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Soient u = u(x) et v =v(x) deux fonctions de x.
On rappelle la regle de dérivation d'un produit : (u-v) =u -v+u-Vv.

Et en intégrant les deux membres de cette identité, on obtient

/(u-v)/dX:/u’-vder/u-v'dx & u-v:/u’-vdx—l—/u-v'dx,

(la constante d'intégration est ici inutile, car elle est contenue dans les intégrales

indéfinies qui suivent). En d'autres termes, on a donc

/u'-vdx:u-v—/u-v'dx.
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1) /X~sin(x) dx,

I'intégration par parties nous permet ici, en choisissant de dériver x et

d'intégrer sin(x), de nous ramener a I'intégration d'une fonction cosinus :

v=x, Vv =1 et v =sin(x), wu= —cos(x),
/)j-sinT(x) dx = x - [ —cos(x) ] —/1 - [~ cos(x)] dx

= —x - cos(x) + /cos(x) dx = —x - cos(x) + sin(x) + C.
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2) Un exemple un peu plus difficile : /x3 “Vx?2 41 dx.

e Si on choisit d'intégrer x3 et de dériver vx2+ 1, on se rameéne 3

5
., . ) . X . .y
I'intégration d'une fonction de type \/?1 ce qui est plus compliqué.
X<+
e Si on choisit de dériver x3, il faudrait intégrer v/x2+ 1, ce qui nest pas

facile.

e Alors ...
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La bonne idée consiste a dériver x° et a intégrer x-v/x2+1:

2 /

) v = 2x et U/ m u_3\/7

V=X

/ﬁz.{x.m]dx:xz.{% TP } Eﬁ}

4

1
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1 2 1
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(x2+1)54C

Wl N
ol =

2. (x2+1)3 —

/x3-\/x2—|—1dx =
= /(x2+1)3 1><2—3(><2+1) +C
3 15

Wl



Exemple 2

/md = SR VTP L VG IR A C
= \/W{%Xz—]%(XZ-f—l)}—FC

1
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1
= I (x2+1)3 [5x2—2(x2+1)] +C

Wl

- % (2 +1)° [3%-2} tC.
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cos[u(x)] est facile a intégrer s'il est multiplié par la dérivée intérieure o/'(x).

[ eos () = /%; {%-cos(ﬁ)} dx.

N
1 e V’:i~cos % v =2sin (/x
) U—2\/— t \/)—( (\/_)’ 2 (\/_)’

u= V&
/cos(\/)_() dx:2\/§-sin(\/>_<)—/2—-25in(\/)_<) dx.
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/cos(\/)?) dx:2\/)_<-sin(\/)_<)+2/ [—sin (vx)] dx,

1
2vx
/cos(ﬁ) dx = 2/ -sin (/X ) + 2cos (vx ) + C.

Nous verrons dans le prochain cours, consacré a l'intégration par changement de

variable, qu'on pourra formaliser cette technique de facon un peu différente.
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Soit F(x) une primitive de =, par exemple F(x) =In|x|. Alors
X

1
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On a donc

1 1
/;dx:1+/;dx & Fx)+C=1+Fx)+C
& C-C=1.

Nous n'avons rien montré, si ce n'est que 1 est une fonction constante (sur

chaque intervalle du domaine de continuité de %)
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e
T 4
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U=¢e, u=e et v =sin(x), v’ =cos(x),

/eTX -sin(x) dx = &* - sin(x) — / e* - cos(x) dx.

I
On a pas l'impression d'avoir beaucoup progressé, car il nous reste a intégrer

e* - cos(x) qui est de méme difficulté que I'intégrale indéfinie /.
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Mais en intégrant une deuxiéme fois par parties et en respectant le choix initial
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Mais en intégrant une deuxiéme fois par parties et en respectant le choix initial

(dériver la fonction trigonométrique et intégrer |'exponentielle), on obtient :

| = e sin(x) — / ¢ -cos(x)d
= e* -sin(x) — [ex - cos(x) — / e [—sin(x)] dx

= [ =¢&"-sin(x) —e*-cos(x) — 1 = 2/ =¢e"-sin(x)— e*-cos(x)+ Cste

= | = %X - [sin(x) — cos(x) ] + C.
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6) /In(x) d,

I'intégrant In(x) n'apparait pas comme un produit, mais on peut I'intégrer

par parties en |'écrivant sous la forme 1-In(x) :

/In(x)dx:/%~In(¢x)dX:x-|n(x)—/x~)—1<dx,

/In(x)dx:x-ln(x)—x+C.
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7) /arcsin(x) dx,

on intégre par parties comme dans I'exemple précédent :

/arcsin(x) dx = /% -arcsin(x) dx = x - arcsin(x) —

1

|~
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7) /arcsin(x) dx,
on intégre par parties comme dans I'exemple précédent :
/arcsin(x) dx = /% -arcsin(x) dx = x - arcsin(x) —
!

—2x

= x - arcsi + | —F—d
x - arcsin(x) /2\/—7x2 Ix

|~
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7) /arcsin(x) dx,

on intégre par parties comme dans I'exemple précédent :

1
arcsin(x) dx = [ 1-arcsin(x)dx = x - arcsin(x) — — dx,
/ in(x) dx /T l(X)X X in(x) /me

-2
= x - arcsin(x) + / 2\/—1(7)@ dx = x - arcsin(x) + V1 —x2+ C.



