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Voici une autre expression du théoréme de la moyenne qui nous sera utile pour la
suite.

En posant a=xp, b= xp+ h et en supposant f continue sur un voisinage de

Xo contenant xp+ h, le théoreme de la moyenne affirme que

xo+h
39 €[0,1] tel que / f(x)dx="h-f(xo+Vh).

X0
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graphe de f et I'axe des abscisses, entre a et x.
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Alors A est dérivable sur [a, b] et A'(x)=f(x), Vx € [a, b].
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On appelle primitive de f sur [, une fonction F dérivable sur | telle que

F'(x)=1f(x), Vxel.
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Soit f(x)=2(x+1), Df =R,

F(x) = (x+1)® et G(x) = x®+2x sont toutes les deux des primitives de f .
Est-ce qu'il y en a d’autres? Le théoréme qui suit répond a cette question.
Théoreme :

Soient f une fonction continue sur |/ et F une primitive de f sur /.

Toutes les primitives de f sur | sont de la forme F(x)+ C ou C est une

constante arbitraire réelle.
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Démonstration :
e Si F est une primitive de f, alors F+ C Il'est aussi :
(F(x)+ C) = F(x)+0 = f(x).
e Si F et G sont toutes les deux des primitives de f alors
FF=fet G=f = G-F=f-f=0 = (G-F)=0
= dJCeR telque (G—-F)=C,

(les seules fonctions dérivables sur [, de dérivée nulle, sont les constantes).

On en déduit que G(x) = F(x) + C.
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b
Calcul de I'intégrale définie / f(x)dx.
Soit F une primitive quelconque de f sur [a, b]. Alors

Alx) = / f(t)dt = F(x)+ C, (deux primitives different d'une constante),

een x=a, ona A(a)=0 & F(a)+C=0 & C=—F(a),
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Soient g(x) = sin(x), x € [0, 7] et A

I'aire du domaine limité par le graphe de f
et I'axe Ox.
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2
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Soient g(x) = sin(x), x € [0, 7] et A y
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Une primitive de g(x) = sin(x) est donnée par G(x) = —cos(x), on en déduit
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Soient g(x) = sin(x), x € [0, 7] et A y

I'aire du domaine limité par le graphe de f 1
et I'axe Ox.
x z * X
A:/g(x)dx:2/ g(x)dx. O‘ 3 T
0 0

Une primitive de g(x) = sin(x) est donnée par G(x) = —cos(x), on en déduit

le calcul de A : - .
2

Azz/OQg(x)dx:z[—cos(x)} = 2[0—(-1)] =2.
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Calculer la dérivée de la fonction F définie sur R par F(x) = / el dt .
0

Remarque : Cette fonction, définie par une intégrale, n'est pas une fonction-aire,

car la borne supérieure n'est pas égale a x.

D’autre part, on ne sait pas trouver une primitive de e(®),

Alors --- 7
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D’aprés le théoreme fondamental, on a : F(x) = G(t) . = G(x?) — G(0).
Donc F'(x) = [6(x*) = G(0)] = [G(*)] = [6(0)]' = [6(x*)] -0,
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