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3.1 Aire géométrique dans le plan
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e Recherche des primitives :
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e Recherche des primitives :
+ /gﬁdx:gxhc,

* /arcsin(x) dx = /% -arcsin(x) dx = x - arcsin(x) —
!

= x - arcsin(x) +vV1—x2+ C.

e Evaluation :

A= [gxg—X'arcsin(x)—\/l—xﬂ; =[(2-12

)~ ()] -
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Remarque : Si les deux fonctions y;(x) et y
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peut calculer I'aire A du domaine D en
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On découpe le domaine D en "tranches horizontales” d'épaisseur dy et de

longueur x, — x;, avec

y
« T y=2yx & x=xi(y) =% y2 2
« [y y=arcsin(x) & x=x(y)=sin(y).

On en déduit I'expression de I'aire A en fonction

de y:

A= [ Datn) )1 ay. 5 — x
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A= /0g [x(y) —x(y) ] dy = /Og [sin(y) -

2
— [—cos(y) - 3 y3]0
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Az/og[Xz(y)—Xl(y)]dyz/og [sin(y) = %= v

= |~ cosly) -~ 5%

7]

N

)—(-1+0)
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A= ["Laln) =0y = [ [sinn) — % v &

N
|
—~
o
|
]

= [—eosly) — 5 ?) = (0-F) ~(-140) =1
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Intégration par rapport a la variable y

Remarque :

De fagon analogue, si le domaine D se décrit plus agréablement en le
découpant en tranches horizontales, plutot qu'en tranches verticales, on intégrera

par rapport a la variable y.

On illustre cette idée dans I'exemple qui suit.



Autre exemple

Exemple 3



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:

Nh: x*—2y=0, x<0



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:

Nh: x*—2y=0, x<0 et L y*+x—-2=0, y>0.



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
Iy x2—2y:0, x<0 et 5 y2—|—x—2:0, y>0.

Indication :



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
Iy x2—2y:0, x<0 et 5 y2—|—x—2:0, y>0.

Indication : les deux arcs de paraboles se coupent en (-2, 2).



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [; et

Nh: x*—2y=0, x<0 et L y*+x—-2=0, y>0.

Indication : les deux arcs de paraboles se coupent en (-2, 2).

Dans les équations des deux arcs ; et I,

|_2:



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
Nh: x*—2y=0, x<0 et L y*+x—-2=0, y>0.
Indication : les deux arcs de paraboles se coupent en (-2, 2).

Dans les équations des deux arcs '; et 5, on peut expliciter y en fonction

de x



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
Nh: x*—2y=0, x<0 et L y*+x—-2=0, y>0.
Indication : les deux arcs de paraboles se coupent en (-2, 2).

Dans les équations des deux arcs '; et 5, on peut expliciter y en fonction

de x ou x en fonction de y.



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
Nh: x*—2y=0, x<0 et L y*+x—-2=0, y>0.
Indication : les deux arcs de paraboles se coupent en (-2, 2).

Dans les équations des deux arcs '; et 5, on peut expliciter y en fonction
de x ou x en fonction de y. On peut donc calculer I'aire de ce domaine en

intégrant par rapport a x oua y.



Autre exemple

Calculons I'aire du domaine limité par I'axe Ox et par les deux arcs [ et [;:
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Voici ces deux méthodes.
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e Esquisse du domaine

e Expression de son aire
L'intégration par rapport a x exige de distinguer deux cas, car les tranches

verticales ne sont pas de méme type a gauche et a droite de x =0 :

/ e )]dx+/02y2(x)dx.
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9 (0] 2
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A= [ Le) =m0l = [ [@=y) = (=20
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Dans le plan, on considere la droite d et I'arc d'ellipse T :

t)=+v3 t
d: y=x-1 et [ x(t) V3 cos —
y(t) =sint

N3

IA

Calculer I'aire du domaine fini limité par I'arc [ et la droite d.

IN

B
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Points d'intersections :

Soit M(x(t), y(t)) un point de I, il appartient a d si et seulement si

3 1 1
y(t)=x(t) -1 <« 3cost—sint=1 <& gcost—isintzi
s M v M 1 v T
= cosgcost—smgsmt:§ = cos(t+g):cos§
™ T - -
54 t:—E ou tzg, (_EStSE)
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y
d
Ici aussi, il est plus simple t=1
de découper le domaine N
en tranches horizontales. dy Xr — X4 //
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y2
Expression de l'aire : A = / (xr — xq) dy,

»n
avec xr=x(t), xg=y+1l=y(t)+1 et dy=y(t)dt.

Jus

A= [ [x(t) = (v(t) +1)] y(t) dt

us
2
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[\/gcost—sint—l cost dt,
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y2
Expression de l'aire : A = / (xr — xq) dy,

1

avec xr=x(t), xg=y+1l=y(t)+1 et dy=y(t)dt.

o

A:/_g [x(t) — (y(t)+1)] y(t) dt:/_ [\/gcost—sint—l}cost dt,

[NJE]

A—/6 [\/gcoszt—%sin(%)—cost} dt.

s
2
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Intégration de cos?(t) :
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Intégration de cos?(t) :

cos(2t) = cos?(t) — sin?(t)



Exemple 4

Intégration de cos?(t) :

cos(2t) = cos?(t) — sin*(t) = 2 cos*(t) — 1



Exemple 4

Intégration de cos?(t) :

cos(2t) = cos?(t) —sin?(t) =2 cos?(t) —1 = cos?(t) = 1+ CgS(Zt)




Exemple 4

Intégration de cos?(t) :

[cos(2t) = cos’(t) —sin’(t) =2 cos’(t) — 1 = cos?(t) = HCZOS(ZLL)

1 2
/cos2tdt:/++s(t) dr
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Intégration de cos?(t) :

[cos(2t) = cos’(t) —sin’(t) =2 cos’(t) — 1 = cos?(t) = 1+cc2)s(2t)

1 2 in(2
/cos2tdt:/++s(t) dtzé_’_smg_ t)—l—C.
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Conclusion :
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Conclusion :

A =

V3

t

2

+/3

sin(2t)
4

1
+ 2 cos(2t) —sint

ol

NJE]



Exemple 4

Conclusion :

A =

V3

N | ~+

+/3

sin(2t)
4

1
+ 2 cos(2t) — sin t]




Exemple 4

Conclusion :
[t in(2t) 1 3
A = \/§—+\/§Sln( )+—cos(2t)—sint
T2 4 4 s
[ (V3r 3 1 1 3 1
= vim 3,1 1) (V8w o 1.,
12 8 8 2 4 4
_ T 3
= 5




Exemple 4

Conclusion :

A =

[ t in(2t 1
V3 - +43 sin(2t) + = cos(2t) — sin t]
T2 4 4
(V3r 3 1 1
V3w 3.1 1)
12 8 8 2
T 3
L2~ 1,0638
V3 4




