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Théorème de la moyenne du calcul intégral

Théorème :

Soit f continue sur [ a , b ] , a < b .

Il existe c ∈ [ a , b ] tel que∫ b

a

f (x) dx = (b − a) · f (c) .
x

y

O

y = f (x)

a bc

f (c)
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Théorème de la moyenne du calcul intégral

Démonstration :

La fonction f étant continue sur l’intervalle fermé [ a , b ] , elle atteint son

minimum m = min
a≤x≤b

f (x) et son maximum M = max
a≤x≤b

f (x) . Et

m ≤ f (x) ≤ M , ∀ x ∈ [ a , b ] ⇒
∫ b

a

mdx ≤
∫ b

a

f (x) dx ≤
∫ b

a

M dx .

Or

∫ b

a

k dx = k · (b − a)

a b
x

y

k · (b − a)
k
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Théorème de la moyenne du calcul intégral

Donc

m · (b − a) ≤
∫ b

a

f (x) dx ≤ M · (b − a)

d’où m ≤
∫ b

a
f (x) dx

b − a
≤ M .

Le quotient Q =

∫ b

a
f (x) dx

b − a
est un

nombre compris entre le minimum m et

le maximum M de f sur [ a , b ] .
x

y

O

y = f (x)
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m

M
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Théorème de la moyenne du calcul intégral

Or f est continue sur [ a , b ] ,

donc

d’après le théorème de la valeur in-

termédiaire, il existe c ∈ [ a , b ] tel

que Q = f (c) .

Q = f (c) ⇔
∫ b

a
f (x) dx

b − a
= f (c)
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y

O

y = f (x)

a bc

Q = f (c)
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d’après le théorème de la valeur in-

termédiaire, il existe c ∈ [ a , b ] tel

que Q = f (c) .

Q = f (c) ⇔
∫ b

a
f (x) dx

b − a
= f (c)

⇔
∫ b

a

f (x) dx = (b − a) · f (c) . x

y

O

y = f (x)

a bc

Q = f (c)

m

M

my header

o



Théorème de la moyenne du calcul intégral

Voici une autre expression du théorème de la moyenne qui nous sera utile pour la

suite.

En posant a = x0 , b = x0 + h et en supposant f continue sur un voisinage de

x0 contenant x0 + h , le théorème de la moyenne affirme que

∃ϑ ∈ [ 0 , 1 ] tel que

∫ x0+h

x0

f (x) dx = h · f (x0 + ϑ h) .
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Voici une autre expression du théorème de la moyenne qui nous sera utile pour la

suite.

En posant a = x0 , b = x0 + h et en supposant f continue sur un voisinage de

x0 contenant x0 + h ,
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Voici une autre expression du théorème de la moyenne qui nous sera utile pour la

suite.

En posant a = x0 , b = x0 + h et en supposant f continue sur un voisinage de
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Dé�nition de la fonction-aire

Définition :

Soit f continue sur [ a , b ] .

On considère la fonction-aire A

associée à f , définie par

A(x) =

∫ x

a

f (t) dt , x ∈ [ a , b ] . a x b

y = f (t)

t, x

y

O

A(x)

Cette fonction A(x) représente l’aire analytique du domaine situé entre le

graphe de f et l’axe des abscisses, entre a et x .
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Théorème fondamental du calcul intégral

Théorème :

Soient f continue sur [ a , b ] et A sa fonction-aire associée.

Alors A est dérivable sur [ a , b ] et A′(x) = f (x) , ∀ x ∈ [ a , b ] .

En d’autres termes :

d

dx

∫ x

a

f (t) dt = f (x) .
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Théorème fondamental du calcul intégral

Démonstration :

Montrons que la limite du rapport de Newton de A en x ,

lim
h→0

A(x + h)− A(x)

h
existe et vaut f (x) .

A(x + h)− A(x) =

∫ x+h

a

f (t) dt −
∫ x

a

f (t) dt

=

∫ a

x

f (t) dt +

∫ x+h

a

f (t) dt =

∫ x+h

x

f (t) dt . a x
x + h

b

y = f (t)

t, x

y

O
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Théorème fondamental du calcul intégral

Or f est continue sur [ a , b ] ,

donc d’après le théorème de la moyenne,

∃ϑ ∈ [ 0 , 1 ] tel que

∫ x+h

x

f (t) dt = h · f (x + ϑ h) .

D’où lim
h→0

A(x + h)− A(x)

h
= lim

h→0

h · f (x + ϑ h)

h
= lim

h→0
f (x + ϑ h) = f (x) ,

car f est continue.

A′(x) =
d

dx

∫ x

a

f (t) dt = f (x) , ∀ x ∈ [ a , b ] .
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Primitive

Définition :

Soit f une fonction définie sur un intervalle I .

On appelle primitive de f sur I , une fonction F dérivable sur I telle que

F ′(x) = f (x) , ∀ x ∈ I .

Exemple :

Soit f continue sur [ a , b ] .

La fonction-aire A(x) =

∫ x

a

f (t) dt est une primitive de f sur [ a , b ] .
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une fonction F dérivable sur I telle que

F ′(x) = f (x) , ∀ x ∈ I .

Exemple :

Soit f continue sur [ a , b ] .

La fonction-aire A(x) =

∫ x

a

f (t) dt est une primitive de f sur [ a , b ] .

my header

o



Primitive
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Soit f une fonction définie sur un intervalle I .

On appelle primitive de f sur I , une fonction F dérivable sur I
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Primitive

Autre exemple :

Soit f (x) = 2 (x + 1) , Df = R ,

F (x) = (x + 1)2 et G (x) = x2 + 2x sont toutes les deux des primitives de f .

Est-ce qu’il y en a d’autres ? Le théorème qui suit répond à cette question.

Théorème :

Soient f une fonction continue sur I et F une primitive de f sur I .

Toutes les primitives de f sur I sont de la forme F (x) + C où C est une

constante arbitraire réelle.
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Théorème :

Soient f une fonction continue sur I et F une primitive de f sur I .

Toutes les primitives de f sur I sont de la forme F (x) + C où C est une
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Théorème :

Soient f une fonction continue sur I et F une primitive de f sur I .

Toutes les primitives de f sur I sont de la forme F (x) + C où C est une
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où C est une

constante arbitraire réelle.
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Primitive

Démonstration :

• Si F est une primitive de f , alors F + C l’est aussi :

(F (x) + C )′ = F ′(x) + 0 = f (x) .

• Si F et G sont toutes les deux des primitives de f alors

F ′ = f et G ′ = f ⇒ G ′ − F ′ = f − f = 0 ⇒ (G − F )′ = 0

⇒ ∃C ∈ R tel que (G − F ) = C ,

(les seules fonctions dérivables sur I , de dérivée nulle, sont les constantes).

On en déduit que G (x) = F (x) + C .
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(les seules fonctions dérivables sur I , de dérivée nulle, sont les constantes).

On en déduit que G (x) = F (x) + C .

my header

o



Primitive

Démonstration :

• Si F est une primitive de f , alors F + C l’est aussi :

(F (x) + C )′ = F ′(x) + 0 = f (x) .

• Si F et G sont toutes les deux des primitives de f alors

F ′ = f et G ′ = f ⇒ G ′ − F ′ = f − f = 0 ⇒ (G − F )′ = 0

⇒ ∃C ∈ R tel que (G − F ) = C ,
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On en déduit que G (x) = F (x) + C .

my header

o



Conséquence du théorème fondamental

Calcul de l’intégrale définie

∫ b

a

f (x) dx .

Soit F une primitive quelconque de f sur [ a , b ] . Alors

A(x) =

∫ x

a

f (t) dt = F (x) + C , (deux primitives diffèrent d’une constante) ,

• en x = a , on a A(a) = 0 ⇔ F (a) + C = 0 ⇔ C = −F (a) ,

• en x = b , on a A(b) = F (b) + C ⇒
∫ b

a

f (t) dt = F (b)− F (a) .

∫ b

a

f (x) dx = F (b)− F (a) = F (x)
∣∣∣b
a

où F est une primitive quelconque de f .
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(deux primitives diffèrent d’une constante) ,

• en x = a , on a A(a) = 0 ⇔ F (a) + C = 0 ⇔ C = −F (a) ,

• en x = b , on a A(b) = F (b) + C ⇒
∫ b

a

f (t) dt = F (b)− F (a) .

∫ b

a

f (x) dx = F (b)− F (a) = F (x)
∣∣∣b
a
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Exemples

Reprise d’un exemple précédent :

Soient f (x) = 1−x2 et A l’aire du domaine

limité par le graphe de f et l’axe Ox .

A =

∫ 1

−1
f (x) dx = 2

∫ 1

0

f (x) dx . O

1

1
x

y

Une primitive de f (x) = 1− x2 est donnée par F (x) = x − x3

3
, on en déduit le

calcul de A :

A = 2

∫ 1

0

f (x) dx = 2
[
x − x3

3

]1
0

= 2
[ (

1− 1
3

)
− 0

]
=

4

3
.
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Soient f (x) = 1−x2 et A l’aire du domaine
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Exemples

Autre exemple :

Soient g(x) = sin(x) , x ∈ [ 0 , π ] et A

l’aire du domaine limité par le graphe de f

et l’axe Ox .

A =

∫ π

0

g(x) dx = 2

∫ π
2

0

g(x) dx . O

1

π
2

π
x

y

Une primitive de g(x) = sin(x) est donnée par G (x) = − cos(x) , on en déduit

le calcul de A :

A = 2

∫ π
2

0

g(x) dx = 2
[
− cos(x)

]π
2

0
= 2 [ 0− (−1) ] = 2 .
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Exemples

Encore un exemple :

Calculer la dérivée de la fonction F définie sur R par F (x) =

∫ x2

0

e(t
2) dt .

Remarque : Cette fonction, définie par une intégrale, n’est pas une fonction-aire,

car la borne supérieure n’est pas égale à x .

D’autre part, on ne sait pas trouver une primitive de e(t
2).

Alors · · · ?
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car la borne supérieure n’est pas égale à x .
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∫ x2

0

e(t
2) dt .

Remarque : Cette fonction, définie par une intégrale,
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∫ x2

0

e(t
2) dt .
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Suite et �n de l'exemple

Notons g(t) = e(t
2) ,

c’est une fonction continue, elle admet donc une primitive

G (t) .

D’après le théorème fondamental, on a : F (x) = G (t)
∣∣∣x2
0

= G (x2)− G (0) .

Donc F ′(x) = [G (x2)− G (0)]
′

= [G (x2)]
′ − [G (0)]′ = [G (x2)]

′ − 0 ,

car G (0) est une constante.

On dérive G (x2) comme une fonction composée, en utilisant le fait que G ′ = g :

F ′(x) = [G (x2)]
′

= G ′(x2) · (x2)′ = 2x · g(x2) = 2x · e(x4).
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