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3.3 Longueur d'arc
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Longueur d'arc

Soit f : [ a , b ] → R

une fonction continuement dérivable ( f ∈ C 1
[ a , b ] ) .

On cherche à calculer la longueur S du graphe de f .
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[ a , b ] ) .
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Longueur d'arc

Pour cela, on crée une partition de l’intervalle [ a , b ] :

a = x0 < x1 < · · · < xk−1 < xk < · · · < xn = b ,

x1 x2 x3 x4 x5 x6

x7 x8 · · ·
x

y

O a
b

P0

Pn
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Longueur d'arc

Et on associe à cette partition,

la ligne polygonale P0P1 · · ·Pk−1Pk · · ·Pn ,

où les Pj sont les points du graphe de f d’abscisse xj , 0 ≤ j ≤ n .
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Longueur d'arc

Effectuons un zoom sur le segment (Pk−1 , Pk) :

∆xk = xk − xk−1 ,

∆yk = f (xk)− f (xk−1) et

dk = δ (Pk−1 , Pk)

=
√

(∆xk)2 + (∆yk)2 .

y = f (x)

x
xk−1 xk

Pk−1

Pk

∆xk

∆ykdk
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Longueur d'arc

Or d’après le théorème des accroissements finis,

il existe ck ∈ [ xk−1 , xk ] tel que

∆yk = f ′(ck) ·∆xk .

dk =
√

(∆xk)2 + (∆yk)2 =
√

(∆xk)2 + [ f ′(ck) ·∆xk ]2 ,

dk =
√

1 + [ f ′(ck) ]2 ·∆xk , ∆xk > 0 .

Et en sommant les longueurs de tous les segments de cette ligne polygonale, on

obtient une approximation de la longueur S cherchée, d’autant plus précise que

n est grand et les ∆xk petits.
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Longueur d'arc

Cette somme Sn =
n∑

k=1

dk

=
n∑

k=1

√
1 + [ f ′(ck) ]2 ·∆xk

est une somme de Riemann de la fonction
√

1 + [ f ′(x) ]2 .

Or cette fonction est continue car par hypothèse f est de classe C 1 , elle est

donc intégrable au sens de Riemann.

Et par définition, la longueur du graphe de f entre a et b est donnée par

S = lim

n→∞
∆xk → 0

n∑
k=1

√
1 + [ f ′(ck) ]2 ·∆xk =

∫ b

a

√
1 + [ f ′(x) ]2 dx
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Et par définition, la longueur du graphe de f entre a et b est donnée par

S = lim

n→∞
∆xk → 0

n∑
k=1

√
1 + [ f ′(ck) ]2 ·∆xk =

∫ b

a

√
1 + [ f ′(x) ]2 dx

my header

o



Longueur d'arc

Cette somme Sn =
n∑

k=1

dk =
n∑

k=1

√
1 + [ f ′(ck) ]2 ·∆xk

est une somme de Riemann de la fonction
√

1 + [ f ′(x) ]2 .

Or cette fonction est continue car par hypothèse f est de classe C 1 , elle est
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Abscisse curviligne

Définition :

Soit f de classe C 1 sur [ a , b ] .

On appelle abscisse curviligne la fonction

s(x) définie par

s(x) =

∫ x

a

√
1 + [ f ′(t) ]2 dt , x ∈ [ a , b ] t, x

y

O

y = f (t)

a bx

s(x)

Cette fonction représente la longueur du graphe de f entre a et x .
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Définition :

Soit f de classe C 1 sur [ a , b ] .

On appelle abscisse curviligne la fonction
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La différentielle de l’abscisse curviligne s’écrit

ds = s ′(x) dx .
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s ′(x) =
d

dx
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D’où
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1 + [ f ′(x) ]2 dx =
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1 +

[
dy
dx

]2
dx =
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( dx )2 + ( dy )2 , (dx > 0) .

La relation de Pythagore reste vraie sur les différentielles :

( ds )2 = ( dx )2 + ( dy )2 .
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La différentielle de l’abscisse curviligne s’écrit ds = s ′(x) dx .
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Interprétation géométrique :

y = f (x)

x
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ds
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y = f (x)

x

y

x0 x0 + ∆x

ds

dy

∆x = dx

∆y
∆s

f (x0)

f (x0 + ∆x)

f (x0) + dy

my header

o



Remarques

i) Si f est bijective, on peut calculer la longueur S de l’arc Γ, en intégrant

ds par rapport à x ou à y :

S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2

=

∫ x2

x1

√
1 +

[
dy
dx

]2
dx , (x1 < x2)

=

∫ y2

y1

√[
dx
dy

]2

+ 1 dy , (y1 < y2) .
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S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2

=

∫ x2

x1

√
1 +

[
dy
dx

]2
dx , (x1 < x2)

=

∫ y2

y1

√[
dx
dy

]2

+ 1 dy , (y1 < y2) .

my header

o



Remarques

i) Si f est bijective, on peut calculer la longueur S de l’arc Γ, en intégrant
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S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2

=

∫ x2

x1

√
1 +

[
dy
dx

]2
dx , (x1 < x2)

=

∫ y2

y1

√[
dx
dy

]2

+ 1 dy , (y1 < y2) .

my header

o



Remarques

i) Si f est bijective, on peut calculer la longueur S de l’arc Γ, en intégrant
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Remarques

ii) Si l’arc de courbe Γ est défini paramétriquement,

alors il faut exprimer ds

en fonction du paramètre t :

Γ :

{
x = x(t)

y = y(t) ,
t ∈ [ t1 , t2 ] ,

dx = ẋ(t) dt et dy = ẏ(t) dt , d’où l’expression de ds en fonction de t :

S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2

=

∫ t2

t1

√
ẋ2(t) + ẏ 2(t) dt , (t1 < t2) .
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ẋ2(t) + ẏ 2(t) dt , (t1 < t2) .

my header

o



Remarques

ii) Si l’arc de courbe Γ est défini paramétriquement, alors il faut exprimer ds

en fonction du paramètre t :
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dx = ẋ(t) dt et dy = ẏ(t) dt ,
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ẋ2(t) + ẏ 2(t) dt ,

(t1 < t2) .

my header

o



Remarques

ii) Si l’arc de courbe Γ est défini paramétriquement, alors il faut exprimer ds

en fonction du paramètre t :
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Exemples

Exemple :

1) Calculons la longueur S de l’arc de courbe défini par y =
1

3
x

3
2 , x ∈ [ 0 , 5 ] .

S =

∫ 5

0

√
1 + y ′ 2(x) dx avec y ′(x) =

1

2
x

1
2 et y ′ 2(x) =

x

4
.

S =

∫ 5

0

√
1 + x

4
dx = 4 · 2

3

(
1 +

x

4

) 3
2

∣∣∣∣5
0

=
8

3

[ (
1 + 5

4

) 3
2 − 1

]
=

19

3
.
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1 + x

4
dx = 4 · 2

3

(
1 +

x

4

) 3
2

∣∣∣∣5
0

=
8

3

[ (
1 + 5

4

) 3
2 − 1

]
=

19

3
.
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Exemple 2

2) La cyclöıde

est la trajectoire Γ d’un point fixé sur un cercle qui roule sur une

droite. La description paramétrique d’une arche de cyclöıde est donnée par :{
x(t) = r (t − sin t)

y(t) = r (1− cos t) ,

t ∈ [ 0 , 2π ] .

Calculons la longueur de

cette arche. O
x

y

2r

r

2π rr t

t

x(t)

y(t) Γ
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{
x(t) = r (t − sin t)

y(t) = r (1− cos t) ,

t ∈ [ 0 , 2π ] .

Calculons la longueur de

cette arche.

O
x

y

2r

r

2π rr t

t

x(t)

y(t) Γ

my header

o



Exemple 2
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Exemple 2

S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2

=

∫ 2π

0

√
ẋ2(t) + ẏ 2(t) dt ,

avec ẋ(t) = r (1− cos t) et ẏ(t) = r sin t .

S =

∫ 2π

0

r

√
(1− cos t)2 + sin2 t dt = r

∫ 2π

0

√
2− 2 cos t dt

= 2r

∫ 2π

0

√
1− cos t

2
dt = 2r

∫ 2π

0

| sin( t
2
) | dt = 2r

∫ 2π

0

sin( t
2
) dt

= −4r cos( t
2
)
∣∣∣2π
0

= −4r [ (−1)− 1 ] = 8r .
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S =

∫ 2π

0

r

√
(1− cos t)2 + sin2 t dt = r

∫ 2π

0

√
2− 2 cos t dt

= 2r

∫ 2π

0

√
1− cos t

2
dt = 2r

∫ 2π

0

| sin( t
2
) | dt = 2r

∫ 2π

0

sin( t
2
) dt

= −4r cos( t
2
)
∣∣∣2π
0

= −4r [ (−1)− 1 ] = 8r .

my header

o



Exemple 2

S =

∫
Γ

ds =

∫
Γ

√
( dx )2 + ( dy )2 =

∫ 2π

0

√
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ẋ2(t) + ẏ 2(t) dt ,

avec ẋ(t) = r (1− cos t) et ẏ(t) = r sin t .
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