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Définition :

Soit f continue sur | et deux fois dérivable sur | sauf peut-étreen xy € /.
Alors (xo, f(x0)) est un point d'inflexion du graphe de f si la courbe change
de concavité en Xxp.

En d'autres termes, f admet un point d'inflexion en xp si et seulement si "

change de signe en X .

Remarque : Si f est continliment dérivable en xg, alorssi f admet un

point d'inflexion en xp, le point (xo, f'(x0)) est un extremum de f'.
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L'origine O est un point d'inflexion du graphe de f a tangente oblique.
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2
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X
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x—0

L'origine O est un point d'inflexion du graphe de f a tangente verticale.
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x% + x si x>0.

F1(x) = —6x—3 si x<0 ot F1(x) = —6 si x<0
2x+1 si x>0 2 si x>0.

f est continue et f” change de signe en xg = 0. L'origine est donc un point
d'inflexion de f.
De plus, f n'est pas dérivable en xp =0, mais f'(07)=—-3 et f(0")=1.

L'origine est donc aussi un point anguleux.
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Esquisse du graphe de f au voisinage de xp =0.

y
Fr. ol

0]

L'origine est donc un minimum, un point anguleux de demi-tangentes de pentes

X

m_=—3 et m;_ =1 etun point d'inflexion du graphe de f.
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L’étude des branches infinies du graphe de f, consiste a étudier le
comportement de f lorsque une des variables : x ou y, ou les deux,
tendent vers ['infini.

C'est donc aux " points frontieres” du domaine de définition et du domaine

de continuité de f que I'on va étudier le comportement de la fonction.
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y

+

[SIE]

lim arctan(x) = +

s
X—>+00 2

i _ =
Xﬂrpx arctan(x) = —3
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X—00

asymptote oblique, en calculant :
f(x)

e lim —=. Si cette limite existe, on la note a et on calcule :
X—00 X

e lim [f(x) —a-x]. Sicette limite existe, on la note b et on en déduit que

X—00

le graphe de f admet une asymptote oblique d'équation y = ax + b,

lorsque x — 0.
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X — —00 et X — +00.
lim f(x)= lim x-¢/1+2=—-0c0 et lim f(x)=+o0.
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On recherche donc une éventuelle asymptote oblique :
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Etudier les branches infinies de f(x) = v/x3 + 2x2.

Df =R et f est continue sur R. Il y a donc deux "points frontieres” :
X — —00 et X — +00.
lim f(x)= lim x-¢/1+2=—-0c0 et lim f(x)=+o0.
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On recherche donc une éventuelle asymptote oblique :
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Le graphe de f admet donc lorsque x — —oo et lorsque x — +o00, une

asymptote oblique d’équation y = x + 2.
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Etudier les branches infinies de f(x) = x —v/x +2.

Df = [-2, 400 [. On détermine les limites aux " points frontieres” de Ds :

lim f(x) = f(-2) = -2,

xX——=2
Jm £0= Jim VE[VK- IR = e

f admet donc une unique branche infinie. On |'étudie en commencant par

déterminer une éventuelle direction asymptotique.
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direction asymptotique de pente m =1, lorsque x — 400.
lim [f(x)—x] = lim —Vx+2=—0c0.
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Il n’y a donc pas d'asymptote oblique, lorsque x — +o0, mais une branche
parabolique de direction de pente m=1.
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X—>00 X X—>00 X—>00



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.

X—>00
f
Si lim ﬁ:0, alors lim [f(x) —0x] = lim f(x) = 0.
X—o0 X X—»00 X—$00



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.

X—>00
f
Si lim ﬂ:0, alors lim [f(x) —0x] = lim f(x) = 0.
X—o0 X X—»00 X—$00

f admet donc une branche parabolique



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.

X—>00
f
Si lim ﬂ:0, alors lim [f(x) —0x] = lim f(x) = 0.
X—o0 X X—»00 X—$00

f admet donc une branche parabolique horizontale.



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.

X—>00
f
Si lim ﬂ:0, alors lim [f(x) —0x] = lim f(x) = 0.
X—o0 X X—»00 X—$00

f admet donc une branche parabolique horizontale.



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.
X—>00
f(x)

Si lim —% =0, alors lim [f(x)—0x] = lim f(x) = 0.
X—>00 X X—>00 X—>00

f admet donc une branche parabolique horizontale.

Cest le cas de f(x) =+/x:



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.
X—>00
f(x)

Si lim —% =0, alors lim [f(x)—0x] = lim f(x) = 0.
X—>00 X X—>00 X—>00

f admet donc une branche parabolique horizontale.

Cest le cas de f(x) =+/x:
lim /x = 400

X——+00



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.
X—>00
f(x)

Si lim —% =0, alors lim [f(x)—0x] = lim f(x) = 0.
X—>00 X X—>00 X—>00

f admet donc une branche parabolique horizontale.

Cest le cas de f(x) =+/x:

lim /x=+o0o0 et lim L)_(:O.

X——+00 x—4+o0 X



Branche parabolique

Remarque : Soit f telle que lim f(x) = oco.

X—>00
f'
Si lim ﬁ:0, alors lim [f(x) —0x] = lim f(x) = 0.
X—o0 X X—»00 X—$00

f admet donc une branche parabolique horizontale.

y
Cest le cas de f(x) =+/x:

lim /x=+o0o0 et lim L)_(:O.

X——+00 x—4+o0 X



Branche parabolique verticale

Définition :



Branche parabolique verticale

Définition :

Soit f définie sur un voisinage de I'infini



Branche parabolique verticale

Définition :

Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—00



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—00
f(x)

Silim —~% =00,
X—00 X



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—00
f(x)

Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—00
f(x)

Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X

C'est le cas de f(x) = x*:



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X

C'est le cas de f(x) = x*:

lim x?= 400

X——+00



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X

C'est le cas de f(x) = x*:

. ) . x?

lim x“=4o00 et I|lim — =+o00,
X—+00 x—+o00 X



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X

C'est le cas de f(x) = x*:

. ) . x?

lim x“=4o00 et I|lim — =+o00,
X—+00 x—+o00 X

lim x?= 400
X——00



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X

C'est le cas de f(x) = x*:

. ) . x?

Im x =400 et Im — =400,
X——+00 x—+o00 X

. ) . x?

im x*=+4o00c et Iim — = —00.
X——00 x——00 X



Branche parabolique verticale

Définition :
Soit f définie sur un voisinage de l'infini telle que lim f(x) = co.
X—>00
.. f(x) . . .
Si lim —= =00, ondit que f admet une branche parabolique verticale.
X—00 X
y
C'est le cas de f(x) = x*:
2
. ) . X
lim x“=4o00 et I|lim — =+o00,
X——+00 x—+o00 X
2
. ) . X
lim x“=4o00 et Im — =—00. X
X——00 x——00 X



Branches infinies

Et voici, pour finir, un résumé de la démarche de I'étude des branches infinies du

graphe d'une fonction.
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Branches infinies de la courbe I' d’équation vy

e Si lim f(z)= o0,

T—T0

I' admet une asymptote verticale d’équation x = zq.

e Si lim f(z)=yo,

r—00

I' admet une asymptote horizontale d’équation y = yq .

e Si lim f(x)=o00, trois cas peuvent se présenter :

r—00

o si lim M:a,
r—00 €T

I' admet une direction asymptotique de pente m = a,

trois cas peuvent se présenter :

x si lim [f(z)—ax]=0,

I' admet une asymptote oblique d’équation
y=ax+b.

st lim [f(z) —ax] =00,

T—00
I' admet une branche parabolique de direction
de pente m=a.

x si lim [f(z) —ax]| n’existe pas,

T—00

I' n’admet ni asymptote, ni branche parabolique.

o si lim wzoo
T—00 €T

Y

I' admet une branche parabolique de direction

verticale.
N )
o si lim —— n’existe pas,
T—00 €T

I' n’admet aucune direction asymptotique.
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