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Soit f: [a, b] — R une fonction continuement dérivable (f € Cf, ;).

On cherche a calculer la longueur S du graphe de f.
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Or d’apres le théoreme des accroissements finis, il existe ¢, € [xx_1, x| tel que
Ayk = f/(Ck) . AXk .

d = /(A + (Ayi)? = \/(Bx)? + [ F(ch) - Axi 2,

de = \/1+[F(c)] - Dxe, Axc>0.

Et en sommant les longueurs de tous les segments de cette ligne polygonale, on
obtient une approximation de la longueur S cherchée, d'autant plus précise que

n est grand et les Ax, petits.
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Cette somme S, = Z dy = Z V14 [F ()] - Axe
k=1 k=1
est une somme de Riemann de la fonction /14 [f/(x)]>.

Or cette fonction est continue car par hypothése f est de classe C!, elle est

donc intégrable au sens de Riemann.
Et par définition, la longueur du graphe de f entre a et b est donnée par
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Définition :
Soit f declasse C! sur [a, b]. y
On appelle abscisse curviligne la fonction s(x)

s(x) définie par

s(x):/x\/l—i-[f’(t)]2 dt, x€[a, b] O‘ 3 )‘<

Cette fonction représente la longueur du graphe de f entre a et x.
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La différentielle de I'abscisse curviligne s'écrit ds = s'(x) dx.

Or d’apres le théoreme fondamental du calcul intégral, on a

s'(x) = %/‘?X\/l—i-[f’(t)]2 dt = \/1+[F(x)].
D'ou
ds =1+ [P dx = /14 2] de = /(dx)2+ (dy ), (dx>0).

La relation de Pythagore reste vraie sur les différentielles :

(ds)’=(ax)"+(dy)".
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Interprétation géométrique :

y
f(xo) +dy +

f(x + Ax) +

f(xo) T
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i) Si f est bijective, on peut calculer la longueur S del'arc T, en intégrant
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ds parrapporta x oua y:

s /rds _ /r\/(d><)2+(c/y)2
_ /:mdx, (x1 < x)

y2 d 2
:/y [d—;} +1dy, (1 <y).
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Calculons la longueur S de I'arc de courbe défini par y =

5
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0
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