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Croissance, décroissance

Théorème :

Soit f une fonction dérivable sur un intervalle I .

i) Si f ′(x) > 0 , ∀ x ∈ I , alors f est strictement croissante sur I .

ii) Si f ′(x) < 0 , ∀ x ∈ I , alors f est strictement décroissante sur I .
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Croissance, décroissance

Démonstration :

Pour tous a, b ∈ I , a < b , le théorème des Accroissements Finis donne

l’existence de c ∈ ] a , b [ tel que f ′(c) =
f (b)− f (a)

b − a
.

On a donc f (b)− f (a) = f ′(c) · (b − a) . Or (b − a) > 0 , d’où

i) f ′(x) > 0 , ∀ x ∈ I ⇒ f ′(c) > 0 ⇒ f (b)− f (a) > 0 ⇒ f est

strictement croissante sur I .

ii) f ′(x) < 0 , ∀ x ∈ I ⇒ f ′(c) < 0 ⇒ f (b)− f (a) < 0 ⇒ f est

strictement décroissante sur I .
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le théorème des Accroissements Finis donne

l’existence de c ∈ ] a , b [ tel que f ′(c) =
f (b)− f (a)

b − a
.

On a donc f (b)− f (a) = f ′(c) · (b − a) . Or (b − a) > 0 , d’où
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strictement décroissante sur I .

my header

o



Croissance, décroissance

Démonstration :
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strictement décroissante sur I .

my header

o



Croissance, décroissance

Démonstration :
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Croissance, décroissance

Remarque :

La réciproque est fausse.

f strictement croissante sur I

6⇒ f ′(x) > 0 , ∀ x ∈ I ,

f strictement décroissante sur I

6⇒ f ′(x) < 0 , ∀ x ∈ I .

Contre-exemple :

f (x) = x3 est strictement croissante sur R ,

mais f ′(x) = 0 en x = 0 .
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Remarque : La réciproque est fausse.

f strictement croissante sur I

6⇒ f ′(x) > 0 , ∀ x ∈ I ,

f strictement décroissante sur I
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Remarque : La réciproque est fausse.

f strictement croissante sur I

6⇒ f ′(x) > 0 , ∀ x ∈ I ,

f strictement décroissante sur I
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2. Extrema



Extrema

Définitions :

Extrema locaux.

Soient f : Df → R et x0 ∈ Df ,

∗ f (x0) est un maximum local de f

si ∃ δ > 0 tel que f (x) ≤ f (x0) , ∀ x ∈ ] x0 − δ , x0 + δ [ ∩ Df ,

∗ f (x0) est un minimum local de f

si ∃ δ > 0 tel que f (x) ≥ f (x0) , ∀ x ∈ ] x0 − δ , x0 + δ [ ∩ Df .

my header

o



Extrema
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Extrema

x

y

y = f (x)

x0 x1 x2 x3 x4

∗ f (x1) et f (x4) sont des maxima locaux de f .

∗ f (x2) et f (x3) sont des minima locaux de f .
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Extrema globaux.
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Théorème :

Soit f : Df → R dérivable en x0 .

Si f (x0) est un extremum de f ,

alors f ′(x0) = 0 .
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La démonstration de ce théorème

reprend l’argu-

ment de la démonstration du théorème de Rolle.

Supposons que f (x0) est un maximum local de f : x

y

y = f (x)

x0

∃ δ > 0 tel que f (x) ≤ f (x0) , ∀ x ∈ ] x0 − δ , x0 + δ [ ∩ Df .

Soit h suffisamment petit, tel que |h| < δ et x0 + h ∈ Df . f étant dérivable

en x0 , on a

f (x0 + h) = f (x0) + h · f ′(x0) + h · r(h) , avec lim
h→0

r(h) = 0 .

my header

o



Extrema
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Or f (x0 + h) ≤ f (x0) ,

car f (x0) est le maximum de f sur ] x0 − δ , x0 + δ [ ,

donc f (x0) + h · f ′(x0) + h · r(h) ≤ f (x0) ⇔ h · f ′(x0) + h · r(h) ≤ 0

⇔ h · [ f ′(x0) + r(h) ] ≤ 0 ,

∗ si h < 0 , f ′(x0) + r(h) ≥ 0 =⇒
h→0

f ′(x0) ≥ 0

∗ si h > 0 , f ′(x0) + r(h) ≤ 0 =⇒
h→0

f ′(x0) ≤ 0

 ⇒ f ′(x0) = 0

.
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Remarque :

La réciproque est fausse.

Contre-exemple : f (x) = x3 .

f est dérivable sur R

et f ′(x) = 0 en x = 0 .

Mais f (0) n’est pas un extremum de f .

(f n’admet pas d’extremum sur R) .
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f est dérivable sur R

et f ′(x) = 0 en x = 0 .

Mais f (0) n’est pas un extremum de f .

(f n’admet pas d’extremum sur R) .

x

x3

my header

o



Extrema
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Théorème :

Soit f une fonction continue sur un

intervalle ouvert I et dérivable sur

I sauf peut-être en x0 ∈ I .

Alors f (x0) est un extremum (local)

de f si f ′ change de signe en x0 .
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Théorème :

Soit f une fonction continue sur un

intervalle ouvert I
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Extrema

Démonstration :

∃ δ > 0 tel que f soit continue sur ] x0 − δ , x0 + δ [ et dérivable sur

] x0 − δ , x0 [ ∪ ] x0 , x0 + δ [ .

Soit x ∈ ] x0 − δ , x0 [ ∪ ] x0 , x0 + δ [ . Le théorème des accroissements finis

nous dit qu’il existe c entre x et x0 tel que

f ′(c) =
f (x)− f (x0)

x − x0
, d’où f (x) = f (x0) + f ′(c) [ x − x0 ].

Par hypothèse, f ′(x) change de signe en x0 . Distinguons deux cas.
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Le théorème des accroissements finis

nous dit qu’il existe c entre x et x0 tel que

f ′(c) =
f (x)− f (x0)

x − x0
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• f ′(x) prend des valeurs positives à gauche et négatives à droite de x0 :

∗ si x − x0 < 0 , alors f ′(c) ≥ 0 et

f (x) = f (x0) + f ′(c) [ x − x0 ]︸ ︷︷ ︸
≤0

⇒ f (x) ≤ f (x0) .

∗ si x − x0 > 0 , alors f ′(c) ≤ 0 et

f (x) = f (x0) + f ′(c) [ x − x0 ]︸ ︷︷ ︸
≤0

⇒ f (x) ≤ f (x0) .

Donc f (x) ≤ f (x0) , ∀ x ∈ ] x0 − δ , x0 [ ∪ ] x0 , x0 + δ [ , f (x0) est un

maximum (local) de f .
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Exemple

Exemple :

Soit Γ le demi-cercle d’équation

y =
√

1− (x − 1)2 =
√

2x − x2 , x ∈ [ 0 , 2 ] .

On considère les trois points P (2, 0) , R (x0, 0)

et Q ∈ Γ d’abscisse x0 , x0 ∈ ] 0 , 2 [ . x

y

Γ

P

Q

R

Déterminer l’abscisse x0 des points Q et R se sorte que l’aire du triangle

PQR soit maximale.
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Déterminer l’abscisse x0 des points Q et R se sorte que l’aire du triangle

PQR soit maximale.

my header

o



Exemple

Exemple :

Soit Γ le demi-cercle d’équation

y =
√

1− (x − 1)2 =
√

2x − x2 , x ∈ [ 0 , 2 ] .

On considère les trois points P (2, 0) , R (x0, 0)

et Q ∈ Γ d’abscisse x0 , x0 ∈ ] 0 , 2 [ . x

y

Γ

P

Q

R
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Exemple

Posons x = x0

et A(x) l’aire du triangle PQR en fonction de x , x ∈ ] 0 , 2 [ .

A(x) =
1

2
(xP − xR) (yQ − yR) =

1

2
(2− x)

√
2x − x2 .

A′(x) =
1

2

�
−
√

2x − x2 + (2− x) · 1− x√
2x − x2

�
=

(x2 − 2x) + (2− x) (1− x)

2
√

2x − x2

=
(x − 2) [ x − (1− x) ]

2
√

2x − x2
=

(x − 2) (2x − 1)

2
√

2x − x2
.
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Exemple

Pour déterminer les extrema de A(x) ,

on étudie le signe de sa dérivée :

x 0 1
2

2

A′(x) + 0 −

La fonction A(x) est donc croissante à gauche de x0 = 1
2

et décroissante à

droite.

L’aire du triangle PQR est maximale lorsque l’abscisse de R vaut x0 = 1
2

.
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Remarques

Remarques :

a) Attention !

 f ′(x0) = 0 6⇒ f (x0) extremum de f ,

f (x0) extremum de f 6⇒ f ′(x0) = 0 .

Contre-exemples :

x

y
y = f (x)

x0

f (x0)

x

y

y = f (x)

x0

f (x0)
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Extrema

b) L’abscisse x0 des extrema de f

est à chercher dans les situations suivantes :

i) les points frontières des domaines de définition et de continuité de f ,

ii) les points du domaine de continuité où f n’est pas dérivable,

iii) les points du domaine de dérivabilité de f à tangente horizontale.

L’ensemble de ces points constitue les points remarquables de f .

Parmi ces ”candidats-extrema”, on détermine les extrema de f à l’aide du

tableau de signe de la dérivée.
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Parmi ces ”candidats-extrema”, on détermine les extrema de f à l’aide du

tableau de signe de la dérivée.
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ii) les points du domaine de continuité où f n’est pas dérivable,
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b) L’abscisse x0 des extrema de f est à chercher dans les situations suivantes :

i) les points frontières des domaines de définition et de continuité de f ,
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b) L’abscisse x0 des extrema de f est à chercher dans les situations suivantes :

i) les points frontières des domaines de définition et de continuité de f ,
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Exemple

Exemple :

Déterminer les extrema de f (x) = x3 · 3
È

(x3 − 1)2 .

Df = R et f est continue sur R comme produit et composée de fonctions

continues sur R .

f ′(x) = 3x2 · 3
È

(x3 − 1)2 + x3 · 2

3
· 3x2

3
√
x3 − 1

=
3x2 (x3 − 1) + 2x5

3
√
x3 − 1

=
5x5 − 3x2

3
√
x3 − 1

=
x2 (5x3 − 3)

3
√
x3 − 1

, Df ′ = Df \ {1} .

Il y a donc trois points remarquables, en x = 0 , x = 3

È
3
5

et x = 1 .
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Exemple : Déterminer les extrema de f (x) = x3 · 3
È

(x3 − 1)2 .

Df = R et f est continue sur R comme produit et composée de fonctions

continues sur R .

f ′(x) = 3x2 · 3
È

(x3 − 1)2 + x3 · 2

3
· 3x2

3
√
x3 − 1

=
3x2 (x3 − 1) + 2x5

3
√
x3 − 1

=
5x5 − 3x2

3
√
x3 − 1

=
x2 (5x3 − 3)

3
√
x3 − 1

, Df ′ = Df \ {1} .

Il y a donc trois points remarquables, en x = 0 , x = 3

È
3
5

et x = 1 .

my header

o



Exemple
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Exemple

Tableau de signe de f ′(x) :

x −∞ 0 3

È
3
5

1 +∞

f ′(x) + 0 + 0 − +
−∞+∞

Il y a deux changements de signe de la dérivée, f admet donc deux extrema :

un maximum en x = 3

È
3
5

et un minimum en x = 1 .
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un maximum en x = 3

È
3
5

et un minimum en x = 1 .

my header

o



Exemple

Caractérisation des points remarquables du graphe de f :

∗ en x = 0 , pas d’extremum, mais une tangente horizontale,

∗ en x = 3

È
3
5

, un maximum à tangente horizontale,

∗ en x = 1 , un minimum à demi-tangentes verticales (point de rebroussement).
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Caractérisation des points remarquables du graphe de f :

∗ en x = 0 , pas d’extremum,

mais une tangente horizontale,

∗ en x = 3

È
3
5

, un maximum à tangente horizontale,
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∗ en x = 1 , un minimum à demi-tangentes verticales (point de rebroussement).

my header

o



Exemple
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Exemple

Esquisse du graphe de f :

x

y

y = f (x)

0 3

È
3
5

3
5
· 3

È
4
25

1
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