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3.4 Surface de révolution
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Surface de révolution

Soit f une fonction de classe C 1

sur [ a , b ] .

On cherche à calculer l’aire A de la

surface de révolution engendrée par

la rotation du graphe de f autour

de l’axe Ox .

x

y

O

y = f (x)

a b
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Surface de révolution

En faisant tourner, autour de l’axe

Ox ,

un élément ∆s du graphe de

f , on obtient un élément de la sur-

face cherchée qui est un tronc de

cône de révolution.

x

y

O

y = f (x)

a b

∆s

Ouvrons une parenthèse pour calculer l’aire de ce tronc de cône de révolution

en

fonction du rayon des cercles de base et de la longueur ∆s des génératrices.
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Ouvrons une parenthèse pour calculer l’aire de ce tronc de cône de révolution
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Aire latérale du tronc de cône de révolution

On considère le tronc de cône de révolution

défini par les rayons r et R de ses

deux bases et par la longueur ∆s des génératrices.

Ce tronc de cône est une surface développable : en le découpant le long d’une

génératrice, on obtient un secteur de couronne circulaire.

R

r
∆s
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On considère le tronc de cône de révolution défini par les rayons r et R de ses

deux bases et par la longueur ∆s des génératrices.
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Aire latérale du tronc de cône de révolution

Notons G la longueur des génératrices du grand cône

et g celle du petit cône.

R

rG

g

∆s

α
G g

∆s

L = 2πR

` = 2πr

La surface A du tronc de cône

s’exprime comme la différence entre le grand

secteur circulaire et le petit. Soit α l’angle au centre des secteurs circulaires :

A =
α

2
· G 2 − α

2
· g 2.
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R

rG

g

∆s

α
G g

∆s

L = 2πR

` = 2πr

La surface A du tronc de cône
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s’exprime comme la différence entre le grand
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Aire latérale du tronc de cône de révolution

A =
α

2
· (G 2 − g 2)

=
α

2
· (G + g) · (G − g) =

α

2
· (G + g) ·∆s .

Les longueurs des arcs ` et L des secteurs circulaires sont les circonférences

des cercles de base :

` = α · g = 2π r et L = α · G = 2π R .

On en déduit l’expression de α en fonction de r et g ou de R et G :

α =
2π r

g
=

2π R

G
.
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Aire latérale du tronc de cône de révolution

A =
π R

G
· (G + g) ·∆s

= π R · G + g

G
·∆s = π R ·

(
1 + g

G

)
·∆s .

On vient de voir que grâce à Thalès, le rapport des génératrices est égal au

rapport des rayons :

α =
2π r

g
=

2π R

G
⇒ g

G
=

r

R
,

A = π R ·
(

1 +
r

R

)
·∆s = π · (R + r) ·∆s = 2π · r + R

2︸ ︷︷ ︸
rayon moyen︸ ︷︷ ︸

circonférence moyenne

· ∆s .
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On vient de voir que grâce à Thalès, le rapport des génératrices est égal au

rapport des rayons :

α =
2π r

g
=

2π R

G
⇒ g

G
=

r

R
,

A = π R ·
(

1 +
r

R

)
·∆s

= π · (R + r) ·∆s = 2π · r + R

2︸ ︷︷ ︸
rayon moyen︸ ︷︷ ︸

circonférence moyenne
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Surface de révolution

À chaque intervalle [ xk−1 , xk ] de la

partition de [ a , b ]

correspond donc

une ”aire élémentaire” de la surface

de révolution qui est celle d’un tronc

de cône d’aire Ak :

Ak = 2π · r + R

2
·∆sk

= 2π · f (xk−1) + f (xk)

2
·∆sk .

xk−1 xk

f (xk−1)
f (xk)

∆sk
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Surface de révolution

Et la somme
n∑

k=1

Ak

=
n∑

k=1

2π · f (xk−1) + f (xk)

2
·∆sk est une approximation

de l’aire A cherchée, d’autant plus précise que n est grand et les ∆xk petits.

Lorsque ∆xk → 0 , xk−1 → xk ,
f (xk−1) + f (xk)

2
→ f (xk) et ∆sk → ds .

Et la somme de Riemann
n∑

k=1

Ak converge vers

∫
Γ

2π f (x) ds .
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Surface de révolution

Par définition,

l’expression de l’aire A

de la surface de révolution engendrée

par la rotation du graphe Γ de f

autour de Ox est donnée par

A =

∫
Γ

2π f (x) ds ,

x

y

O

y = f (x)

a b

ds

y = f (x)

où f (x) est le rayon moyen, 2π f (x) la circonférence moyenne et ds la

longueur des génératrices de l’aire élémentaire.
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où f (x) est le rayon moyen, 2π f (x) la circonférence moyenne et ds la
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Surface de révolution

Pour calculer A =

∫
Γ

2π f (x) ds ,

il faut l’expliciter en fonction de x ou de y :

• en fonction de x : A =

∫ b

a

2π f (x) ·
√

1 + y ′ 2(x) dx ,

• ou en fonction de y : A =

∫ y2

y1

2π y ·
√
x ′ 2(y) + 1 dy , (y1 < y2) ,

· · ·

• ou en fonction de t : A =

∫ t2

t1

2π y(t) ·
√

ẋ2(t) + ẏ 2(t) dt , (t1 < t2) .
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Exemples

1) Soit Γ la courbe d’équation

y = cosh(x) , 0 ≤ x ≤ 1 .

Calculons l’aire A de la surface

de révolution engendrée par la

rotation de Γ autour de Ox .

y = cosh(x)

x

y

O

cosh(1)

1

1

ds

r = y

A =

∫
Γ

2π y ds =

∫ 1

0

2π cosh(x) ·
√

1 + sinh2(x) dx = 2π

∫ 1

0

cosh2(x) dx

= π

∫ 1

0

[ 1 + cosh(2x) ] dx = π

[
x +

sinh(2x)

2

]1

0

=
π

2
(2 + sinh(2)) .
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r = y

A =

∫
Γ

2π y ds =

∫ 1

0

2π cosh(x) ·
√

1 + sinh2(x) dx = 2π

∫ 1

0

cosh2(x) dx

= π

∫ 1

0

[ 1 + cosh(2x) ] dx = π

[
x +

sinh(2x)

2

]1

0

=
π

2
(2 + sinh(2)) .
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Exemple 2

2) Soit Γ l’arc de parabole

y = x2 , 0 ≤ x ≤ 1 .

Calculons l’aire A de la surface

de révolution engendrée par la

rotation de Γ autour de Oy .

y = x2

x

y

O

1

1

ds

r = x

A =

∫
Γ

2π r ds =

∫
Γ

2π x ds .

Calculons A de deux façons différentes, en intégrant par rapport à x et à y .
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de révolution engendrée par la

rotation de Γ autour de Oy .

y = x2

x

y

O

1

1

ds

r = x

A =

∫
Γ

2π r ds =

∫
Γ

2π x ds .
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de révolution engendrée par la

rotation de Γ autour de Oy .

y = x2

x

y

O

1

1

ds

r = x

A =

∫
Γ

2π r ds =

∫
Γ

2π x ds .
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my header

o



Exemple 2

2) Soit Γ l’arc de parabole

y = x2 , 0 ≤ x ≤ 1 .

Calculons l’aire A de la surface
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Exemple 2

• Intégration par rapport à x

Le rayon r fonction de x est égal à x , il ne reste plus qu’à traduire ds en

fonction de x :

A =

∫
Γ

2π x ds =

∫ 1

0

2π x ·
√

1 + y ′ 2(x) dx = 2π

∫ 1

0

x ·
√

1 + (2x)2 dx

= 2π

∫ 1

0

x ·
√

1 + 4x2 dx = 2π

[
1

12

(
1 + 4x2

) 3
2

]1

0

=
π

6

(
5
√

5− 1
)
.
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Exemple 2

• Intégration par rapport à y

Le rayon r vaut toujours x , mais il faut l’exprimer en fonction de y :

r(y) = x(y) =
√
y . Et l’expression de ds en fonction de y s’écrit :

ds =
√

x ′ 2(y) + 1 dy =

√
(
√
y)′ 2+ 1 dy =

√(
1

2
√
y

)2

+ 1 dy =
√

1
4y

+ 1 dy .

A =

∫
Γ

2π x ds = 2π

∫ 1

0

x(y) ·
√

x ′ 2(y) + 1 dy = 2π

∫ 1

0

√
y ·
√

1
4y

+ 1 dy

= π

∫ 1

0

√
1 + 4y dy = π
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Le rayon r vaut toujours x ,

mais il faut l’exprimer en fonction de y :

r(y) = x(y) =
√
y . Et l’expression de ds en fonction de y s’écrit :
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• Intégration par rapport à y
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• Intégration par rapport à y
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Le rayon r vaut toujours x , mais il faut l’exprimer en fonction de y :

r(y) = x(y) =
√
y . Et l’expression de ds en fonction de y s’écrit :
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