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3. Etude complete d’'un arc paramétré
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Le Limacon de Pascal

Dans le plan muni d'un repére ortho-
normé, on considere le cercle ~ de
centre O et derayon 1, le point
A(2,0) etun point P de 7.

Soit M la projection orthogonale de

A sur latangente d a v en P.

Le lieu du point M lorsque P décrit le cercle ~y est appelé le Limacon de

Pascal.
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e Equations paramétriques du lieu de M

x Choix du parametre : la variable t qui permet de décrire la position du point

P sur le cercle vy, P(cost, sint).

« Equation de la tangente d a v en P:
o Si X(x,y) est un point courant de d, alors PX L OP :

O?oW:O PN <x—cost> . <cost> —0

y —sint sint
& xcost+ysint— [cos’t+sint] =0 < xcost-+ysint=1.

o Ou par dédoublement de I'équation de v : x>+ y? =1 en P(cost, sint).
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« Equation de la droite (AM) parallele a (OP) passant par A:

X —2 sint . .
. =0 & xsint—ycost=2sint.
y—0 —cost

« Le point M est l'intersection des deux droites d et (AM).

Ses coordonnées x et y vérifient donc la double contrainte :

xcost+ysint=1
xsint—y cost =2sint.
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xcost+ysint=1 -cost x cos’t + y sint cost = cos t
<~
xsint—ycost=2sint|-sint x sin®t —y sint cost = 2sin’ t

et par addition : x = cos t + 2sin’t.

X sint cost — y cos®t = sin 2t

x cost+ysint=1 -sint - xsint cost+ysin®t=sint
xsint—ycost=2sint|-cost

et par soustraction : y =sint —sin2t.
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x(t) = cost + 2sin’ t
y(t) =sint —sin2t,

e Etude de I'arc paramétré T : { teR.

* Définition du domaine d'étude.
La fonction vectorielle 7/(t) est définie et continue sur R.

Les fonctions coordonnées x(t) et y(t) sont 2m-périodiques, on restreint
donc le domaine d'étude a I'intervalle [—7, 7].
De plus x(t) est paire et y(t) est impaire, I'arc [ est donc symétrique par

rapport a I'axe Ox, on I'étudie sur I'intervalle [0, 7].
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s Limites aux points frontiéres du domaine [0, 7]
Les fonctions coordonnées sont continues :

o lim x(t) =x(0) =1,

t—0

o tlm x(t) = x(m) =

-1 ,
« Dérivée et signe des fonctions coordonnées

o x(t)=—sint+4sint cost =sint[4 cost—1].

o y(t) =cost—2 cos(2t) =cost —2[2cos’t — 1]

lim y(t) = y(0) = 0.

lim y(£) = y(r) = 0.

—4 cos’t+cost+ 2.
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h<b<tz <t <lts,
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{ {
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