= 0 .

1 + cos x = 0 ⇔ cosx = −1 ⇔ x = π + 2kπ , k ∈ Z .

Ces deux expressions ont donc même domaine de définition :

Ddef = R \ { π + 2kπ , k ∈ Z } .

X

Y

O

Ddef

Les deux expressions sont égales

Pour le montrer, posons x = 2y .

On a alors pour tout x ̸= π + 2kπ , y ̸= π
2
+ kπ , k ∈ Z ,

sinx

1 + cos x
=

sin(2y)

1 + cos(2y)
=

2 sin y cos y

1 + [ 2 cos2 y − 1 ]
=

2 sin y cos y

2 cos2 y
= tan y = tan

(
x
2

)
.

9. Exercice récréatif

Calculer la valeur exacte de cos(2π
5
). En déduire la construction à la règle et au

compas d’un pentagone régulier inscrit dans un cercle trigonométrique.

Indication : chercher une équation polynomiale satisfaite par cos(2π
5
).

Posons x = cos(2π
5
). Par formule de duplication on a :

cos(4π
5
) = 2x2 − 1 et cos(8π

5
) = 2(2x2 − 1)2 − 1 = 8x4 − 8x2 + 1.
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On sait par ailleurs que :

cos(8π
5
) = cos(2π − 2π

5
) = cos(2π

5
) = x.

On en déduit que x vérifie l’équation suivante de degré 4 :

8x4 − 8x2 − x+ 1 = 0.

En fait, le raisonnement ci-dessus montre que cette équation est vérifiée par cos(α)
dès que cos(4α) = cos(α). En prenant α = 0 et α = 2π

3
(pour lesquels 4α et

α diffèrent d’un multiple de 2π), on voit que 1 et −1
2
sont racines du polynôme

ci-dessus. On peut donc factoriser l’expression ci-dessus par (x − 1)(2x + 1) pour
obtenir :

(x− 1)(2x+ 1)(4x2 + 2x− 1) = 0

Comme x ̸= 1,−1
2
, on en déduit que x est racine du dernier facteur, ce qui conduit,

par les formules de Viète à x = −1±
√
5

4
. Il reste à remarquer que x est positif, car 2π

5

est compris entre 0 et π
2
, pour conclure que x = −1+

√
5

4
.

Pour la construction du pentagone régulier, on commence par construire un segment
de longueur x à la règle et au compas : pour cela, on construit deux segments de
longueurs respectives 1 et 2 formant entre eux un angle droit puis on fait apparaitre
la longueur x sur l’hypothénuse du triangle rectangle ainsi construit (qui mesure

√
5

par le théorème de Pythagore).

1 2

x

P (0)

P (2π
5
)

P (4π
5
)

P (6π
5
)

P (8π
5
)

x
O

On reporte ensuite la longueur x obtenue sur l’axe des abscisses du cercle trigonométrique
donné, afin de faire apparaitre le point P (2π

5
). Les autres sommets du pentagone

sont obtenues successivement en reportant la longueur séparant P (0) de P (2π
5
).


