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Volume d’un corps de sections d’aires connues

Les volumes élémentaires dV ont donc

pour expression
dV = A(z) - dz, 71<z<2.

On en déduit le volume de ce corps en

sommant tous ces volumes élémentaires :

V:/ZQA(z)-dz.

Z1
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e

A G B

D'ol I'expression de I'aire de la section :  A(ty) = y(to) - z(to) = sin*(to) .
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