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Le Limaçon de Pascal

Dans le plan muni d’un repère ortho-

normé,

on considère le cercle γ de

centre O et de rayon 1 , le point

A (2, 0) et un point P de γ .

Soit M la projection orthogonale de

A sur la tangente d à γ en P .
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Le lieu du point M lorsque P décrit le cercle γ est appelé le Limaçon de

Pascal.
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normé, on considère le cercle γ de

centre O et de rayon 1 , le point

A (2, 0)

et un point P de γ .

Soit M la projection orthogonale de

A sur la tangente d à γ en P .
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Pascal.

my header

o



Le Limaçon de Pascal

Dans le plan muni d’un repère ortho-
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x

y

O

γ

d

t

P

A

M
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Le Limaçon de Pascal

• Equations paramétriques du lieu de M

∗ Choix du paramètre : la variable t qui permet de décrire la position du point

P sur le cercle γ , P (cos t , sin t).

∗ Equation de la tangente d à γ en P :

◦ Si X (x , y) est un point courant de d , alors
−→
PX ⊥

−→
OP :

−→
OP ·

−→
PX = 0 ⇔

�
x − cos t

y − sin t

�
·
�

cos t

sin t

�
= 0

⇔ x cos t + y sin t −
[

cos2 t + sin2 t
]

= 0 ⇔ x cos t + y sin t = 1 .

◦ Ou par dédoublement de l’équation de γ : x2 + y2 = 1 en P (cos t , sin t).
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∗ Choix du paramètre : la variable t qui permet de décrire la position du point

P sur le cercle γ , P (cos t , sin t).

∗ Equation de la tangente d à γ en P :
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Le Limaçon de Pascal

• ∗ Equation de la droite (AM) parallèle à (OP) passant par A :

�
x − 2

y − 0

�
·
�

sin t

− cos t

�
= 0 ⇔ x sin t − y cos t = 2 sin t .

∗ Le point M est l’intersection des deux droites d et (AM) .

Ses coordonnées x et y vérifient donc la double contrainte :{
x cos t + y sin t = 1

x sin t − y cos t = 2 sin t .
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Ses coordonnées x et y vérifient donc la double contrainte :{
x cos t + y sin t = 1

x sin t − y cos t = 2 sin t .

my header

o



Le Limaçon de Pascal

• ∗ Equation de la droite (AM) parallèle à (OP) passant par A :�
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Le Limaçon de Pascal

∗ Il ne reste plus qu’à expliciter x et y en fonction de t

{
x cos t + y sin t = 1 · cos t

x sin t − y cos t = 2 sin t · sin t
⇔

{
x cos2 t + y sin t cos t = cos t

x sin2 t − y sin t cos t = 2 sin2 t

et par addition : x = cos t + 2 sin2 t .{
x cos t + y sin t = 1 · sin t

x sin t − y cos t = 2 sin t · cos t
⇔

{
x sin t cos t + y sin2 t = sin t

x sin t cos t − y cos2 t = sin 2t

et par soustraction : y = sin t − sin 2t .
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Le Limaçon de Pascal

• Etude de l’arc paramétré Γ :

{
x(t) = cos t + 2 sin2 t

y(t) = sin t − sin 2t ,
t ∈ R .

∗ Définition du domaine d’étude.

La fonction vectorielle ~r (t) est définie et continue sur R .

Les fonctions coordonnées x(t) et y(t) sont 2π-périodiques, on restreint

donc le domaine d’étude à l’intervalle [−π , π ] .

De plus x(t) est paire et y(t) est impaire, l’arc Γ est donc symétrique par

rapport à l’axe Ox , on l’étudie sur l’intervalle [ 0 , π ] .
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donc le domaine d’étude à l’intervalle [−π , π ] .

De plus x(t) est paire

et y(t) est impaire, l’arc Γ est donc symétrique par
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Les fonctions coordonnées x(t) et y(t) sont 2π-périodiques, on restreint

donc le domaine d’étude à l’intervalle [−π , π ] .
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∗ Limites aux points frontières du domaine [ 0 , π ]

Les fonctions coordonnées sont continues :

◦ lim
t→0

x(t) = x(0) = 1 , lim
t→0

y(t) = y(0) = 0 .

◦ lim
t→π

x(t) = x(π) = −1 , lim
t→π

y(t) = y(π) = 0 .

∗ Dérivée et signe des fonctions coordonnées

◦ ẋ(t) = − sin t + 4 sin t cos t = sin t [ 4 cos t − 1 ] .

◦ ẏ(t) = cos t − 2 cos(2t) = cos t − 2
[

2 cos2 t − 1
]

= −4 cos2 t + cos t + 2 .
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◦ ẋ(t) = − sin t + 4 sin t cos t = sin t [ 4 cos t − 1 ] .
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◦ ẋ(t) = − sin t + 4 sin t cos t = sin t [ 4 cos t − 1 ] .
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◦ ẋ (t) = 0

⇔ sin t [ 4 cos t − 1 ] = 0

⇔ sin t = 0 ou cos t = 1
4

⇔ t = 0◦ ou t ≈ 75◦ ou t = 180◦

t 0 ≈ 75 180
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◦ ẏ (t) = 0 ⇔ −4 cos2 t + cos t + 2 = 0 ⇔ cos t =
1±
√

33

8
.

t = arccos
�
1+
√
33

8

�
≈ 32◦ ou t = arccos

�
1−
√
33

8

�
≈ 126◦ .

my header

o



Le Limaçon de Pascal
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ẋ(t) 0 + 0 − 0
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◦ ẋ (t) = 0 ⇔ sin t [ 4 cos t − 1 ] = 0

⇔ sin t = 0 ou cos t = 1
4

⇔ t = 0◦ ou t ≈ 75◦ ou t = 180◦

t 0 ≈ 75 180
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ẋ(t) 0 + 0 − 0
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◦ ẋ (t) = 0 ⇔ sin t [ 4 cos t − 1 ] = 0

⇔ sin t = 0 ou cos t = 1
4

⇔ t = 0◦ ou t ≈ 75◦ ou t = 180◦

t 0 ≈ 75 180
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Nommons les différentes valeurs remarquables de t dans l’ordre croissant :

t1 < t2 < t3 < t4 < t5 ,

avec : t1 = 0 , t2 = arccos
�
1+
√
33

8

�
≈ 32◦ , t3 = arccos

(
1
4

)
≈ 75◦ ,

t4 = arccos
�
1−
√
33

8

�
≈ 126◦ et t5 = π .

t 0 t2 t4 π
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Le Limaçon de Pascal

∗ Points remarquables

Pas de zéro commun entre ẋ(t) et ẏ(t) , donc pas de point stationnaire.

◦ En t1 : M1(1 , 0) est un point à tangente verticale.

◦ En t2 : M2(∼ 1.4 , ∼ −0.37) est un point à tangente horizontale.

◦ En t3 : M3(∼ 2.1 , ∼ 0.5) est un point à tangente verticale.

◦ En t4 : M4(∼ 0.7 , ∼ 1.75) est un point à tangente horizontale.

◦ En t5 : M5(−1 , 0) est un point à tangente verticale.
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Pas de zéro commun entre ẋ(t) et ẏ(t) ,
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◦ En t2 : M2(∼ 1.4 , ∼ −0.37) est un point à tangente horizontale.
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Pas de zéro commun entre ẋ(t) et ẏ(t) , donc pas de point stationnaire.

◦ En t1 : M1(1 , 0) est un point à tangente verticale.
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◦ En t3 : M3(∼ 2.1 , ∼ 0.5) est un point à tangente verticale.
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my header

o



Le Limaçon de Pascal

∗ Points remarquables
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◦ En t5 : M5(−1 , 0) est un point à tangente verticale.
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◦ En t5 : M5(−1 , 0) est un point à tangente verticale.
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∗ Tableau de variation
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ẏ(t) − 0 + + 0 −

y(t) 0 ↘ −0.3 ↗ 0.5 ↗ 1.7 ↘ 0

M1

TV
M2

TH
M3

TV
M4

TH
M5

TV

my header

o



Le Limaçon de Pascal

∗ Représentation
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du Limaçon de Pascal

x

y

A
M1

M2

M3

M4

M5

my header

o



Le Limaçon de Pascal

∗ Représentation
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du Limaçon de Pascal

x

y

A
M1

M2

M3

M4

M5

my header

o



Le Limaçon de Pascal

∗ Représentation
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