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nous dit qu'il existe ¢ entre x et xp tel que

Fiey= TPIZT00) - goh f) = Fro) + F(€) [x — o],

X — Xo

Par hypothése, f’(x) change de signe en x,. Distinguons deux cas.
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y=y1-(x—-12=v2x—-x%, x€[0,2]. r
On consideére les trois points P (2,0), R (xo,0)

et Q €l dabscisse xo, X0 €0, 2][. R p X

Déterminer I'abscisse x, des points @ et R se sorte que |'aire du triangle

PQR soit maximale.
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Pour déterminer les extrema de A(x), on étudie le signe de sa dérivée :
2

La fonction A(x) est donc croissante a gauche de xp = % et décroissante a

X‘O

— O— NI

droite.

L'aire du triangle PQR est maximale lorsque I'abscisse de R vaut xg = %
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b) L'abscisse xo des extrema de f est a chercher dans les situations suivantes :
i) les points frontieres des domaines de définition et de continuité de f,
ii) les points du domaine de continuité ou f n'est pas dérivable,
i) les points du domaine de dérivabilité de f a tangente horizontale.

L'ensemble de ces points constitue les points remarquables de f.

Parmi ces " candidats-extrema”, on détermine les extrema de f a l'aide du

tableau de signe de la dérivée.
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Tableau de signe de f'(x) :
1 —|—oo‘

0
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Il y a deux changements de signe de la dérivée, f admet donc deux extrema :

un maximum en x — f/g et un minimumen x =1.
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Caractérisation des points remarquables du graphe de f :

x en x =0, pas d'extremum, mais une tangente horizontale,
¥ en X = \3/3 un maximum a tangente horizontale,

% en x =1, un minimum a demi-tangentes verticales (point de rebroussement).
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